Wavefront Sensing for Evaluation of Extreme Ultraviolet Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Schwarzschild Objective
2.3. High-Numerical-Aperture Wavefront Sensor
2.4. Analysis Approach
3. Results
3.1. Direct Beam Wavefront Analysis
3.2. Schwarzschild Aberration Analysis
3.3. Schwarzschild Objective Focus
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bratton, D.; Yang, D.; Dai, J.; Ober, C.K. Recent progress in high resolution lithography. Polym. Adv. Technol. 2006, 17, 94–103. [Google Scholar] [CrossRef]
- Booth, M.; Brisco, O.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Grunewald, P.; Gutierrez, R.; et al. High-resolution EUV imaging tools for resist exposure and aerial image monitoring. Emerg. Lithogr. Technol. Ix. Int. Soc. Opt. Photonics 2005, 5751, 78–89. [Google Scholar]
- Päivänranta, B.; Langner, A.; Kirk, E.; David, C.; Ekinci, Y. Sub-10 nm patterning using EUV interference lithography. Nanotechnology 2011, 22, 375302. [Google Scholar] [CrossRef]
- Mann, H.J.; Ulrich, W. Reflective high-NA projection lenses. Opt. Des. Eng. 2005, 5962, 596214. [Google Scholar]
- Zahlten, C.; Gräupner, P.; van Schoot, J.; Kürz, P.; Stoeldraijer, J.; Kneer, B.; Kaiser, W. High-NA EUV lithography: Pushing the limits. In Proceedings of the 35th European Mask and Lithography Conference (EMLC 2019), Dresden, Germany, 17–19 June 2019. [Google Scholar]
- Oizumi, H.; Tanaka, Y.; Kumasaka, F.; Nishiyama, I.; Kondo, H.; Shiraishi, M.; Oshino, T.; Sugisaki, K.; Murakami, K. Lithographic performance of high-numerical-aperture (NA = 03) EUV small-field exposure tool (HINA). In Proceedings of the Emerging Lithographic Technologies IX, San Jose, CA, USA, 6 May 2005; pp. 102–109. [Google Scholar]
- Ruiz-Lopez, M.; Bleiner, D. Implementing the plasma-lasing potential for tabletop nano-imaging. Appl. Phys. B 2014, 115, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, K.A.; Tejnil, E.; Lee, S.H.; Medecki, H.; Attwood, D.T., Jr.; Jackson, K.H.; Bokor, J. Characterization of an EUV Schwarzschild objective using phase-shifting point diffraction interferometry. In Proceedings of the Emerging Lithographic Technologies, Santa Clara, CA, USA, 7 July 1997; pp. 264–270. [Google Scholar]
- Ewald, J.; Wieland, M.; Nisius, T.; Henning, L.; Feigl, T.; Drescher, M.; Wilhein, T. Spatial characterization of the focus produced by an EUV Schwarzschild objective. J. Phys. Conf. Ser. 2014, 499, 012008. [Google Scholar] [CrossRef]
- Keitel, B.; Plönjes, E.; Kreis, S.; Kuhlmann, M.; Tiedtke, K.; Mey, T.; Schäfer, B.; Mann, K. Hartmann wavefront sensors and their application at FLASH. J. Synchrotron Radiat. 2016, 23, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Gautier, J.; Zeitoun, P.; Hauri, C.; Morlens, A.S.; Rey, G.; Valentin, C.; Papalarazou, E.; Goddet, J.P.; Sebban, S.; Burgy, F.; et al. Optimization of the wave front of high order harmonics. Eur. Phys. J. D 2008, 48, 459–463. [Google Scholar] [CrossRef]
- Miyakawa, R.; Naulleau, P. Extending shearing interferometry to high-NA for EUV optical testing. In Proceedings of the Extreme Ultraviolet (EUV) Lithography VI, San Jose, CA, USA, 19 March 2015; p. 94221J. [Google Scholar]
- Bollanti, S.; Di Lazzaro, P.; Flora, F.; Mezi, L.; Murra, D.; Torre, A. New technique for aberration diagnostics and alignment of an extreme ultraviolet Schwarzschild objective. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2013, 720, 168–172. [Google Scholar] [CrossRef]
