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Abstract: Human motion analysis using a smartphone-embedded accelerometer sensor provided
important context for the identification of static, dynamic, and complex sequence of activities.
Research in smartphone-based motion analysis are implemented for tasks, such as health status
monitoring, fall detection and prevention, energy expenditure estimation, and emotion detection.
However, current methods, in this regard, assume that the device is tightly attached to a pre-determined
position and orientation, which might cause performance degradation in accelerometer data due to
changing orientation. Therefore, it is challenging to accurately and automatically identify activity
details as a result of the complexity and orientation inconsistencies of the smartphone. Furthermore,
the current activity identification methods utilize conventional machine learning algorithms that are
application dependent. Moreover, it is difficult to model the hierarchical and temporal dynamic nature
of the current, complex, activity identification process. This paper aims to propose a deep stacked
autoencoder algorithm, and orientation invariant features, for complex human activity identification.
The proposed approach is made up of various stages. First, we computed the magnitude norm
vector and rotation feature (pitch and roll angles) to augment the three-axis dimensions (3-D) of the
accelerometer sensor. Second, we propose a deep stacked autoencoder based deep learning algorithm
to automatically extract compact feature representation from the motion sensor data. The results
show that the proposed integration of the deep learning algorithm, and orientation invariant
features, can accurately recognize complex activity details using only smartphone accelerometer data.
The proposed deep stacked autoencoder method achieved 97.13% identification accuracy compared
to the conventional machine learning methods and the deep belief network algorithm. The results
suggest the impact of the proposed method to improve a smartphone-based complex human activity
identification framework.
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1. Introduction

Recent research in human activity recognition and ambient assisted living has revealed a high
correlation between the level of physical activity and maintaining a healthy lifestyle [1]. Engaging in
physical activity is vital toward reducing several chronic and non-communicable diseases, such as
cardiovascular diseases, stroke, diabetes, hypertension, obesity, and depression. According to the
World Health Organization (WHO), physical activity involves body movement produced by skeletal
muscles that require energy expenditure. These include activities undertaken while working, playing,
conducting household chores, and engaging in recreational activities [2]. The impact of physical
activity for the overall well-being of an individual cannot be overemphasized. Moreover, regular
physical activity can bring about many physiological improvements on an individual’s emotional
state, help the aging population live active lifestyles, and enhance self-esteem. In addition, engaging
in physical activity is important toward lowering stress and anxiety levels, reducing blood pressure,
contributing toward weight loss, and reduce the risk of cognitive conditions, such as Alzheimer’s,
in elderly citizens [3]. Certainly, lack of physical activity is the major cause of obesity, a condition that
is currently ravaging the world, with over 10% of the world population being overweight. Therefore,
precautionary measures, such as physical activity and appropriate dieting, are needed to reduce the
impact of the current obesity level.

To assess the level of physical activity, nutritionists and medical practitioners implement
self-completed questionnaire techniques to enable people to log their daily activities, and then
analyze these questionnaires to make informed decisions, and recommend appropriate feedback.
Nonetheless, the use of a self-completed questionnaire technique is laborious and time-consuming to
evaluate, especially for large groups. Therefore, sensor based technologies have recently been adopted
by researchers to identify levels of physical activity engagement [1,4,5]. Sensor-based methods for
physical activity assessment offer superior processes for gathering and collecting everyday contextual
information and life logging data [1,6].

In this case, the use of lifelogging data collected through sensor technologies provides a means to
continuously capture individual experiences with varieties of sensor modalities, which can be stored in
personal multimedia archives [6]. These sensor streams are analyzed to provide adequate information
for physical activity identification and assessment, health monitoring, and other social interactions.
Furthermore, advances in Internet of Things (IoT) devices with embedded sensors can also be used
for complex physiological data collection through life logging, and intelligently analyzed for human
activity detection, energy expenditure estimation, stress detection, and chronic disease management.
Analysis of human contextual data further provide opportunities to develop effective and efficient
smart healthcare systems.

The analysis of lifelogging data collected through sensor embedded devices for human activity
identification and assessment can be traditionally implemented using video, wearable and ambient
sensors, and smartphone-based approaches [7–10]. However, the performance of video-based methods
are affected by lightening variabilities and sensor locations. Furthermore, issues, such as privacy
and inability to differentiate target from non-target information during sensing, have drastically
minimized successful implementation of the video-based method [11]. On one hand, wearable and
ambient sensor-based methods provide continuous and consistent monitoring of physiological signals.
However, the approach requires numerous sensors to be worn by subjects at different body positions,
and might be unable to provide real-life practical implementation of daily activity details.

Recently, a smartphone-based method for human activity identification was shown to provide
individuals with a better way to seamlessly track daily physical activities, in order to access energy
expenditure, and maintain a healthy lifestyle. Smartphones are equipped with various sensor
modalities, such as an accelerometer, gyroscope, magnetometer, Global Positioning System (GPS)
compass, and other physiological signals. These sensor modalities provide unobtrusive, continuous,
and real-time based human activity identification, and assessment. An activity identification framework
using a smartphone can be categorized into simple or complex activity details. Simple activities are
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activities of daily living that are performed in a short period of time. Activities, such as walking,
running, sitting, standing, and jogging, are classified as simple activities. Conversely, complex activities
are composed of a sequence of activities performed at a longer duration of time and include smoking,
eating, taking medication, cooking, writing, etc. [7,12].

Among the sensor modalities for human activity identification, the accelerometer-based sensor is
the most widely implemented [13–15]. An accelerometer sensor utilizes the acceleration forces of the
body to dynamically measure body movements and vibrations, which ensure automatic identification
of movement patterns. The sensor has low power consumption that enables continuous monitoring
of human behavior, and does not depend on external signal sources for effective human activity
identification. In addition, an accelerometer sensor contains highly detailed information about phone
movement and orientation [16,17]. However, the fundamental challenges faced by accelerometer-based
human activity recognition include orientation variation and position displacement [18,19]. In this
case, smartphones for data collection are assumed to be tightly attached or placed at a pre-determined
location and orientation, and do not change during the activity identification process. Conversely,
this is not the case in real-world activity identification using smartphones [19,20], as users are obligated
to carefully place, or carry, the smartphone at a particular location. Therefore, the central theme of
this study is to investigate approaches to solve orientation invariant problems in accelerometer-based
human activity identification for smartphone users. We propose automatic feature representation
using the deep learning model, and feature augmentation methods, to resolve the above issue.

Previous studies have investigated various methods to minimize the impact of orientation variation
in mobile phone-based human activity identification. These methods include the use of rotation matrix
to transform the signal into global reference coordinate systems, extraction of robust features that are
independent of orientation, integration of an accelerometer with a gyroscope to reduce the impact of
orientation, and user adaptation [19,21,22]. However, the rotational matrix transformation method has
high computational complexity due to the extensive computation required to transform the sensors to a
global reference coordinate system. On the other hand, small-scale errors in the output of a gyroscope
sensor may lead to a drastic change in the sensor values for long time applications in the case of the
sensor integration method. Furthermore, a magnetic sensor is power hungry and noisy, which might
result in an inaccurate measurement reading [21]. In addition, it is difficult to correct the effects of
the sensor drift that is prevalent in the gyroscope inertial signal. Early correction of the sensor drift is
important for assessing the pre-impact fall detection and related application.

In many studies on orientation invariant problems, the orientation independent feature approach
is widely utilized. In this case, the raw signal (three axis) is converted into one dimensional (1-D)
orientation invariant sensors by computing the combined magnitude of the sensor axes. Then,
orientation invariant features are extracted and fed to conventional machine learning models, such as
the support vector machine, k-nearest neighbors, decision tree, and artificial neural networks for
activity classification [7,18,23]. Nevertheless, traditional machine learning approaches are application
dependent, and challenging to model complex activity details. Furthermore, they have shallow
architecture, which might not be suitable for continuous activity identification. In addition, it is
challenging to handle real-time activity identification and noise in large sensor data through
conventional machine learning [24,25]. To resolve the above challenging issues in smartphone-based
human activity identification, it requires robust, automatic feature representation methods.

Hence, deep learning methods were recently proposed by various studies to minimize the issues
inherent in conventional feature learning methods [25–27]. Deep learning methods automatically
extract translational invariants and discriminative features from large smartphone sensor streams,
and have provided unprecedented performances in areas, such as image segmentation and processing,
speech recognition, medicine, natural language processing, and human activity identification [26,28].

We proposes to augment the tri-axis (X, Y, and Z) acceleration data, with magnitude vector and
rotation angle (pitch and roll) of the acceleration sensors. These methods are essential to provide
orientation invariant and position independent features, to minimize orientation inconsistencies and
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effects of displacements. The unified method is efficient and robust against orientation changes
in the smartphones with less computation time [29,30]. Specifically, the paper proposes the deep
stacked autoencoder based deep learning method for automatic feature representation and orientation
augmentation through magnitude vector and rotation angle for human activity identification. The deep
stacked autoencoder is straightforward to create and implement, with great representational feature
learning from smartphone sensor data. To the best of our knowledge, no other studies have evaluated the
impact of magnitude vector, pitch and roll values, for deep learning-based human activity identification.

