Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms
Abstract
:1. Introduction
2. Formulation of 3-D Forward and Inverse Scattering Problems
2.1. Forward Scattering Problem
2.2. Observation Model
2.3. Inverse Problem Formulation
2.4. Optimization and Computational Issues
3. Simultaneous Resolution of Multiple Forward Scattering Problems
3.1. Description of the Block-BiCGStab Algorithm
Algorithm 1 Joint resolution of linear systems with block-BiCGStab. |
|
Algorithm 2 Sequential resolution of linear systems , , with BiCGStab. |
|
3.2. Efficient Implementation for Solving Multiple Forward Problems
3.3. Implementation within the Reconstruction Procedure
4. Performance of Block-BiCGStab on Synthetic Data
4.1. Description of the Numerical Example and Implementation Details
4.2. Impact of Initialization
4.3. Performance for Different Forward Scattering Configurations
4.3.1. Impact of the Frequency
4.3.2. Impact of the Contrast
4.4. Inversion Procedure and Object Reconstruction
- the initial solution was set to zero, and iterations of the inversion algorithm were performed with the 1 GHz data;
- another iterations were then performed with the 2 GHz data, with an initial solution set to the output of the previous step;
- the reconstruction algorithm was finally applied to 3 GHz data, with an initial solution set to the output of the previous step, and iterations are run until the -norm of the gradient becomes lower than .
5. Reconstruction of the Fresnel Database Objects
- Perform iterations of the reconstruction algorithm with the 3 GHz data and initial contrast function set to zero.
- Perform iterations of the reconstruction algorithm with the 4 GHz data and initial contrast function set to the final iterate of the previous step.
- Repeat the previous step with the 5 GHz, 6 GHz and 7 GHz data.
- Perform reconstruction of the object with the 8 GHz data, initial contrast function set to the final iterate of the previous step and a stopping rule on the -norm of the gradient set to .
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pastorino, M. Microwave Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gilmore, C.; Abubakar, A.; Hu, W.; Habashy, T.M.; van den Berg, P.M. Microwave Biomedical Data Inversion Using the Finite-Difference Contrast Source Inversion Method. IEEE Trans. Antennas Propag. 2009, 57, 1528–1538. [Google Scholar] [CrossRef]
- Scapaticci, R.; Di Donato, L.; Catapano, I.; Crocco, L. A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring. Prog. Electromagn. Res. B 2012, 40, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, A.; Habashy, T.M.; Druskin, V.L.; Knizhnerman, L.; Alumbaugh, D.L. 2.5D Forward and Inverse Modeling for Interpreting Low-Frequency Electromagnetic Measurements. Geophysics 2008, 73, F165–F177. [Google Scholar] [CrossRef]
- Forte, E.; Pipan, M.; Casabianca, D.; Cuia, R.D.; Riva, A. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using {GPR} attributes. J. Appl. Geophys. 2012, 81, 76–87. [Google Scholar] [CrossRef]
- Maaref, N.; Millot, P.; Pichot, C.; Picon, O. FMCW ultra-wideband radar for through-the- wall detection of human beings. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009. [Google Scholar]
- Asefi, M.; Jeffrey, I.; LoVetri, J.; Gilmore, C.; Card, P.; Paliwal, J. Grain bin monitoring via electromagnetic imaging. Comput. Electron. Agric. 2015, 119, 133–141. [Google Scholar] [CrossRef]
- Isernia, T.; Pascazio, V.; Pierri, R. A nonlinear estimation method in tomographic imaging. IEEE Trans. Geosci. Remote Sens. 1997, 35, 910–923. [Google Scholar] [CrossRef]
- Fang, Q.; Meaney, P.M.; Paulsen, K.D. Singular value analysis of the Jacobian matrix in microwave image reconstruction. IEEE Trans. Antennas Propag. 2006, 54, 2371–2380. [Google Scholar] [CrossRef]