- Mercère, P.; Zeitoun, P.; Idir, M.; Le Pape, S.; Douillet, D.; Levecq, X.; Dovillaire, G.; Bucourt, S.; Goldberg, K.A.; Naulleau, P.P.; et al. Hartmann wave-front measurement at 13.4 nm with λ EUV/120 accuracy. Opt. Lett. 2003, 28, 1534–1536. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Koliyadu, J.C.; Donnelly, H.; Alj, D.; Delmas, O.; Ruiz-Lopez, M.; de La Rochefoucauld, O.; Dovillaire, G.; Fajardo, M.; Zhou, C.; et al. High numerical aperture Hartmann wave front sensor for extreme ultraviolet spectral range. Opt. Lett. 2020, 45, 4248–4251. [Google Scholar] [CrossRef] [PubMed]
- Cocco, D.; Idir, M.; Morton, D.; Raimondi, L.; Zangrando, M. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 907, 105–115. [Google Scholar] [CrossRef]
- Carmon, Y.; Ribak, E.N. Fast Fourier demodulation. Appl. Phys. Lett. 2004, 84, 4656–4657. [Google Scholar] [CrossRef]
- Plönjes, E.; Faatz, B.; Kuhlmann, M.; Treusch, R. FLASH2: Operation, beamlines, and photon diagnostics. In Proceedings of the AIP Conference Proceedings, New York, NY, USA, 27 July 2016; p. 020008. [Google Scholar]
- Toleikis, S. The FLASH facility current status in 2018 and future upgrade plans. In Proceedings of the AIP Conference Proceedings, Taipei, Taiwan, 16 January 2019; p. 030015. [Google Scholar]
- Faatz, B.; Braune, M.; Hensler, O.; Honkavaara, K.; Kammering, R.; Kuhlmann, M.; Ploenjes, E.; Roensch-Schulenburg, J.; Schneidmiller, E.; Schreiber, S.; et al. The FLASH facility: Advanced options for FLASH2 and future perspectives. Appl. Sci. 2017, 7, 1114. [Google Scholar] [CrossRef]
- Zastrau, U.; Rödel, C.; Nakatsutsumi, M.; Feigl, T.; Appel, K.; Chen, B.; Döppner, T.; Fennel, T.; Fiedler, T.; Fletcher, L.; et al. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution. Rev. Sci. Instrum. 2018, 89, 023703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artioukov, I.A.; Krymski, K.M. Schwarzschild objective for soft x-rays. Opt. Eng. 2000, 39, 2163–2170. [Google Scholar]
- De La Rochefoucauld, O.; Bucourt, S.; Cocco, D.; Dovillaire, G.; Harms, F.; Idir, M.; Korn, D.; Levecq, X.; Marmin, A.; Nicolas, L.; et al. Developments of EUV/x-ray wavefront sensors and adaptive optics at Imagine Optic. In Proceedings of the Adaptive X-Ray Optics V, San Diego, CA, USA, 2 October 2018; p. 107610E. [Google Scholar]
- Mercère, P.; Idir, M.; Floriot, J.; Levecq, X. Hartmann and Shack–Hartmann Wavefront Sensors for Sub-Nanometric Metrology. In Modern Developments in X-ray and Neutron Optics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 219–232. [Google Scholar] [CrossRef]
- Ruiz-Lopez, M.; Dacasa, H.; Mahieu, B.; Lozano, M.; Li, L.; Zeitoun, P.; Bleiner, D. Non-contact XUV metrology of Ru/B 4 C multilayer optics by means of Hartmann wavefront analysis. Appl. Opt. 2018, 57, 1315–1320. [Google Scholar] [CrossRef]
- Mann, K.; Flöter, B.; Mey, T.; Schäfer, B.; Keitel, B.; Plönjes, E.; Tiedtke, K. Hartmann wavefront sensor for EUV radiation. In Proceedings of the Extreme Ultraviolet (EUV) Lithography IV, San Jose, CA, USA, 1 April 2013; p. 867922. [Google Scholar]
- Dacasa, H.; Coudert-Alteirac, H.; Guo, C.; Kueny, E.; Campi, F.; Lahl, J.; Peschel, J.; Wikmark, H.; Major, B.; Malm, E.; et al. Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics. Opt. Express 2019, 27, 2656–2670. [Google Scholar] [CrossRef]
- Talmi, A.; Ribak, E.N. Direct demodulation of Hartmann–Shack patterns. JOSA A 2004, 21, 632–639. [Google Scholar] [CrossRef]
- Servin, M.; Cuevas, F.J.; Malacara, D.; Marroquin, J.L. Direct ray aberration estimation in Hartmanngrams by use of a regularized phase-tracking system. Appl. Opt. 1999, 38, 2862–2869. [Google Scholar] [CrossRef]
