Accuracy and Reliability of AG501 Articulograph for Mandibular Movement Analysis: A Quantitative Descriptive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rotating Structure Tests
2.1.1. Rotating Structure Static Test
2.1.2. Rotating Structure Dynamic Test
2.2. Mouth Anatomical Model Tests
2.2.1. Mouth Anatomical Model Static Test
2.2.2. Mouth Anatomical Model Dynamic Test: Head Rotation, Flexion, and Extension
2.2.3. Mouth Anatomical Model Mouth Opening Test
2.3. Data Processing and Statistical Analysis
2.3.1. Standard Deviation (SD) Analysis (Rigid Structure Tests Data)
2.3.2. Bland-Altman Analysis (Rigid Structure Tests Data)
2.3.3. Mandibular Movement Analysis (Model Tests Data)
3. Results
3.1. Trajectories Analysis
3.2. Reliability Analysis
3.2.1. Position Determination
3.2.2. Distance Determination
3.3. Accuracy Analysis
3.4. Performance on Mandibular Movement Registration
3.4.1. Distance SD for Static and Dynamic Tests on the Mouth Anatomical Model
3.4.2. Distance SD for the Mouth Opening Test on the Mouth Anatomical Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hixon, T.X. An electromagnetic method for transducing jaw movements during speech. J. Acoust. Soc. Am. 1971, 49, 603–606. [Google Scholar] [CrossRef]
- Schönle, P.W.; Gräbe, K.; Wenig, P.; Höhne, J.; Schrader, J.; Conrad, B. Electromagnetic articulography: Use of alternating magnetic fields for tracking movements of multiple points inside and outside the vocal tract. Brain Lang. 1987, 31, 26–35. [Google Scholar] [CrossRef]
- Kaburagi, T.; Wakamiya, K.; Honda, M. Three-dimensional electromagnetic articulography: A measurement principle. J. Acoust. Soc. Am. 2005, 118, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Kroger, B.J.; Pouplier, M.; Tiede, M.K. An evaluation of the aurora system as a flesh-point tracking tool for speech production research. J. Speech Lang. Hear. Res. 2008, 51, 914–921. [Google Scholar] [CrossRef]
- Yunusova, Y.; Green, J.R.; Mefferd, A. Accuracy assessment for AG500, electromagnetic articulograph. J. Speech Lang. Hear. Res. 2009, 52, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Berry, J.J. Accuracy of the NDI Wave speech research system. J. Speech Lang. Hear. Res. 2011, 54, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Kroos, C. Evaluation of the measurement precision in three-dimensional electromagnetic articulography (Carstens AG500). J. Phon. 2012, 40, 453–465. [Google Scholar] [CrossRef]
- Stella, M.; Bernardini, P. Numerical instabilities and three-dimensional electromagnetic articulography. J. Acoust. Soc. Am. 2012, 132, 3941–3949. [Google Scholar] [CrossRef]
- Stella, M.; Stella, A.; Sigona, F.; Bernardini, P.; Grimaldi, M.; Fivela, B.G. Electromagnetic articulography with AG500 and AG501. In Proceedings of the 14 Annual Conference of the International Speech Communication Association, Lyon, France, 25–29 August 2013. [Google Scholar]
- Savariaux, C.; Badin, P.; Samson, A.; Gerber, S.A. Comparative study of the precision of Carstens and Northern Digital Instruments electromagnetic articulographs. J. Speech Lang. Hear. Res. 2017, 60, 322–340. [Google Scholar] [CrossRef]
- Horn, H.; Göz, G.; Bacher, M.; Müllauer, M.; Kretschmer, I.; Axmann-Krcmar, D. Realiability of electromagnetic articulography recording during speaking sequences. Eur. J. Orthod. 1997, 19, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Katz, W.F.; Bharadwaj, S.V.; Carstens, B. Electromagnetic articulography treatment for an adult with Broca’s aphasia and apraxia of speech. J. Speech Lang. Hear. Res. 1991, 42, 1355–1366. [Google Scholar] [CrossRef]
- Kuruvilla, M.; Murdoch, B.; Goozèe, J. Electromagnetic articulography assessment of articulatory function in adults with dysarthria following traumatic brain injury. Brain Inj. 2007, 21, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Kearney, E.; Giles, R.; Haworth, B.; Faloutsos, P.; Baljko, M.; Yunusova, Y. Sentence-Level Movements in Parkinson’s Disease: Loud, Clear, and Slow Speech. J. Speech Lang. Hear. Res. 2017, 60, 3426–3440. [Google Scholar] [CrossRef] [PubMed]
- Blissett, A.; Prinz, J.F.; Wulfert, F.; Taylor, A.J.; Hort, J. Effect of bolus size on chewing, swallowing, oral soft tissue and tongue movement. J. Oral Rehabil. 2007, 34, 572–582. [Google Scholar] [CrossRef]
- Steele, C.M.; Van Lieshout, P. Tongue movements during water swallowing in healthy young and older adults. J. Speech Lang. Hear. Res. 2009, 52, 1255–1267. [Google Scholar] [CrossRef]