Accordingly, the contributions of this paper are as follows:

• Propose a deep stacked autoencoder based deep learning algorithm for complex human activity
identification using smartphone accelerometer data to improve accuracy and reduce over-fitting.

• Investigate the impact of fusing magnitude vector and rotation angle (pitch and roll) with tri-axis
(3-D) accelerometer data to correct the effects of smartphone orientation on complex human
activity identification.

• Extensive experimental settings to evaluate the proposed method using a smartphone acceleration
sensor placed on the wrist, and pocket, and compare the performance with three conventional
machine learning algorithms (Naïve Bayes, support vector machine, and linear discriminant
analysis), and deep belief networks.

The rest of the paper is organized as follows. Section 2 presents the related works on deep learning
for human activity identification. Section 3 discusses the methodology, which includes pre-processing,
deep stacked autoencoder, and baseline conventional machine learning methods. We present the
experimental design, dataset description, and evaluation metrics in Section 4. Section 5 discusses the
result of the findings and compares them with the existing deep learning model. We draw conclusions
and outline directions for future research in Section 6.

2. Related Works

This section presents relevant literature on human activity recognition using mobile and wearable
sensor data. The section provides a brief overview of studies that utilized conventional machine
learning and deep learning methods for human activity recognition, as well as strengths and weaknesses
of the studies.

2.1. Conventional Machine Learning Methods for Human Activity Identification

In past decades, various studies have proposed conventional machine learning and feature
extraction methods for human activity detection. Initially, studies extracted feature vectors, such as time
and frequency domain features from smartphone sensors after data preparation, and fed to classification
algorithms for detection of activity details. Typical activity classification algorithms that have played
prominent roles in this regard include the support vector machine [6,11,29], Naïve Bayes [7,11],
logistic regression [11], K nearest neighbors [7,11,31–33], decision tree [1,7], clustering method [34,35],
linear discriminant analysis [36], etc. These approaches provide an effective mechanism to implement
real-time recognition of activity details. However, conventional approaches require extensive feature
extraction and selection methods that are often arbitrary, and lack generalization ability to model
the hierarchical and temporal dynamic nature of the current human activity identification process.
In addition, conventional feature methods provide no universally acceptable feature vectors that
accurately represent datasets and applications [26]. Moreover, it is challenging to model real-time
activity identification and noise in large sensor data [24]. To solve the problem, inherent in current
traditional machine learning methods, requires sophisticated and automated feature representation
using deep learning methods.
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2.2. Deep Learning-Based Human Activity Recognition

Recently, deep learning methods have gained popularity for their ability to automatically extract
translational invariant features from sensor data, in order to resolve some of the issues in conventional
feature learning methods. Deep learning methods use artificial intelligence techniques and multiple
layers of neural networks to automatically extract features from large smartphone sensor streams.
In addition, deep learning methods exploit the massive sensor streams generated through various
cyber-physical systems, Internet of Things (IoT), and powerful hardware resources, such as graphical
processing units (GPU) to build human activity identification frameworks. The main advantages of
deep learning methods are their ability to deploy multiple layers of neural networks (deep neural
networks) and unlabeled sensor streams to achieve higher accuracy, fast processing, and translational
invariant feature representation for human activity identification.

Recently, various studies have attempted to implement deep learning for automatic feature
representation and human activity identification using smartphones [26]. Hassan, et al. [37] proposed
deep belief network and principal component analysis (PCA) to model human activity recognition
through features extracted from smartphone sensors. In a related approach, Alsheikh, et al. [38]
proposed deep belief networks to extract hierarchical features from motion sensor data and then
modeled stochastic temporal activity sequence using the Hidden Markov model. In an attempt to build
real-time and automatic feature representation for human activity identification, Bhattacharya and
Lane [39] investigated smartwatch and smartphone-based activity detection using GPU enabled devices.
The proposed method was deployed for hand gesture recognition, indoor localization, and transport
mode detection. Varieties of other deep learning algorithms, such as convolutional neural networks
(CNN) and Recurrent Neural Network (RNN) have also been implemented for smartphone human
activity. For instance, recent works in [14,40,41] explored the performance of convolutional neural
networks for smartphone-based human activity identification and indoor localization. In their studies,
CNN methods were deployed to automatically extract translational invariant and temporal features
from accelerometer sensors collected with smartphones, while the subjects executed various simple
activities. Moreover, the CNN method has shown impressive results in identification of simple activities
using accelerometer and gyroscope sensors [42]. Similarly, Almaslukh, et al. [8] investigated online
smartphone-based implementation of deep convolutional neural networks for real-time human activity
identification. Specifically, utilizing data augmentation and local connectivity of CNN, the proposed
method outperformed conventional approaches using principal component analysis, random forest,
and support vector machine algorithms.

Recurrent neural networks based deep learning algorithms have also been evaluated for
smartphone-based human activity recognition. Recurrent neural network methods ensure extraction
of long range temporal features from raw motion sensors in order to automatically model activity
sequences. Various studies have explored implementation of recurrent neural networks, such as
long-short memory, gated recurrent units, and bi-direction long short-term memory for human activity
identification and related applications [43,44]. Zhao and Hou [9] explored the bidirectional long
short-term memory (Bi-LSTM) approach for real-time human activity identification using a smartphone
sensor, and investigated the possibility of onboard implementation for android devices. These studies
have shown the potential of deep learning algorithms to provide efficient and effective approaches to
implement human activity identification using smartphone motion sensors.

However, a number of issues have hindered successful implementation of the aforementioned deep
learning algorithms for smartphone-based applications. For instance, deep learning algorithms using
deep belief networks require high parameter initializations that may be computationally expensive
for mobile-based activity detection frameworks. In addition, joint optimization to achieve high
generalization is practically difficult. Even though convolutional and recurrent neural network based
methods are widely implemented, especially for image and video-based applications, it requires high
parameter initialization to achieve optimal results, and may over-fit easily when using complicated
fully connected layers [45]. In addition, it is challenging to capture temporal variance and change in
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activity details due to lack of temporal segmentation in convolutional neural networks. To model
temporal dependencies in activity details requires fusion with recurrent neural networks, which further
increases the computational complexity of activity identification models [26]. Moreover, a recurrent
neural network is difficult to train and suffers from vanishing gradients.

Recently, a few studies [46–50] have implemented a deep stacked autoencoder for human activity
identification. Nonetheless, these studies assume that the smartphone is tightly attached or placed
at a pre-determined position, and that orientation does not change during the activity identification
process. Conversely, this is not the case in real-world activity identification using smartphone sensors,
especially with accelerometer sensors [19,20], as users are obligated to carefully place or carry the
smartphone in particular positions. Various studies in orientation invariance and sensor displacement
have been implemented recently [7,18,30]. Conversely, these studies utilized the conventional feature
extraction and machine learning approach.

This paper differs distinctly from previous studies by proposing a unified deep learning method
and orientation invariant features for complex human activity identification. Complex human activity
details are representative of peoples’ daily lives, and are harder to recognize. Identification of complex
activity details is necessary for building a real-life smartphone-based human activity identification
application. To the best of our knowledge, this is the first work revealing the impact of the deep
learning approach and orientation invariant features for a smartphone-based complex human activity
identification framework. Moreover, this paper implements extensive experiments to compare the
performances of tri-axis acceleration, magnitude vector, and rotation angle (pitch and roll) separately,
and fused together. The experimental evaluations suggest the impact of the proposed deep learning
approach for human activity identification. Table 1 summarizes various deep learning models recently
implemented for human activity recognition, strengths, and weaknesses.

Table 1. Summary of various deep learning algorithms for human activity identification.

Deep Learning Methods Descriptions Strengths Weaknesses

Deep belief networks [38,39,51]

Deep belief networks
have direct connection to

the lower layer of the
network and

hierarchically extract
features from data.

Uses feedback
mechanism to extract

relevant features through
unsupervised adaption.

High computation
complexity due to high

parameters initialization.

Convolutional neural networks
[8,14,37,40,42]

Uses interconnected
network structures to

extract features that are
invariant to distortion.

Widely utilized for
human activity

identification due to its
ability to model time
dependent data. It is

invariant to changes in
data distribution.

Requires large amount of
training data to obtain
discriminant features.

In addition, it requires a
high number of

hyper-parameter
optimization.

Recurrent neural networks
[9,43,44]

Deep learning algorithm
for modeling temporal

changes in data.

Ability to extract
temporal dependencies
and complex changes in

sequential data.

Difficult to train due to
large parameter update

and vanishing gradients.

Deep autoencoder algorithms
[46,47,49,50]

Generative deep learning
model that replicates

copies of training data as
input.

Reduces
high-dimensional data to
low dimensional feature

vectors. This helps to
reduce computational

complexity.