- Kleinman, R.E.; van den Berg, P.M. A Modified Gradient Method for Two-Dimensional Problems in Tomography. J. Comput. Appl. Math. 1992, 42, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, P.M.; Kleinman, R.E. A Total Variation Enhanced Modified Gradient Algorithm for Profile Reconstruction. Inverse Probl. 1995, 11, L5–L10. [Google Scholar] [CrossRef]
- Abubakar, A.; van den Berg, P.M.; Mallorqui, J.J. Imaging of Biomedical Data Using a Multiplicative Regularized Contrast Source Inversion Method. IEEE Trans. Microw. Theory Tech. 2002, 50, 1761–1771. [Google Scholar] [CrossRef] [Green Version]
- Barrière, P.A.; Idier, J.; Laurin, J.J.; Goussard, Y. Contrast Source Inversion Method Applied to Relatively High Contrast Objects. Inverse Probl. 2011, 27, 075012. [Google Scholar] [CrossRef]
- Abubakar, A.; van den Berg, P.M. Iterative Forward and Inverse Algorithms Based on Domain Integral Equations for Three-Dimensional Electric and Magnetic Objects. J. Comput. Phys. 2004, 195, 236–262. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liu, Q.H. Three-Dimensional Nonlinear Image Reconstruction for Microwave Biomedical Imaging. IEEE Trans. Biomed. Eng. 2004, 51, 544–548. [Google Scholar] [CrossRef]
- Catapano, I.; Crocco, L.; D’Urso, M.; Isernia, T. A Novel Effective Model for Solving 3-D Nonlinear Inverse Scattering Problems in Lossy Scenarios. IEEE Geosci. Remote Sens. Lett. 2006, 3, 302–306. [Google Scholar] [CrossRef]
- Van den Berg, P.M.; Abubakar, A. Contrast Source Inversion Method: State of Art. Prog. Electromagn. Res. 2001, 34, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, A.; van den Berg, P.M.; Habashy, T.M. Application of the Multiplicative Regularized Contrast Source Inversion Method on TM- and TE-Polarized Experimental Fresnel Data. Inverse Probl. 2005, 21, S5–S13. [Google Scholar] [CrossRef] [Green Version]
- Bozza, G.; Pastorino, M. An Inexact Newton-Based Approach to Microwave Imaging Within the Contrast Source Formulation. IEEE Trans. Antennas Propag. 2009, 57, 1122–1132. [Google Scholar] [CrossRef]
- Gilmore, C.; Mojabi, P.; LoVetri, J. Comparison of an Enhanced Distorted Born Iterative Method and the Multiplicative-Regularized Contrast Source Inversion Method. IEEE Trans. Antennas Propag. 2009, 57, 2341–2351. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. Eigenfunction Contrast Source Inversion for Circular Metallic Enclosures. Inverse Probl. 2010, 26, 025010. [Google Scholar] [CrossRef]
- Rubaek, T.; Meaney, P.M.; Paulsen, K.D. A Contrast Source Inversion Algorithm Formulated Using the Log-Phase Formulation. Int. J. Antennas Propag. 2011, 2011, 849894. [Google Scholar] [CrossRef]
- Li, M.; Semerci, O.; Abubakar, A. A Contrast Source Inversion Method in the Wavelet Domain. Inverse Probl. 2013, 29, 025015. [Google Scholar] [CrossRef]
- Ozdemir, O. Cauchy Data Contrast Source Inversion Method. IEEE Geosci. Remote Sens. Lett. 2014, 11, 858–862. [Google Scholar] [CrossRef]
- Harada, H.; Tanaka, M.; Takenaka, T. Image Reconstruction of a Three-Dimensional Dielectric Object Using a Gradient-Based Optimization. Microw. Opt. Technol. Lett. 2001, 29, 332–336. [Google Scholar] [CrossRef]
- Soleimani, M.; Lionheart, W.R.B.; Peyton, A.J.; Ma, X.; Higson, S.R. A Three-Dimensional Inverse Finite-Element Method Applied to Experimental Eddy-Current Imaging Data. IEEE Trans. Magn. 2006, 42, 1560–1567. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Yuan, M.; Liu, Q.H. Reconstruction of 3D Objects from Multi-Frequency Experimental Data with a Fast DBIM-BCGS Method. Inverse Probl. 2009, 25, 024007. [Google Scholar] [CrossRef]
- De Zaeytijd, J.; Franchois, A. Three-Dimensional Quantitative Microwave Imaging from Measured Data with Multiplicative Smoothing and Value Picking Regularization. Inverse Probl. 2009, 25, 024004. [Google Scholar] [CrossRef]
