Supporting Information

Beryllium-Ion-Selective PEDOT Solid Contact Electrode Based on 9,10-Dinitrobenzo-9-Crown-3-Ether

Junghwan Kim¹, Dae Hee Kim¹, Jin Cheol Yang¹, Jae Sang Kim², Ji Ha Lee³ and Sung Ho Jung^{4,*}

- ¹ Central customs Laboratory and Scientific Service, Gyeongnam, Jinju 52851, Korea; ansukido@korea.kr (J.K.); kokanee1@korea.kr (D.H.K.); yang6561@korea.kr (J.C.Y.)
- ² Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Gyeongnam, Jinju 52828, Korea; jaeskim@gnu.ac.kr
- ³ Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan; leejiha@hiroshima-u.ac.jp
- ⁴ Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Korea
- * Correspondence: sungho@gntech.ac.kr

Received: 15 October 2020; Accepted: 6 November 2020; Published: date

Figure S1. Calibration curve obtained by the increasing Be²⁺ ions for the E1.

Table S1. Response characteristics of all-solid-state electrode (E1) and electrode (E2)

Electrode	Ionophore (%)	PVC (%)	o-NPOE (%)	NaTPB (%)	Slope (mV/D)	Detection limit (M)	Linear range (M)	Response time (s)
E1	3	30	64	3	29.5	10-7.1	10-2.5-10-7	15
E2	3	30	64	3	25.3	10-6.2	10-2.5-10-6	35

Figure S2. Dynamic response time of (a) electrode E1 and (b) E2 for step changes in concentration of Be²⁺ ion.

Figure S3. Chronopotentiograms for the **E1** (black line) and the **E2** (red line) electrodes recorded in 10^{-3} M of BeSO₄. The applied current was +1 nA for 60 s and -1 nA for 60 s. The total resistance (*R*) of the **E1** electrode is approximately 9.5 M Ω , estimated by the potential jump, according to Ohm's law, *R*=*E*/*I*, where *E* represents the potential change and *I* is the applied current.

Figure S4. Impedance spectra of (a) the bared Pt (solid circle) and the PEDOT/Pt (hollow circle) recorded in 0.1 M of KCl, with the frequency range 10mHz to 100kHz and the excitation amplitude, 10 mV. The sharp impedance spectra is typical for PEDOT film in an aqueous electrolyte [1]. The impedance spectra are dominated by an approximate 90° capacitive line, and there is only a slight deviation from the capacitive line at high frequencies. These results indicate that a fast electronic transfer occurs at the interface between Pt/PEDOT and PEDOT/solution. Additionally, the redox capacitance was estimated using the equation $C_{LF}=1/(2\pi f Z'')$, where *f* is the lowest frequency used to record the spectra (10mHz), and Z'' is the imaginary part of the impedance at this frequency. The calculated C_{LF} was 617 and 239 µF for Pt/PEDOT and bared Pt, respectively, and (b) the E1 (solid circle) and E2 (hollow circle) and the electrodes recorded in 10⁻³ M BeSO₄ at the open-circuit potential with the frequency range 10mHz to 100kHz and the excitation amplitude, 100 mV.

Figure S5. Potential titration curve of the **E1** as an indicator electrode, condition: 25 mL of 0.1 mM BeSO₄ with 10 mM of EDTA.

Figure S6. Long-term response behavior of the electrode E1.

References

1. Jasielec, J. J.; Sokalski, T.; Filipek, R.; Lewenstam, A. Comparison of different approaches to the description of the detection limit of ion-selective electrodes. *Electrochimica. Acta*. **2010**, *55*, 6836.