Lack of scalability to
high-dimensional data.

It is difficult to train and
optimize, especially for
one layer autoencoder.

3. Methodology

This section describes the methodology adopted to develop the deep learning-based complex
human activity identification. The section is divided into various subsections, and includes the
pre-processing method and theoretic concept of the proposed deep stacked autoencoder and orientation
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invariance methods for human activity recognition. In addition, we briefly explain the methods
recently implemented for human activity recognition that we compared with the proposed method.
The details flow of the proposed approach is presented in Figure 1.Sensors 2020, 20, x FOR PEER REVIEW 7 of 30 
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Figure 1. Proposed complex human activity identification framework.

3.1. Pre-Processing

We use two main techniques for data pre-processing, data cleaning, and data segmentation.
Raw signal sensor data collected using smartphones and other wearable devices are corrupted by
noise and missing values, due to signal degradation or signal variation generated during the sequence
of activities performed by each subject. Therefore, noise removal and filtering are required before
feature extraction and activity identification algorithms. Filtering methods are essential to remove
low-frequency data, geometric bias of the sensor dimension, and to enhance the correlation between
each data point. We applied linear interpolation [29] to the raw accelerometer data to input missing
values and replace the values at the end of the activity sequence with previous values in the activity data.

To ensure efficient smartphone and wearable device implementation, data for activity identification
are divided into a series of data points, termed segments. Here, we developed and applied the sliding
window without overlap approach to the processed data. The sliding window method is efficient and
has become the preferred data segmentation method for human activity identification [52]. However,
choosing the size of the sliding window is a contentious issue in human activity identification and
classification. The window sizes have a great impact on computation time and identification of activity
details. Ambulatory and repetitive activities, such as walking, jogging, running, etc., require lower
window sizes, while other activity details, such as typing and smoking, may be recognized with longer
window sizes. In a recent study, Shoaib et al. [7] evaluated different window sizes, such as 2, 5, 10,
15, 20, and 30 s, and concluded that window sizes in the ranges of 2–5 s are sufficient for complex
activity identification. We empirically set the window size and implement the segmentation procedure
using previously tested window sizes for human activity recognition. Therefore, we used a 2 s window



Sensors 2020, 20, 6300 8 of 28

size (100 sample with 50 Hz sampling rate) without overlapping between each sample, as recently
utilized in [7].

3.2. Deep Learning Framework for Complex Human Activity Identification

In this paper, the autoencoder algorithm is proposed for complex human activity identification
using acceleration sensor data. The deep stacked autoencoder method is straightforward to create
and implement. Moreover, the deep stacked autoencoder method uses the unsupervised feature
learning approach and describes expressive abstraction with great representational feature learning
from mobile sensor data. The theoretical framework behind the proposed deep stacked autoencoder is
presented below.

3.2.1. Autoencoder

Deep autoencoder-based deep learning is a generative feature learning method that replicates
the copies of the input values as outputs. Therefore, the method is efficient for dimensionality
reduction of complex and high-dimensional sensor streams generated using mobile and wearable
devices for human activity recognition. The deep autoencoder is divided into the input layer,
encoding layer, decoding layer, and output layer. The encoding layer transforms the sensor streams
generated by the smartphone device into hidden features. Then, the transform input features is
reconstructed by the decoding layer to approximate values to minimize reconstruction errors [26].
With these approaches, the deep autoencoder provides a data-driven mechanism for learning feature
extraction to minimize over-dependence on handcrafted features inherent in conventional machine
learning methods. Given the input matrix from the acceleration sensor Xn = {x1, x2, . . . . . . ..xn}, xn ∈ RD

and the corresponding activity class label Yn =
{
y1, y2, . . . . . . ..yn

}
, yn ∈ RD. The encoding layer linearly

maps input data to the hidden layer hk using the logistic sigmoid activation function σ. The encoding
process is represented as

hk = σ(wk
(e).xk + bk

(e)) (1)

where (wk
(e), bk

(e)) ∈ RD represents the weight matrix and bias vector, h = {h1, h2, h3, . . . ..hk} represents
the output of the hidden layers, and x is the sensor input values. Furthermore, the decoding layer aims
to reconstruct the input in the output layers. The reconstruction process is represented as

yk = σ(w(d)
k .hk + b(d)k ) (2)

(w(d)
k , b(d)k ) ∈ RD represents the weight matrix and bias vector of the reconstruction process. Next,

the autoencoder tries to minimize the error between the input matrix Xn and Yn by applying the
objective loss function. The objective loss function is represented as:

J(w(e)
k , b(e)k , w(d)

k , b(d)k ) =
1
2
‖Yn −Xn‖

2 (3)

This can further be expressed as

Yn = h(Xn/w(e)
k , b(e)k , w(d)

k , b(d)k ) (4)

rewriting with respect to Equation (6), gives

J(w(e)
k , b(e)k , w(d)

k , b(d)k ) =
1
2
‖h(X/w(e)

k , b(e)k , w(d)
k , b(d)k ) −Xn‖

2
(5)

In our study, the stacked autoencoder was used to develop the deep learning-based complex
human activity identification framework using smartphone acceleration sensor data. The concept of
sparsity in autoencoder-based deep learning is explained in the next subsection.



Sensors 2020, 20, 6300 9 of 28

3.2.2. Deep Sparse Autoencoder

Sparse autoencoder [53] is an unsupervised deep learning method that learns over-complete feature
representation from raw sensor data by utilizing the sparsity term to model loss function, and set some
of the active units to zero. The use of sparsity term allows the model to learn feature representations
that are robust, linearly separable, and invariant to changes, distortion, and displacement, and learning
applications. These significant characteristics of sparse autoencoder guarantee efficient extraction of
low dimensional features from high-dimensional input sensor data. In addition, it ensures compact
representation of a complex activity recognition framework. In this paper, we implemented a three-layer
sparse autoencoder trained in greedy-wise layer approach. Thus, the output of the first layer serves as
input to the second layer. The weight matrix, bias vector, and loss function of the model are iteratively
updated at each training iteration. The sparsity term is added to the autoencoder cost function using the
regularization term. The use of greedy-wise training helps to determine the average output activation
value of the network in order to minimize overfitting [26]. The regularization term on the weight and
sparsity constraint added to the network is shown in Equations (6)–(9) below:

J(W(e)
k , b(e)k , W(d)

k , b(d)k ) =
1
2
‖h(Xn|C1)‖+ ϕC2 + γC3 (6)

C1 = W(e)
k , b(e)k , W(d)

k , b(d)k −Xn (7)

C2 = ϕ
∑

j

KL(ρ,ρ′ j) (8)

C3 = ‖W(e)
k W(e)

k ‖
2

2
(9)

where ϕ and γ represent L2 regularization coefficient for the weight matrix, sparsity regularization
factors that control the degree of weight decay, and KL() is the Kullback–Leibler divergence, respectively.
The sparsity regularization is added to the network to restrict the sparsity control of the hidden units [53].
Then, Kullback–Leibler divergence, which measures the diversity of two training sample distribution,
is computed as

KL(t, m) = t. log(
t
m
) + (1− t). log(

1− t
1−m

) (10)

ρ is the probability of activation and ρ′ j is the average activation probability of j − th hidden
neuron [54].

3.2.3. Softmax Classifier

At the end of feature extraction using a deep sparse autoencoder, the Softmax classifier is appended
at the fully connected layer to provide probability distributions of activity classes. The Softmax classifier
is a multinomial logistic regression that models multi-class classification problems using the cost
minimization method. Hence, given the sensor data and the corresponding activity class label (xn, yn),
where xn ∈ [1, 2, 3 . . . . . . .k] and yn ∈ [1, 2, 3 . . . . . . .p]. In our dataset, p is total of thirteen (13) activity
classes, which include walk, stand, jog, sit, bike, upstairs, downstairs, type, write, coffee, talk, smoke,
and eat. Given the input matrix xn and yn, the Softmax model estimates the probability p(y = p/x) for
each class label p = 1, 2, 3, . . . .p for p class problem. The probability estimate contains each activity
class probability that measures the input values for each activity class. The probability estimate of each
class h(xi/θ) is computed as

h(xi/θ) =


p(y = walk/xi;θ)

p(y = s tan d/xi;θ)
p(y = sit/xi;θ)

:
p(y = eat/xi;θ)


(11)
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=
1∑p

j exp(θT
j xi)


exp(θ(walk)Txi)

exp(θ(s tan d)Txi)

exp(θ(sit)Txi)

:
exp(θ(eat)Txi)


(12)

where θ(walk),θ(s tan d),θ(sit), . . . ..,θ(eat)
∈ Rn depict the parameters of the stacked autoencoder model

for each activity class. The normal distribution [55] is given as:

1∑p
j exp(θT

j xi)
(13)

The Softmax classifier tries to optimize the θ parameters by minimizing the cost function, which is
given as

J(θ) =
1
m

 m∑
i=1

p∑
j=1

1{y(y− j)} log
exp(θT

j xi)∑p
i exp(θT

i xi)

+ Q (14)

Q =
λ
2

p∑
i=1

n∑
j=0

θ2
jp(λ > 0) (15)

Then, we fine-tuned the deep sparse autoencoder model with supervised methods to minimize
the likelihood function and improve adaptability [56]. Finally, we stacked the pre-trained deep stacked
autoencoder embedded with Softmax classifier layers, alongside the model weights, and all other
model parameters. The weights and network parameters were updated concurrently in each iteration
using the scaled conjugate gradient descent [57]. Algorithm 1 shows the training procedure of the
proposed deep stacked autoencoder for complex human activity identification. Figure 2 depicts the
overview of the proposed methods.