- Chaumet, P.C.; Belkebir, K. Three-Dimensional Reconstruction from Real Data Using a Conjugate Gradient-Coupled Dipole Method. Inverse Probl. 2009, 25, 024003. [Google Scholar] [CrossRef]
- Winters, D.W.; Van Veen, B.D.; Hagness, S.C. A Sparsity Regularization Approach to the Electromagnetic Inverse Scattering Problem. IEEE Trans. Antennas Propag. 2010, 58, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Grzegorczyk, T.M.; Meaney, P.M.; Kaufman, P.A.; diFlorio Alexander, R.M.; Paulsen, K.D. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection. IEEE Trans. Med. Imaging 2012, 31, 1584–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abubakar, A.; Habashy, T.M.; Pan, G. Microwave Data Inversions Using the Source-Receiver Compression Scheme. IEEE Trans. Antennas Propag. 2012, 60, 2853–2864. [Google Scholar] [CrossRef]
- Abubakar, A.; Habashy, T.M.; Pan, G.; Li, M.K. Application of the Multiplicative Regularized Gauss-Newton Algorithm for Three-Dimensional Microwave Imaging. IEEE Trans. Antennas Propag. 2012, 60, 2431–2441. [Google Scholar] [CrossRef]
- Estatico, C.; Pastorino, M.; Randazzo, A. Microwave Imaging of Three-Dimensional Targets by Means of an Inexact-Newton-Based Inversion Algorithm. Int. J. Antennas Propag. 2013, 2013, 407607. [Google Scholar] [CrossRef]
- Scapaticci, R.; Kosmas, P.; Crocco, L. Wavelet-Based Regularization for Robust Microwave Imaging in Medical Applications. IEEE Trans. Biomed. Eng. 2015, 62, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Liu, Q.H.; Xiao, C.; Ward, E.; Ybarra, G.; Joines, W.T. Microwave breast imaging: 3-D forward scattering simulation. IEEE Trans. Biomed. Eng. 2003, 50, 1180–1189. [Google Scholar] [CrossRef]
- De Zaeytijd, J.; Franchois, A.; Eyraud, C.; Geffrin, J.M. Full-Wave Three-Dimensional Microwave Imaging With a Regularized Gauss-Newton Method—Theory and Experiment. IEEE Trans. Antennas Propag. 2007, 55, 3279–3292. [Google Scholar] [CrossRef]
- Rocca, P.; Benedetti, M.; Donelli, M.; Franceschini, D.; Massa, A. Evolutionary optimization as applied to inverse scattering problems. Inverse Probl. 2009, 25, 123003. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Bilicz, S.; Rodet, T.; Lambert, M.; Lesselier, D. Metamodel-Based Nested Sampling for Model Selection in Eddy-Current Testing. IEEE Trans. Magn. 2017, 53, 6200912. [Google Scholar] [CrossRef]
- Oliveri, G.; Zhong, Y.; Chen, X.; Massa, A. Multiresolution Subspace-Based Optimization Method for Inverse Scattering Problems. JOSA A 2011, 28, 2057–2069. [Google Scholar] [CrossRef]
- Zaimaga, H.; Lambert, M. Soft Shrinkage Thresholding Algorithm for Nonlinear Microwave Imaging. In Proceedings of the 6th International Workshop on New Computational Methods for Inverse Problems, Cachan, France, 20 May 2016. [Google Scholar]
- Sarkar, T.K.; Arvas, E.; Rao, S.M. Application of FFT and the Conjugate Gradient Method for the Solution of Electromagnetic Radiation from Electrically Large and Small Conducting Bodies. IEEE Trans. Antennas Propag. 1986, 34, 635–640. [Google Scholar] [CrossRef]
- Zwamborn, P.; van den Berg, P.M. The Three-dimensional Weak Form of the Conjugate Gradient FFT Method for Solving Scattering Problems. IEEE Trans. Microw. Theory Tech. 1992, 40, 1757–1766. [Google Scholar] [CrossRef] [Green Version]
- Gan, H.; Chew, W.C. A Discrete BCG-FFT Algorithm for Solving 3D Inhomogeneous Scatterer Problems. J. Electromagnet. Wave 1995, 9, 1339–1357. [Google Scholar] [CrossRef]
- Wang, C.F.; Jin, J.M. Simple and Efficient Computation of Electromagnetic Fields in Arbitrarily Shaped Inhomogeneous Dielectric Bodies Using Transpose-Free QMR and FFT. IEEE Trans. Microw. Theory Tech. 1998, 46, 553–558. [Google Scholar] [CrossRef]
- Ellis, R.G. Electromagnetic Inversion Using the QMR-FFT Fast Integral Equation Method. SEG Technical Program Expanded Abstracts 2002. Available online: https://library.seg.org/doi/abs/10.1190/1.1817145 (accessed on 20 October 2020).