- Bourdiol, P.; Mishellany-Dutour, A.; Peyron, M.A.; Woda, A. Tongue-mandible coupling movements during saliva swallowing. J. Oral Rehabil. 2014, 41, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Dias, F.J. Systematic Standardized and Individualized Assessment of Masticatory Cycles Using Electromagnetic 3D Articulography and Computer Scripts. BioMed Res. Int. 2017, 2017, 7134389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, R.; Arias, A.; Saravia, D.; Lezcano, M.F.; Dias, F.J. An innovative method to analyse the range of border mandibular movements using 3D electromagnetic articulography (AG501) and MATLAB. Biomed. Res. 2017, 28, 4239–4247. [Google Scholar]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Navarro, P.; Dias, F.J. A new tridimensional insight on geometric and kinematic characteristics of masticatory cycles in participants with normal occlusion. BioMed Res. Int. 2018, 2018, 2527463. [Google Scholar] [CrossRef]
- Hoke, P.; Tiede, M.; Grender, J.; Klukowska, M.; Peters, J.; Carr, G. Using Electromagnetic Articulography to Measure Denture Micromovement during Chewing with and without Denture Adhesive. J. Prosthodont. 2017, 28, e252–e258. [Google Scholar] [CrossRef] [Green Version]
- Youdas, J.W.; Garrett, T.R.; Suman, V.J.; Bogard, C.L.; Hallman, H.O.; Carey, J.R. Normal range of motion of the cervical spine: An initial goniometric study. Phys. Ther. 1992, 72, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Ahlers, M.O.; Bernhardt, O.; Jakstat, H.A. Motion analysis of the mandible: Guidelines for standardized analysis of computer-assisted recording of condylar movements. Int. J. Comput. Dent. 2015, 18, 201–223. [Google Scholar]
- Bonjardim, L.; Gavião, M.; Pereira, L.; Castelo, P. Mandibular movements in children with and without signs and symptoms of temporomandibular disorders. J. Appl. Oral Sci. 2004, 12, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, L.; Nagamine, H.; Chaves, T.; Grossi, D.; Regalo, S.; Oliveira, A. Evaluation of mandibular range of motion in Brazilian children and its correlation to age, height, weight, and gender. Braz. Oral Res. 2008, 22, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
Structure Used | Type of Test | Active Sensors | N | Data Analyzed |
---|---|---|---|---|
Rotating structure | Static | 16 | 30 | Raw and normalized |
Dynamic | 16 | 30 | Raw and normalized | |
Mouth anatomical model | Static | 3 | 30 | Raw and normalized |
Dynamic | 3 | 30 | Raw and normalized | |
Mouth opening | 3 | 30 | Raw and normalized |
Static Test | Dynamic Test | |||
---|---|---|---|---|
Raw Data | Normalized Data | Raw Data | Normalized Data | |
Mean of diff. (mm) | −0.19 | −0.19 | −0.14 | −0.20 |
SD of diff. (mm) | 0.33 | 0.33 | 0.34 | 0.35 |
Limit of agreement max (mm) | 0.46 | 0.46 | 0.53 | 0.49 |
Limit of agreement min (mm) | −0.84 | –0.84 | −0.81 | −0.90 |
Position | Raw Data | Normalized Data |
---|---|---|
0° | 0.04 | 0.02 |
90° Extension | 0.05 | 0.03 |
70° Flexion | 0.37 | 0.37 |
78° Left rotation | 0.27 | 0.27 |
78° Right rotation | 0.03 | 0.02 |
78° Left flexion | 0.41 | 0.41 |
78° Right flexion | 0.24 | 0.23 |
Movement | Raw Data | Normalized Data |
---|---|---|
90° Extension | 0.58 | 0.58 |
70° Flexion | 0.48 | 0.48 |
78° Left rotation | 0.18 | 0.18 |
78° Right rotation | 0.39 | 0.39 |
78° Left flexion | 0.37 | 0.37 |
78° Right flexion | 0.38 | 0.38 |
Movement | Raw Data | Normalized Data |
---|---|---|
0° | 0.06 | 0.05 |
90° Extension | 0.13 | 0.13 |
70° Flexion | 0.13 | 0.13 |
78° Left rotation | 0.14 | 0.14 |
78° Right rotation | 0.23 | 0.23 |
78° Left flexion | 0.25 | 0.25 |
78° Right flexion | 0.12 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezcano, M.F.; Dias, F.; Arias, A.; Fuentes, R. Accuracy and Reliability of AG501 Articulograph for Mandibular Movement Analysis: A Quantitative Descriptive Study. Sensors 2020, 20, 6324. https://doi.org/10.3390/s20216324
Lezcano MF, Dias F, Arias A, Fuentes R. Accuracy and Reliability of AG501 Articulograph for Mandibular Movement Analysis: A Quantitative Descriptive Study. Sensors. 2020; 20(21):6324. https://doi.org/10.3390/s20216324
Chicago/Turabian StyleLezcano, María Florencia, Fernando Dias, Alain Arias, and Ramón Fuentes. 2020. "Accuracy and Reliability of AG501 Articulograph for Mandibular Movement Analysis: A Quantitative Descriptive Study" Sensors 20, no. 21: 6324. https://doi.org/10.3390/s20216324
APA StyleLezcano, M. F., Dias, F., Arias, A., & Fuentes, R. (2020). Accuracy and Reliability of AG501 Articulograph for Mandibular Movement Analysis: A Quantitative Descriptive Study. Sensors, 20(21), 6324. https://doi.org/10.3390/s20216324