Algorithm 1. Deep learning-based complex activity identification training procedure.

1: Input: Training acceleration sample Xn

2: Output: Set of activity detail performances
3: Sensor Data preparation
4: Obtain the acceleration sensor data from smartphone
5: Segment the sensor data using sliding window
6: Compute the magnitude using Equation (16)
7: Compute the pitch-roll values using Equations (17) and (18)
8: Network Parameter Settings
9: Set the number of hidden layers and neurons
10: Max epoch values
11: Sparsity regularization values
12: Train the stacked autoencoder using greedy-wise layer approach
13: Compute the cost function of the autoencoder algorithm at each layer using Equations (3)–(5)
14: Set the sparsity regularization values using Equations (6)–(9)
15: Obtain the network output
16: Stack the pre-trained network with their parameter values
17: Train the Softmax classifier to estimate their parameters
18: Minimize the cost function
19: Fine-tune the stacked autoencoder network weights using gradient descent
20: Obtain the activity details



Sensors 2020, 20, 6300 11 of 28
Sensors 2020, 20, x FOR PEER REVIEW 14 of 30 

 

Pr
e-t

rai
nin

g o
f D

SA
E

Labelled Data

Unlabelled 
Data

Unsupervised Pre-
training of DSAE

Supervised Fine-
tuning with Softmax

Pre-trained 
DSAE

Start

Preprocessing and 
Segmentation

Compute Magnitude 
Vector

Compute Rotational 
Angle (Pitch, Roll)

Fused processed 
sensor data

Da
ta 

Pr
epa

rat
ion

Pre-trained DSAE 
with parameter 

settings

Identified Activity details?

New Sensor 
Data

Processed Sensor Data

Acquired Smartphone motion 
Sensor Data

Te
stin

g

End
 

Figure 2. Flowchart of the proposed method. 

4. Experimental Design 

4.1. Dataset Description 

The dataset used to evaluate the proposed deep learning-based complex human activity 
identification was collected in [7]. During dataset collection, 10 subjects attached Samsung Galaxy S2 
smartphones on their wrists, and pockets, while performing a series of thirteen activities. These 
activities include jogging, walking, standing, sitting, biking, walking upstairs, and walking 
downstairs, performed for three min. Each subject also performed other activities, such as eating, 
typing, writing, drinking coffee, smoking, and giving talks for 3 to 5 min. The list of the performed 
activities, with range of activity duration, are shown in Table 3. The dataset contains a total of 1,170,000 

Figure 2. Flowchart of the proposed method.

3.3. Orientation Invariance in Smartphone-Based Human Activity Recognition

One of the major challenges in smartphone-based human activity identification is how to
solve sensor orientation and sensor displacement related issues. Sensor displacement involves
the change in sensor position, with respect to initial placement position, while sensor orientation
automatically changes data distribution and drift. Variation in sensor orientation affects activity
pattern, thereby, making it difficult for previously trained models to identify target activities in the
observed sensor data [18]. The impacts of sensor orientation and displacement are highly noticeable
in accelerometer-based human activity recognition [20]. Therefore, recent works have focused on
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methods to achieve robustness to sensor orientations. Methods proposed in literature include the use
of orientation independent features, raw input sensor transformation from coordinate systems of the
mobile phone into global coordinates prior to feature extraction, and unsupervised adaptation [19].
Moreover, robustness to sensor orientation has been resolved through fusion of the accelerometer and
gyroscope signal, to correct the effect of orientation inconsistencies [18,21]. For instance, Ustev [58]
proposed the fusion of acceleration, compass, gyroscope, and magnetometer to resolve the issue of
orientation inconsistency. However, small-scale errors in the output of the gyroscope sensor may
lead to a drastic change in the sensor values for long-time applications. Furthermore, the magnetic
sensor is power hungry, and noisy, which may result in an inaccurate measurement reading [21].
In addition, it is difficult to correct the effects of the sensor drift that is prevalent in the gyroscope
inertial signal. Early correction of the sensor drift is important for assessing pre-impact fall detection
and related application.

To provide robust and orientation invariant representation for a complex activity identification
framework, we investigate the use of three-axis sensor augmentation using the L2 norm (magnitude)
vector. Here, the raw signal is converted into one dimensional (1-D) orientation invariant sensors
by computing the combined magnitude (MAG) of the sensor axes. Secondly, we adopt the position
independent method to augment the accelerometer data by computing the pitch-roll angle of the
acceleration signal [30]. The orientation of the smartphone at different placement positions may be
subject to rotational variation, which automatically changes the information obtained at different
positions. Consequently, computing the pitch-roll angle of the accelerometer will help to reduce the
effect of rotation.

For a given signal generated by the smartphone, and watch, placed on the subject’s pocket,
or wrist, during data collection, it generates a three-axis accelerometer signal when a particular
activity is being performed. The signal generated by the subject can be represented as sk = (sx, sy, sz)

T
k ,

where x, y, and z represent the axis of the acceleration signal, T is the time frame and k is the individual
signal point. On the contrary, for another acceleration signal placed on the different position of the
subjects, the relative sensor orientation between the two signals can be described by the rotation matrix
R′ and generate different signal s′k where s′k = R′sk. The rotation of the signal sequence is expressed
as follows Sr = 〈sk〉(k = 1, . . . . . . .., Ms). When the matrix R′ is rotated, it would result in different
signal sequences, represented as S′r = 〈s′k〉(k = 1, . . . . . . .., Ms), where Ms is the number of data points
in the sequence, and r depicts the pocket or wrist acceleration signal. The transformation is denoted as
R′ � Sr := 〈R′sk〉 = sr [21].

Therefore, using only the three-axis (x, y, and z) of the accelerometer data would result in
orientation inconsistency. The change in data distribution as a result in orientation inconsistency
would greatly impact the performance of the complex activity identification framework. We computed
the L2 norm (magnitude vector) of the accelerometer data using Equation (16):

Mi =
√
(s2

x + s2
y + s2

z)i (16)

In the same way, to counter the impact rotational changes, additional feature vector dimensions
of the acceleration signal was computed using the pitch-roll angle.

Pitch =
180
π

.a tan 2(sy/g, sz/g) (17)

roll =
180
π

.a tan 2(sx/g, sz/g) (18)

where sxsysz represent the individual axis of the accelerometer data, g is the gravitational acceleration
with values equivalent to 9.81 m/s2 a tan 2 represent the arctangent function.

We used the three-axes of the raw accelerometer sensor, magnitude vectors, and rotational angle
(pitch-roll) as inputs to the deep learning model. In addition, we evaluated the data both individually
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and when fused with each of the input features. We comprehensively conducted six experimental
evaluations. These included the three-axis accelerometer, magnitude vectors, and pitch-roll angle.
Then, we fused the magnitude vector, pitch and roll values to ensure thorough experimental assessment
of the proposed methods. The data fusion were combined in the following processes: the three-axis
accelerometer was column concatenated with magnitude vectors. The column concatenated data
(three-axis accelerometer, magnitude vectors, and pitch-roll values), all computed from the combined
pocket, and wrist acceleration sensors were used as input to the proposed deep learning methods.
The six experimental evaluation are itemized below:

(1) Three-axis accelerometer data;
(2) Magnitude vector of the three-axis accelerometer data;
(3) Pitch-roll of the accelerometer data;
(4) Three-axis accelerometer data and computed magnitude vector;
(5) Three-axis accelerometer and computed pitch-roll;
(6) Three-axis accelerometer concatenated with magnitude vector, and pitch-roll angle.

3.4. Comparison with Conventional Machine Learning Methods

We compare the results obtained from the deep stacked autoencoder with the support vector
machine classifier (SVM), Naïve Bayes classifier (NB), and linear discriminant analysis classifier (LDA).
The support vector machine (SVM) is a powerful classification algorithm introduced in [59] for data
classification. It uses hyperplane to separate training data using maximal margin. Support vector
machine has been implemented for human activity recognition with various performance results,
reported in literature [60,61].