- Xu, X.; Liu, Q.H.; Zhang, Z.Q. The Stabilized Biconjugate Gradient Fast Fourier Transform Method for Electromagnetic Scattering. In Proceedings of the Antennas and Propagation Society International Symposium, San Antonio, TX, USA, 16–21 June 2002. [Google Scholar]
- Wu, F.; Zhang, Y.; Oo, Z.Z.; Li, E. Parallel Multilevel Fast Multipole Method for Solving Large-Scale Problems. IEEE Ant. Propag. Mag. 2005, 47, 110–118. [Google Scholar]
- Fang, Q.; Meaney, P.M.; Geimer, S.D.; Streltsov, A.V.; Paulsen, K.D. Microwave Image Reconstruction from 3-D Fields Coupled to 2-D Parameter Estimation. IEEE Trans. Med. Imaging 2004, 23, 475–484. [Google Scholar] [CrossRef]
- O’Leary, D.P. The Block Conjugate Gradient Algorithm and Related Methods. Linear Algebra Appl. 1980, 29, 293–322. [Google Scholar] [CrossRef] [Green Version]
- Freund, R.W.; Malhotra, M. A Block QMR Algorithm for Non-Hermitian Linear Systems with Multiple Right-Hand Sides. Linear Algebra Appl. 1997, 254, 119–157. [Google Scholar] [CrossRef] [Green Version]
- El Guennouni, A.; Jbilou, K.; Sadok, H. A Block Version of BiCGSTAB for Linear Systems with Multiple Right-Hand Sides. Electron. Trans. Numer. Anal. 2003, 16, 2. [Google Scholar]
- Friedrich, C.; Bourguignon, S.; Idier, J.; Goussard, Y. A Block Version of the BiCGStab Algorithm for 3-D Forward Problem Resolution in Microwave Imaging. In Proceedings of the 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 13–17 April 2015. [Google Scholar]
- Geffrin, J.M.; Sabouroux, P. Continuing with the Fresnel Database: Experimental Setup and Improvements in 3D Scattering Measurements. Inverse Probl. 2009, 25, 024001. [Google Scholar] [CrossRef]
- Harrington, R.F.; Harrington, J.L. Field Computation by Moment Methods; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Friedrich, C.; Bourguignon, S.; Idier, J.; Goussard, Y. Reconstruction of 3-D Microwave Images Based on a Block-BiCGStab Algorithm. In Proceedings of the 5th International Workshop on New Computational Methods for Inverse Problems (NCMIP2015), Cachan, France, 29 May 2015. [Google Scholar]
- Carfantan, H.; Mohammad-Djafari, A. Diffraction Tomography. Bayesian Approach to Inverse Problems; Idier, J., Ed.; ISTE Ltd. and John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008; pp. 335–355. [Google Scholar]
- Xu, K.; Zhong, Y.; Wang, G. A Hybrid Regularization Technique for Solving Highly Nonlinear Inverse Scattering Problems. IEEE Trans. Microw. Theory Tech. 2017, 66, 11–21. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Balanis, C. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Li, M.; Abubakar, A.; van den Berg, P.M. Application of the Multiplicative Regularized Contrast Source Inversion Method on 3D Experimental Fresnel Data. Inverse Probl. 2009, 25, 024006. [Google Scholar] [CrossRef]
- Mudry, E.; Chaumet, P.C.; Belkebir, K.; Sentenac, A. Electromagnetic Wave Imaging of Three-Dimensional Targets Using a Hybrid Iterative Inversion Method. Inverse Probl. 2012, 28, 065007. [Google Scholar]
- Catapano, I.; Crocco, L.; D’Urso, M.; Isernia, T. 3D Microwave Imaging via Preliminary Support Reconstruction: Testing on the Fresnel 2008 Database. Inverse Probl. 2009, 25, 024002. [Google Scholar]
- Eyraud, C.; Litman, A.; Hérique, A.; Kofman, W. Microwave Imaging From Experimental Data Within a Bayesian Framework with Realistic Random Noise. Inverse Probl. 2009, 25, 024005. [Google Scholar]
- Litman, A.; Crocco, L. Testing Inversion Algorithms Against Experimental Data: 3D Targets. Inverse Probl. 2009, 25, 020201. [Google Scholar]