- Lukin, V.; Botygina, N.; Emaleev, O.; Konyaev, P. Wavefront sensors for adaptive optical systems. Meas. Sci. Rev. 2010, 10, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Carmon, Y.; Ribak, E.N. Phase retrieval by demodulation of a Hartmann–Shack sensor. Opt. Commun. 2003, 215, 285–288. [Google Scholar] [CrossRef]
- Wang, J.; Silva, D.E. Wave-front interpretation with Zernike polynomials. Appl. Opt. 1980, 19, 1510–1518. [Google Scholar] [CrossRef]
- Flöter, B.; Juranić, P.; Großmann, P.; Kapitzki, S.; Keitel, B.; Mann, K.; Plönjes, E.; Schäfer, B.; Tiedtke, K. Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 635, S108–S112. [Google Scholar] [CrossRef]
- Samoylova, L.; Buzmakov, A.; Chubar, O.; Sinn, H. WavePropaGator: Interactive framework for X-ray free-electron laser optics design and simulations. J. Appl. Crystallogr. 2016, 49, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Siewert, F.; Lammert, H.; Reichardt, G.; Hahn, U.; Treusch, R.; Reininger, R. Inspection of a Spherical Triple VLS-Grating for Self-Seeding of FLASH at DESY. In Proceedings of the AIP Conference Proceedings, Daegu, Korea, 7 February 2007; pp. 667–670. [Google Scholar]
- Dziarzhytski, S.; Gerasimova, N.; Goderich, R.; Mey, T.; Reininger, R.; Rübhausen, M.; Siewert, F.; Weigelt, H.; Brenner, G. Microfocusing at the PG1 beamline at FLASH. J. Synchrotron Radiat. 2016, 23, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Zemax Optical Design Software. Available online: https://www.zemax.com (accessed on 9 November 2020).
- Mahajan, V.N. Zernike annular polynomials and optical aberrations of systems with annular pupils. Appl. Opt. 1994, 33, 8125–8127. [Google Scholar] [CrossRef]
- Dai, G.M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. JOSA A 1996, 13, 1218–1225. [Google Scholar] [CrossRef]
- Vozda, V.; Burian, T.; Hájková, V.; Juha, L.; Enkisch, H.; Faatz, B.; Hermann, M.; Jacyna, I.; Jurek, M.; Keitel, B.; et al. Characterization of megahertz X-ray laser beams by multishot desorption imprints in PMMA. Opt. Express 2020, 28, 25664–25681. [Google Scholar] [CrossRef]
- Chalupskỳ, J.; Burian, T.; Hájková, V.; Juha, L.; Polcar, T.; Gaudin, J.; Nagasono, M.; Sobierajski, R.; Yabashi, M.; Krzywinski, J. Fluence scan: An unexplored property of a laser beam. Opt. Express 2013, 21, 26363–26375. [Google Scholar]
Aberration | Function | |
---|---|---|
Defocus | ||
Astigmatism horizontal | ||
Astigmatism oblique | ||
Coma horizontal | ||
Coma vertical | ||
Spherical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Lopez, M.; Mehrjoo, M.; Keitel, B.; Plönjes, E.; Alj, D.; Dovillaire, G.; Li, L.; Zeitoun, P. Wavefront Sensing for Evaluation of Extreme Ultraviolet Microscopy. Sensors 2020, 20, 6426. https://doi.org/10.3390/s20226426
Ruiz-Lopez M, Mehrjoo M, Keitel B, Plönjes E, Alj D, Dovillaire G, Li L, Zeitoun P. Wavefront Sensing for Evaluation of Extreme Ultraviolet Microscopy. Sensors. 2020; 20(22):6426. https://doi.org/10.3390/s20226426
Chicago/Turabian StyleRuiz-Lopez, Mabel, Masoud Mehrjoo, Barbara Keitel, Elke Plönjes, Domenico Alj, Guillaume Dovillaire, Lu Li, and Philippe Zeitoun. 2020. "Wavefront Sensing for Evaluation of Extreme Ultraviolet Microscopy" Sensors 20, no. 22: 6426. https://doi.org/10.3390/s20226426
APA StyleRuiz-Lopez, M., Mehrjoo, M., Keitel, B., Plönjes, E., Alj, D., Dovillaire, G., Li, L., & Zeitoun, P. (2020). Wavefront Sensing for Evaluation of Extreme Ultraviolet Microscopy. Sensors, 20(22), 6426. https://doi.org/10.3390/s20226426