On the other hand, the Naïve Bayes classifier is an efficient machine learning algorithm that
utilize the Bayes theorem, with strong independent assumption for data classification and pattern
recognition. Naïve Bayes is simple, fast, and produces high accuracy comparable to other classification
implemented for human activity recognition [61]. While linear discriminant analysis classifier (LDA) is
a linear classification algorithm that is highly optimized for multi-class classification problems. LDA is
simple and works with high-dimensional data. The classification algorithm utilizes the assumption
that sensor data have the same variance in order to estimate the mean and variance of the data for
each class label. Therefore, the algorithm predicts the activity class label by estimating the probability
that the new training data belong to each activity class label [62]. In their recent studies, [6] noted
that linear discriminant analysis produce similar results with other classification algorithms, such as
support vector machine, decision tree, and K nearest neighbors.

To evaluate the conventional machine learning, we extracted time domain features, such as
mean, standard deviation, minimum, maximum, semi-quartile range, and median, as reported in [7].
We segmented the data using 2 s window size without overlap, and the extracted features were passed
as training data to the support vector machine classifier, Naïve Bayes classifier, and linear discriminant
analysis classifier. In addition, we implemented the protocol for pre-processing, feature extraction,
and classification using MATLAB, 2017b statistical and machine learning toolbox. We utilized default
parameter values for each of the classification algorithms discussed above.

4. Experimental Design

4.1. Dataset Description

The dataset used to evaluate the proposed deep learning-based complex human activity
identification was collected in [7]. During dataset collection, 10 subjects attached Samsung Galaxy S2
smartphones on their wrists, and pockets, while performing a series of thirteen activities. These activities
include jogging, walking, standing, sitting, biking, walking upstairs, and walking downstairs,
performed for three min. Each subject also performed other activities, such as eating, typing,
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writing, drinking coffee, smoking, and giving talks for 3 to 5 min. The list of the performed activities,
with range of activity duration, are shown in Table 2. The dataset contains a total of 1,170,000 instances
of motion sensors, such as accelerometer, gyroscope, magnetometer, and linear acceleration, collected at
50 Hz sampling rate. During data collection, seven subjects out of a total of ten (10) subjects used
in the experiments performed activities, such as eating, typing, writing, drinking coffee, and giving
talks, while six subjects were smokers. In addition, all of the activities were performed indoors,
except smoking and biking activities, which were carried outdoors. All of the subjects were males
between the ages of 25 and 35. Activities, such as walking downstairs and upstairs, were performed at
the university building, and the subjects were instructed to climb a series of five stairs, while activities,
such as sitting and standing, were performed for 3 min without talking.

Table 2. Data description and pre-processing methods.

Activity Type Activity List Activity Durations

Static
Sitting 3 min

Standing 3 min

Dynamic

Walking 3 min
Jogging 3 min
Biking 3 min

Walking Upstairs 3 min
Walking Downstairs 3 min

Complex Sequence

Eating 5 min
Typing 5 min
Writing 5 min

Drinking Coffee 5 min
Smoking 5 min

Giving Talks 5 min

During typing and writing, seven subjects wrote a series of texts using laptop computers, and
wrote on A4 paper. Shoaib, et al. [7] noted that only six subjects were smokers, and smoked one cigarette
while sitting outside the building. Activities, such as smoking and drinking coffee, were carried to
detect bad habits, physical inactivity, and lack of nutrition, which may adversely affect the overall
well-being of the individual. In the present study, the accelerometer sensors collected using the wrist
and pocket were utilized to evaluate the deep learning-based complex activity identification framework.
The summary of the dataset description and pre-processing methods applied is shown in Table 2.
The dataset present a unique means of evaluating human activity identification for enhanced smart
healthcare due to the variety of activities performed. These include static, dynamic, and complex
activity details.

4.2. Experimental Settings and Parameter Selection

The signal pre-processing, segmentation and deep stacked autoencoder methods were
implemented with MATLAB, 2017b (https://in.mathworks.com/) using a system computer running on
a Windows 10 operating system. The system was installed with Intel CoreTM I7-6700 CPU @ 3.400 GHz
and random access memory (RAM) capacity of 16 GB.

In this study, the training window contains 100 samples after segmentation for the three-axis
accelerometer data, magnitude vector, and pitch-roll values. We divided the pre-processed sensor data
into two parts: 70% of the dataset was reserved for training while 30% for testing the developed model.
Using this approach, the training sample contains 8190 instances while the testing set consists of
3510 instances for each axis of the acceleration sensor data, following a recent deep learning method
for human activity recognition [8].

One of the major considerations in deep learning implementation is parameter selection. There is no
theoretical method to determine each parameter during model implementation. Therefore, researchers

https://in.mathworks.com/
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conduct various experiments to assess the parameter combinations that achieve best performance
within the context of the data [26,63]. The proposed deep stacked autoencoder has many parameters
that require careful tuning to achieve improved performance results. In this paper, we optimize
parameters, such as number of units in each hidden layer, training epoch, and sparsity terms using
grid search methods. To select the best parameter, we used three-axis accelerometer data with three (3)
hidden layers as a validation set. Table 3 itemizes the selected parameters, while the parameters are
explained below.

Table 3. Experimental Parameter Setting.

Parameters Values

Hidden units 60-40-30
Sparsity terms (γ) 1.5

L2 regularization (ψ) 0.001
Max epoch 500

Activation function (σ) Sigmoid

The number of hidden neurons: specifically, we evaluated the number of hidden neurons between
10 and 100, and observed varied performance accuracies. Figure 3 shows the accuracies on utilizing
different numbers of hidden neurons. The optimal accuracy was achieved for hidden neurons between
30 and 60. The need to vary the number of hidden neurons was informed by the fluctuating nature of
the performance accuracies obtained at each iteration and recent implementation of deep learning for
human activity identification [37]. However, we noticed that increasing the hidden neurons resulted in
higher computational time, and may not improve the performance results [64] as shown in Figure 4.
In our experiment, we set the first layer hidden neuron to 60, the second hidden layer to 40, and the
third hidden layer to 30, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 30 

 

optimize parameters, such as number of units in each hidden layer, training epoch, and sparsity terms 
using grid search methods. To select the best parameter, we used three-axis accelerometer data with 
three (3) hidden layers as a validation set. Table 4 itemizes the selected parameters, while the 
parameters are explained below.  

Table 4. Experimental Parameter Setting. 

Parameters Values 
Hidden units 60-40-30 

Sparsity terms ( )γ  1.5 

2L  regularization ( )ψ  0.001 

Max epoch 500 
Activation function ( )σ  Sigmoid  

The number of hidden neurons: specifically, we evaluated the number of hidden neurons 
between 10 and 100, and observed varied performance accuracies. Figure 3 shows the accuracies on 
utilizing different numbers of hidden neurons. The optimal accuracy was achieved for hidden 
neurons between 30 and 60. The need to vary the number of hidden neurons was informed by the 
fluctuating nature of the performance accuracies obtained at each iteration and recent 
implementation of deep learning for human activity identification [37]. However, we noticed that 
increasing the hidden neurons resulted in higher computational time, and may not improve the 
performance results [64] as shown in Figure 4. In our experiment, we set the first layer hidden neuron 
to 60, the second hidden layer to 40, and the third hidden layer to 30, respectively.  

 

Figure 3. Impact of hidden neuron on the accuracy. 

 

Figure 4. Computational time on increasing the hidden neurons. 

Figure 3. Impact of hidden neuron on the accuracy.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 30 

 

optimize parameters, such as number of units in each hidden layer, training epoch, and sparsity terms 
using grid search methods. To select the best parameter, we used three-axis accelerometer data with 
three (3) hidden layers as a validation set. Table 4 itemizes the selected parameters, while the 
parameters are explained below.  

Table 4. Experimental Parameter Setting. 

Parameters Values 
Hidden units 60-40-30 

Sparsity terms ( )γ  1.5 

2L  regularization ( )ψ  0.001 

Max epoch 500 
Activation function ( )σ  Sigmoid  

The number of hidden neurons: specifically, we evaluated the number of hidden neurons 
between 10 and 100, and observed varied performance accuracies. Figure 3 shows the accuracies on 
utilizing different numbers of hidden neurons. The optimal accuracy was achieved for hidden 
neurons between 30 and 60. The need to vary the number of hidden neurons was informed by the 
fluctuating nature of the performance accuracies obtained at each iteration and recent 
implementation of deep learning for human activity identification [37]. However, we noticed that 
increasing the hidden neurons resulted in higher computational time, and may not improve the 
performance results [64] as shown in Figure 4. In our experiment, we set the first layer hidden neuron 
to 60, the second hidden layer to 40, and the third hidden layer to 30, respectively.  

 

Figure 3. Impact of hidden neuron on the accuracy. 

 

Figure 4. Computational time on increasing the hidden neurons. Figure 4. Computational time on increasing the hidden neurons.