- Li, M.; Abubakar, A.; Habashy, T.M. A Three-Dimensional Model-Based Inversion Algorithm Using Radial Basis Functions for Microwave Data. IEEE Trans. Antennas Propag. 2012, 60, 3361–3372. [Google Scholar]
- Franchois, A.; Pichot, C. Microwave Imaging-Complex Permittivity Reconstruction with a Levenberg-Marquardt Method. IEEE Trans. Antennas Propag. 1997, 45, 203–215. [Google Scholar]
- Zhang, Z.Q.; Liu, Q.H.; Xu, X.M. RCS Computation of Large Inhomogeneous Objects Using a Fast Integral Equation Solver. IEEE Trans. Antennas Propag. 2003, 51, 613–618. [Google Scholar]
- Al Sharkawy, M.; El-Ocla, H. Electromagnetic Scattering From 3-D Targets in a Random Medium Using Finite Difference Frequency Domain. IEEE Trans. Antennas Propag. 2013, 61, 5621–5626. [Google Scholar]
- Sabbagh, H.A.; Sabbagh, L.D. An Eddy-Current Model for Three-Dimensional Inversion. IEEE Trans. Magn. 1986, 22, 282–291. [Google Scholar]
- Liu, J.X.; Jiang, P.F.; Tong, X.Z.; Xu, L.H.; Xie, W.; Wang, H. Application of BICGSTAB algorithm with incomplete LU decomposition preconditioning to two-dimensional magnetotelluric forward modeling. J. Cent. South Univ. (Sci. Tech.) 2009, 2, 42. [Google Scholar]
Frequency | CPU Time | Number of Iterations | CPU Time Ratio Block/BiCGStab | ||
---|---|---|---|---|---|
[min, Average, max] | |||||
BiCGStab | Block | BiCGStab | Block | ||
1 GHz | 116 s | 110 s | [7 8.0 10] | [7 7.9 9] | 0.95 |
2 GHz | 187 s | 138 s | [13 13.4 15] | [10 10 10] | 0.74 |
3 GHz | 245 s | 164 s | [17 17.9 21] | [12 12 12] | 0.67 |
Contrast | CPU Time | Number of Iterations | CPU Time Ratio Block/BiCGStab | ||
---|---|---|---|---|---|
[min, Average, max] | |||||
BiCGStab | Block | BiCGStab | Block | ||
0.25 | 105 s | 86 s | [7 7.01 8] | [6 6 6] | 0.82 |
0.5 | 152 s | 120 s | [10 10.3 12] | [8 8.5 9] | 0.79 |
1 | 245 s | 164 s | [17 17.9 21] | [12 12 12] | 0.67 |
1.5 | 361 s | 217 s | [25 26.9 29] | [15 16.1 18] | 0.60 |
2 | 482 s | 271 s | [34 36.1 39] | [19 20.2 21] | 0.56 |
2.5 | 610 s | 331 s | [44 45.9 50] | [23 24.8 26] | 0.54 |
Paper Ref. | TwoCubes | IsocaSphere | CubeSpheres | TwoSpheres | Cylinder |
---|---|---|---|---|---|
[63] | ++ | = | = | ++ | N/A |
[29] | ++ | = | + | ++ | ++ |
[28] | + | + | = | + | N/A |
[64] | ++ | + | + | ++ | ++ |
[61] | + | = | + | = | + |
[27] | + | = | = | = | ++ |
[33] | + | = | N/A | N/A | N/A |
[66] | + | N/A | N/A | = | N/A |
[62] | N/A | N/A | + | = | ++ |
Object from | Time | Time | Time Ratio |
---|---|---|---|
Database | BiCGStab | Block-BiCGStab | Block/BiCGStab |
TwoCubes | 2.33 h | 2.07 h | 0.89 |
IsocaSphere | 4.38 h | 3.58 h | 0.82 |
CubeSpheres | 3.21 h | 2.60 h | 0.81 |
TwoSpheres | 8.60 h | 6.41 h | 0.75 |
Cylinder | 60.0 h | 28.3 h | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, C.; Bourguignon, S.; Idier, J.; Goussard, Y. Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms. Sensors 2020, 20, 6282. https://doi.org/10.3390/s20216282
Friedrich C, Bourguignon S, Idier J, Goussard Y. Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms. Sensors. 2020; 20(21):6282. https://doi.org/10.3390/s20216282
Chicago/Turabian StyleFriedrich, Corentin, Sébastien Bourguignon, Jérôme Idier, and Yves Goussard. 2020. "Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms" Sensors 20, no. 21: 6282. https://doi.org/10.3390/s20216282
APA StyleFriedrich, C., Bourguignon, S., Idier, J., & Goussard, Y. (2020). Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms. Sensors, 20(21), 6282. https://doi.org/10.3390/s20216282