Sensors 2020, 20, 6300 16 of 28

Sparsity terms: Figure 5 shows the dependency between sparsity of the sparsity autoencoder and
accuracy. In this case, maximum accuracy was found when the sparsity term was set to 1.5; the value
was used throughout the experiments.
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The value of maximum epoch: furthermore, the significance of using different epoch on training
the proposed model was evaluated, as shown in Figure 6. We started with fifty (50) epoch values and
increased the values at various iterations. The max epoch values considered were 50 to 550 (interval of
50) and observed improved performance using higher epoch values. However, there is a correlation
between higher max epoch and computation time as shown in Figure 7. The value of max epoch was
set to 500 for each hidden layer.

L2 Regularization: the value of the loss cost function coefficient (L2 regularization) is considered as
an important parameter for training deep learning algorithms. To compensate for optimal convergence
and good performance, we selected a learning rate of 0.001. We implemented other parameters of the
proposed model using default values, using MATLAB, 2017b documentation on stacked autoencoder
algorithms (https://in.mathworks.com/). To evaluate the optimal parameters for the proposed model,
we use the data from 3-D acceleration (3-axes) as a validation set.
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4.3. Evaluation Metrics

To evaluate the performances of the proposed deep learning-based complex human activity
identification framework, we computed five (5) performance metrics. These include accuracy, recall,
precision, f-measure, and error rate. For each activity class, the predicted values were measured
with the ground truth label. We calculated the number of true-positive (TP), true-negative (TN),
false-positive (FP), and false negative (FN) with the aid of confusion matrix of each prediction after
testing. These performance metrics were chosen based on their wide applications for evaluating the
performance of the human activity identification framework [29]. Here, N represents the total number
of classes in the training sample.

Accuracy computes the rate of correctly classified activity classes out of the total number of
activity instances. Accuracy is calculated using Equation (19).

1
N

N∑
i=1

(TP + TN)i

(TP + FP + TN + FN)i
(19)

Recall represents the average number of the correctly predicted instance as positive instances.
Recall rate is measured using Equation (20).

1
N

N∑
i=1

(TP)i

(TP + FN)i
(20)

Specificity measures the average values of negative instances that are correctly classified from
total number of activity instances. Specificity is computed, as shown in Equation (21).

1
N

N∑
i=1

(TN)i

(TP + FN)i
(21)

5. Experimental Results and Discussion

In this section, various performance results obtained in each of the experimental settings are
presented. The results are organized into two subsections: (1) the use of 3-D acceleration, magnitude
(MAG), pitch and roll values, and (2) the fusion of 3-D acceleration, magnitude, pitch and roll values.
In each evaluation, the performance results of the deep stacked autoencoder framework were compared
with three classification algorithms (support vector machine, Naïve Bayes, and linear discriminant
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analysis), as explained in Section 3.4. The performance experiment is executed ten (10) times,
and average results with standard deviation are reported.

5.1. Performance Results on 3-D Acceleration, Magnitude, Pitch and Roll Values

The results obtained on the performance results of each dataset used in our experiments are
shown in Table 4. Three main performance metrics are used to analyze the performance of the
proposed deep stacked autoencoder framework and baseline methods. From Table 4, when only the
accelerometer sensor is used, the proposed deep stacked autoencoder framework achieved accuracy,
recall, and specificity of 0.9292, 0.9290, and 0.9941, respectively. The use of pitch and roll values for the
deep stacked autoencoder slightly outperforms 3-D acceleration and achieves accuracy and recall of
0.9297 and 0.9299, respectively. The performance results demonstrated with 3-D acceleration, pitch and
roll, are significantly higher when compared with magnitude values. Due to lower dimensional values,
magnitude values fail to achieve appreciable performance results. This is because the magnitude
of acceleration sensors are fused with other sensor modalities to correct the effect of orientation
invariance and displacements in smartphone-based human activity identification and authentication,
and are rarely used in isolation for activity identification tasks [65]. Therefore, fusing magnitude
with raw acceleration sensors would lead to improved recognition results. The performance of the
proposed model is closely followed by Naïve Bayes with accuracy, recall, and specificity of 0.8420,
0.8423, and 0.9815, respectively. The lowest performance results are observed when the magnitude
of the acceleration sensors is used for developing the deep stacked autoencoder algorithms. In this
case, the use of Naïve Bayes classifier outperformed the proposed approach. The low performance
of the proposed deep learning framework using the magnitude of the acceleration sensor is a result
of less training data with few dimensions. To ensure optimal performance, deep learning requires
high-dimensional data in order to learn robust feature vectors from the sensor data [66]. Thus, the use
of training data with less number of dimensions, would make the stacked autoencoder learn features
that are not efficient enough to identify activity details.

Table 4. Performance results using each dataset.

Accuracy

DSAE NB SVM LDA
3-D Acceleration 0.9292 ± 0.0103 0.8420 ± 0.0048 0.8209 ± 0.0048 0.7194 ± 0.0147

Magnitude 0.4568 ± 0.0140 0.6050 ± 0.0087 0.4107 ± 0.0248 0.4160 ± 0.0080
Pitch and Roll 0.9297 ± 0.0053 0.7777 ± 0.0049 0.6202 ± 0.0082 0.4340 ± 0.0179

Recall

DSAE NB SVM LDA
3-D Acceleration 0.9290 ± 0.0107 0.8423 ± 0.0054 0.8202 ± 0.0049 0.7199 ± 0.0122

Magnitude 0.4601 ± 0.0107 0.6057 ± 0.0040 0.4107 ± 0.0239 0.4211 ± 0.0097
Pitch and Roll 0.9299 ± 0.0116 0.7778 ± 0.0093 0.6220 ± 0.0069 0.4356 ± 0.0170

Specificity

DSAE NB SVM LDA
3-D Acceleration 0.9941 ± 0.0009 0.9868 ± 0.0004 0.9851 ± 0.0004 0.9766 ± 0.0012

Magnitude 0.9548 ± 0.0012 0.9671 ± 0.0007 0.9509 ± 0.0020 0.9514 ± 0.0006
Pitch and Roll 0.9941 ± 0.0004 0.9815 ± 0.0003 96.84 ± 0.0007 0.9529 ± 0.0015

Note: DSAE (deep stacked autoencoder), NB (Naive Bayes), SVM (support vector machine), LDA (linear discriminant
analysis), 3-D (three-axis dimensions).

Figure 8 shows the confusion matrix of 3-D acceleration using deep stacked autoencoder,
Naïve Bayes, support vector machine, and linear discriminant analysis for complex human activity
identification. The values in the confusion matrix are rounded to two decimal places for clarity and
presentation. It can be seen from the confusion matrix that the use of the deep learning algorithm
is effective for the identification of activity details, such as jogging, walking, biking, and eating.
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These activities are recognized with high accuracy when compared with other activities, such as sitting,
taking coffee, and standing. Previous studies have shown that these activities are effectively recognized
using orientation based sensor [7]. However, conventional machine learning algorithms are able to
accurately recognize two to three activities compared to the proposed model. The activities accurately
recognized include NB (jogging and typing), SVM (jogging and biking), and LDA (jogging, biking,
and talking). These classification algorithms show a decrease in performance for other activity details
accurately recognized by deep stacked autoencoder framework. In all, deep stacked autoencoder
framework shows appreciable performances in both simple activities and complex activities that are
difficult to identify with traditional machine learning methods [7]. Nevertheless, there is still room for
improvement of these activities through the fusion of magnitude, pitch and roll values.Sensors 2020, 20, x FOR PEER REVIEW 21 of 30 
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5.2. Performance Results on the Fusion of 3-D Acceleration, Magnitude, Pitch and Roll Values

In order to improve the results obtained with the implementation of 3-D acceleration, magnitude,
pitch and roll, we evaluated the performances of the proposed deep learning model with the fusion of
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these values with the 3-D acceleration sensor. In each experimental evaluation, we fused magnitude
with a 3-D acceleration sensor, pitch and roll with 3-D acceleration sensor and magnitude, pitch and
roll with the 3-D acceleration sensor. The performance results obtained with these experimental
settings are shown in Table 5. It can be observed that deep stacked autoencoder framework outperf
ormed conventional classification algorithms such, as Naïve Bayes, support vector machine and linear
discriminant analysis. The fusion of the acceleration sensor, magnitude, pitch and roll, demonstrated
higher performance results. The use of orientation and rotation-based features provide enhanced
performance results to the developed techniques for accurate detection of activity details. With the
fusion, there are 2% to 51% improvements on accuracies when magnitude, pitch and roll values
are fused with 3-D acceleration sensors. The fusion of orientation invariant and rotational angle
based features show that the proposed fusion provides better and robust algorithms to enhance
the complex human activity identification framework. The highest improvements on performance
metrics are demonstrated against the use of Euclidean norm vectors. Specifically, there are observed
improvement differences of 47.5%, 47.15%, and 3.95% on accuracy, recall, and specificity on 3-D
acceleration with a fusion of Euclidean norm vector. Smartphone sensor performance is influenced
by orientation sensitivity; incorporating magnitude and rotation angle (pitch and roll) would greatly
reduce the effects and improve the robustness of the proposed framework, as can be seen in Table 5.
These approaches have been collaborated by recent researchers [7,30] in human activity identification,
using the conventional machine learning model. Similar performance results were demonstrated by
conventional machine learning algorithms. For instance, there is a significant 5% increase in accuracy
of the support vector machine with the fusion of Euclidian norm vector, pitch and roll values. However,
the increase is not constant when compared to the deep stacked autoencoder framework. This can be
observed in Naïve Bayes and linear discriminant analysis that provided a slight decrease in the same
experimental scenario, as shown in Table 5.

Table 5. Performance results for fusion of different data samples.

Accuracy

DSAE NB SVM LDA
3-D Acceleration and magnitude 0.9318 ± 0.0114 0.8419 ± 0.0041 0.8756 ± 0.0080 0.6983 ± 0.0173

3-D Acceleration and pitch and roll 0.9704 ± 0.0041 0.8265 ± 0.0034 0.8870 ± 0.0059 0.7071 ± 0.0158
3-D Acceleration, magnitude, pitch and roll 0.9713 ± 0.0041 0.8307 ± 0.0077 0.9084 ± 0.0049 0.7247 ± 0.0097

Recall

DSAE NB SVM LDA
3-D Acceleration and magnitude 0.9316 ± 0.0116 0.8419 ± 0.0041 0.8763 ± 0.0069 0.7013 ± 0.0162

3-D Acceleration and pitch and roll 0.9703 ± 0.0041 0.8273 ± 0.0033 0.8875 ± 0.0062 0.7098 ± 0.0137
3-D Acceleration, magnitude, pitch and roll 0.9712 ± 0.0039 0.8305 ± 0.0073 0.9083 ± 0.0057 0.7265 ± 0.0092

Specificity

DSAE NB SVM LDA
3-D Acceleration and magnitude 0.9943 ± 0.001 0.9868 ± 0.0003 0.9896 ± 0.0007 0.9741 ± 0.0014

3-D Acceleration and pitch and roll 0.9975 ± 0.0003 0.9856 ± 0.0003 0.9906 ± 0.0005 0.9756 ± 0.0013
3-D Acceleration, magnitude, pitch and roll 0.9976 ± 0.0003 0.9859 ± 0.0006 0.9924 ± 0.0005 0.9771 ± 0.0008

Note: DSAE (deep stacked autoencoder), NB (Naive Bayes), SVM (support vector machine), LDA (linear discriminant
analysis).

Figure 9 shows the confusion matrix for the combination of 3-D acceleration, magnitude, pitch and
roll values. The values in the confusion matrix are rounded to two decimal places for clarity and
presentation. Due to limited space, we only depict the confusion matrix obtained by fusion of
3-D acceleration sensor, magnitude, pitch and roll values. From the confusion matrix, there are
significant improvements in the performance of complex activity details when compared with using
3-D acceleration sensor discussed earlier. Activities, such as sitting, writing, taking coffee, and smoking,
saw a significant increase in accuracy, between 6% and 24%. The performance revealed that the
fusion of magnitude vector, pitch and roll, can provide enhancement to the framework and improve
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recognition of complex activity details. Moreover, activities that were recognized by the use of an
acceleration sensor saw a significant boost in their performances. For instance, there is the complete
identification of jogging, biking, taking coffee, and eating activities. These activities are important in
maintaining a healthy lifestyle and reducing bad habits that may lead to health risks [7]. Furthermore,
when compared with the conventional machine learning approach, there is less misrecognition between
similar activity pairs. Using the Naïve Bayes classifier shows high misrecognition in activities, such as
talking–smoking, sitting-taking coffee, and upstairs–downstairs. These activities are challenging to
distinguish because they have similar patterns. Talking and smoking require the use of lip movements
and hand gestures. Similarly, walking downstairs and upstairs are activities with a similar pattern and
are difficult to identify using the accelerometer, conventional machine learning methods, and during
activity labeling. Therefore, it requires the fusion of an accelerometer and orientation based sensor,
such as a gyroscope and magnetometer, to achieve optimal performance. However, experimental
evaluation with a deep stacked autoencoder shows better performances in the identification of these
activities using 3-D acceleration, magnitude vectors, and pitch and roll values. The least performance
among the conventional machine learning was demonstrated by linear discriminant analysis classifiers.
This can be observed from the misclassification of most of the activity details shown in the confusion
matrix (Figure 9). It is very challenging to identify activities, such as moving up and downstairs, writing,
coffee, and eating. To recognize these activities may require the optimization of the classification
algorithms or use of a higher number of feature. However, this may result in higher computation time
and overfitting [29].

In a nutshell, with modern deep learning methods, robust feature vectors are hierarchically and
automatically extracted from the sensor data, thereby, enhancing the recognition of complex activity
details. The objectives of this paper are to develop an innovative deep learning method for complex
human activity detection, and tackle rotation and orientation inconsistency in human activity detection
using smartphone sensors. This is the first attempt at incorporating sensor rotation and displacement
into deep learning-based complex human activity recognition. Extensive experimental evaluations
were conducted to test the significance of the proposed model across the experimental setups;
the deep stacked autoencoder consistently provided higher performance compared to Naïve Bayes,
support vector machine, and linear discriminant analysis. The performance results obtained with
the proposed fusion of 3-D acceleration, magnitude and rotation angle (pitch and roll) outstandingly
outperformed conventional machine learning algorithms. The deep stacked autoencoder enables
extraction of more discriminant features by transforming the smartphone sensor data into hidden
features in order to reduce the error rate. Using the stacked autoencoder provided a mechanism to
accurately distinguish complex activity details from high-dimensional data. In addition, the use of
stacked invariant features provide ways to extract features that are invariant to orientation changes,
distortion, displacement and placement positions [26]. Performance results obtained with this study
demonstrate that fusion of rotation angle, magnitude with a raw acceleration sensor, can improve
the complex human activity detection model. In particular, the implementation of the deep stacked
autoencoder and data fusion method clearly shows significant improvements on challenging activities
that are difficult to identify with acceleration signal alone [7]. These include complex activities, such as
ascending stairs, descending stairs, drinking coffee, presenting talks, and smoking. With automatic
feature representation using deep learning algorithms, the patterns of these activities were easily
distinguished. The performance with the deep stacked method is consistent with previous studies on
the use of deep learning for human activity recognition. These performance results are documented in
a recent review on automatic feature representation for human activity recognition using deep learning
algorithms [26]. Generally, the performance results suggest that the use of the proposed deep stacked
autoencoder method is effective for identification of complex human activity and can guarantee better
performance, especially with the current influx sensor data streams from ubiquitous smartphones and
other wearable devices. In addition, deep stacked would reduce reliance on extensive feature selection
to improve performance results in human activity identification.



Sensors 2020, 20, 6300 22 of 28

Sensors 2020, 20, x FOR PEER REVIEW 23 of 30 

 

smoking. With automatic feature representation using deep learning algorithms, the patterns of these 
activities were easily distinguished. The performance with the deep stacked method is consistent 
with previous studies on the use of deep learning for human activity recognition. These performance 
results are documented in a recent review on automatic feature representation for human activity 
recognition using deep learning algorithms [26]. Generally, the performance results suggest that the 
use of the proposed deep stacked autoencoder method is effective for identification of complex 
human activity and can guarantee better performance, especially with the current influx sensor data 
streams from ubiquitous smartphones and other wearable devices. In addition, deep stacked would 
reduce reliance on extensive feature selection to improve performance results in human activity 
identification.  

 
Figure 9. Confusion matrix for fusion of 3-D acceleration, magnitude, pitch and roll values. 

Note: DSAE (Deep stacked autoencoder), NB (Naïve Bayes), SVM (support vector machine), LDA (linear 
discriminant analysis). Activities: 1—walk, 2—stand, 3—jog, 4—sit, 5—bike, 6—upstairs, 7—downstairs, 8—
type, 9—write, 10—coffee, 11—talk, 12—smoke, 13—eat. 

5.3. Comparison with Deep Belief Networks 

In order to demonstrate the effectiveness of the proposed deep stacked autoencoder for human 
activity identification, we compared it with another deep belief network (DBN). The Deep Belief 
Network (DBN) is a generative deep learning model for hierarchical extraction of discriminant 
features from data. The DBN method achieves hierarchical feature extraction by stacking multiple 
layers of the restricted Boltzmann machine and sigmoid belief network [67]. Typical deep belief 

Figure 9. Confusion matrix for fusion of 3-D acceleration, magnitude, pitch and roll values.
Note: DSAE (Deep stacked autoencoder), NB (Naïve Bayes), SVM (support vector machine),
LDA (linear discriminant analysis). Activities: 1—walk, 2—stand, 3—jog, 4—sit, 5—bike, 6—upstairs,
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5.3. Comparison with Deep Belief Networks

In order to demonstrate the effectiveness of the proposed deep stacked autoencoder for human
activity identification, we compared it with another deep belief network (DBN). The Deep Belief
Network (DBN) is a generative deep learning model for hierarchical extraction of discriminant features
from data. The DBN method achieves hierarchical feature extraction by stacking multiple layers
of the restricted Boltzmann machine and sigmoid belief network [67]. Typical deep belief network
models have directed connection with the lower layers and undirected connection at the top of
the layers. This allows DBN to extract observed distribution in training data using the stacked
restricted Boltzmann machine [26]. In addition, DBN deploys layer-wise training alongside weight
fine-tuning, using contrastive divergence to extract translational invariant features from sensor data.
Deep belief networks have extensively been used in studies for human activity recognition and emotion
identification [26,67]. In this study, the deep belief network was trained, each layer separately using
contrastive divergence, as explained in [51], where the various parameters were intuitively considered
during training. We set the number of hidden layers to two (2), and the number of epochs to 500.
Other parameters we defined for the implemented deep belief networks include momentum = 0.5 and
learning rate = 1.5.
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Table 6 shows the results obtained using the deep belief network as compared with the proposed
deep stacked autoencoder. From the table, it is obvious that the proposed deep stacked autoencoder
outperformed deep belief networks. Using the individual data sample, deep belief network obtained
lower performance results for 3-D acceleration, pitch and roll angle, except for magnitude vector,
where the algorithm slightly outperformed the proposed deep stacked autoencoder, with performance
difference between 1% to 13% for sensitivity, recall, and accuracy. Table 6 also revealed the results of
deep belief networks (DBN) obtained for the fusion of various data samples. From the table, the deep
stacked autoencoder (DSAE) algorithm significantly outperformed deep belief networks in all aspect of
the experimental analysis. For the fusion of 3-D acceleration, magnitude, pitch and roll, we observed
significant lower performance accuracy (91.57%), recall (91.66), and sensitivity (99.30%) for deep belief
networks compared to the proposed deep stacked autoencoder. The results indicate that the proposed
deep learning algorithm is suitable for extraction of discriminant features for enhanced identification of
various details compared to conventional machine learning, and deep belief networks. The use of the
deep autoencoder could save a significant amount of energy during feature extraction. The relevant
features are automatically extracted from the raw sensor data [50].

Table 6. Comparison with deep belief networks (DBN).

Data Methods Accuracy Recall Sensitivity

Performance Results on DBN using each data sample

3-D acceleration
DSAE 0.9292 ± 0.0103 0.9290 ± 0.0107 0.9941 ± 0.0009
DBN 0.8612 ± 0.0090 0.8607 ± 0.0101 0.9884 ± 0.0002

Magnitude DSAE 0.4568 ± 0.0140 0.4601 ± 0.0107 0.9548 ± 0.0012
DBN 0.5821 ± 0.0054 0.5878 ± 0.0076 0.9652 ± 0.0008

Pitch and roll
DSAE 0.9297 ± 0.0053 0.9299 ± 0.0116 0.9941 ± 0.0004
DBN 0.7630 ± 0.0132 0.7620 ± 0.0101 0.9803 ± 0.0006

Performance Results on DBN using fusion of data samples

3-D Acceleration and magnitude DSAE 0.9318 ± 0.0114 0.9316 ± 0.0116 0.9943 ± 0.0010
DBN 0.8811 ± 0.0098 0.8824 ± 0.0086 0.9901 ± 0.0014

3-D Acceleration and pitch and roll DSAE 0.9704 ± 0.0041 0.9703 ± 0.0041 0.9975 ± 0.0003
DBN 0.8277 ± 0.0059 0.8261 ± 0.0054 0.9856 ± 0.0004

3-D Acceleration, magnitude, pitch and roll DSAE 0.9713 ± 0.0041 0.9712 ± 0.0039 0.9976 ± 0.0003
DBN 0.9157 ± 0.0077 0.9166 ± 0.0075 0.9930 ± 0.0005

Note: DSAE (Deep Stacked Autoencoder), DBN (Deep Belief Networks).

We further analyze the performance results of individual activity as depicted in Figure 10.
We observed that smoking activity (76%) achieved the lowest result for 3-D acceleration while similar
results were obtained for climbing upstairs (84%) using the fusion 3-D acceleration, magnitude vectors,
pitch and roll values. We observed a decrease in the recognition rate of activities accurately recognized
by the deep stacked autoencoder. These include activities, such as biking, eating, walking, and walking
upstairs, typing, and drinking coffee, for the fusion of all three data samples. However, deep belief
networks clearly outperform conventional machine learning (NB, SVM, LDA) for recognition of
individual activities, as shown in Figures 9 and 10.

Another important comparison done for the proposed method is the computational complexity.
The computational complexity of the proposed deep learning method depends on various factors,
such as size of the dataset, number of hidden neuron, maximum epoch value, and computer used to
run the experiments.

The system specification, experimental setting, and parameter selections of our experiments are
discussed in Section 4.2. We computed the execution time of the experiments using the tic-toc function
of MATLAB as shown in Table 7. The table shows the total time taken to preprocess, extract relevant
features, and model activity details using each method. In addition, the experiments were ran
ten (10) times to ensure statistical significance; the computational times shown are for fusion of all
data samples. We observed that the proposed deep learning is of high computational complexity,
and took a longer time to train when compared to conventional machine learning (NB, SVM, and LDA).
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However, the high computation complexity is worthwhile, compared to the significant increased
error rate observed in conventional machine learning algorithms. Generally, deep learning models
need more time to train due to the high number of hyper-parameter optimization required to achieve
optimal results. The computational complexity of our proposed methods is less compared to deep
belief networks.
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Table 7. Computational time of each method.

Methods Execution Time (milliseconds) Error Rate (%)

Naïve Bayes (NB) 22.7568 16.93
Linear Discriminant analysis (LDA) 18.4566 27.53

Support vector machine (SVM) 27.2124 9.16
Deep Belief Networks (DBN) 388.6811 8.43

Proposed Method (DSAE) 264. 7857 2.88

6. Conclusions and Future Works

In this paper, we investigated the performance of the deep stacked autoencoder and orientation
invariant feature to improve the performance of complex human activity identification framework.
The proposed deep learning method is deployed to automatically extract robust and high
representational features from motion sensor data. Furthermore, the paper proposes a fusion of
magnitude vector, pitch and roll of the acceleration sensor, to correct the effects of orientation
inconsistencies and position displacement inherent in smartphone-based complex human activity
identification. Through extensive experiments using challenging accelerometer sensor data and complex
activity details, the proposed approach achieved high accuracy on the identification of complex activities
that are challenging to detect with traditional machine learning methods. In addition, the fusion of
magnitude vector, pitch and roll, provided enhanced performance in terms of detection accuracy,
recall, and sensitivity compared to state-of-the-art approaches for human complex/human activity
identification. The proposed method clearly demonstrates the validity of the deep stacked autoencoder
and orientation invariant feature augmentation to enhance complex human activity identification for
smartphone implementation.

Although we have achieved high performance results using the deep stacked autoencoder, there are
some limitations that may help improve the proposed activity identification framework. First, the fusion
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of the proposed approach with other sensor modalities, such as gyroscope, magnetometer, sound,
pulse, and increasing the number of participants for data collection in order to provide comprehensive
activity identification and health monitoring. The deep learning model performed better with a higher
amount of data; therefore, collection of a huge amount of data will enable higher generalization of
the results obtained. Second, deep learning algorithms require high parameter tuning to achieve
optimal performance. The parameters utilized to develop the deep stacked autoencoder was selected
by performance results on 3-D acceleration sensors. Deep learning algorithms perform differently
in different experimental scenarios and training input samples, extensively testing the parameter
selection on each training sample would improve the results. In most cases, training using such a
procedure is time consuming, but would go a long way in selecting the best combination of deep stacked
autoencoder parameters. In another scenario, there is still room to explore the proposed approach
for on-board complex human activity using smartphones or smartwatches. Implementation of an
efficient online-based deep stacked autoencoder would enable ubiquitous and seamless identification
of activity details. Third, data augmentation exploit limited training data to enhance deep learning
algorithms and avoid overfitting. Regardless, the proposed combination of 3-D acceleration with
magnitude, pitch and roll, serve as data augmentation methods to reduce orientation inconsistency
and displacement in smartphone devices. Other methods, such as arbitrary rotation, permutation of
locations, scaling, and time warping, would greatly enhance complex human activity identification
framework performances. Furthermore, we intend to utilize graphical processing units (GPUs) in the
future to reduce training time of the deep neural networks.
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Abbreviations

The following abbreviations were used in this paper.

Bi-LSTM Bidirectional long short-term memory
CNN Convolutional neural network
DSAE Deep stacked autoencoder
FP False positive
FN False negative
GPU Graphical processing unit
GPS Global positioning system
IoT Internet of Things
LDA Linear discriminant analysis
LSTM Long short-term memory
MAG Magnitude vector
NB Naïve Bayes
PCA Principal component analysis
RAM Random access memory
RNN Recurrent neural network
SVM Support vector machine
TN True negative
TP True positive
WHO World Health Organization
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