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Abstract: The electroencephalogram (EEG) has been proven to be a promising technique for personal
identification and verification. Recently, the aperiodic component of the power spectrum was shown
to outperform other commonly used EEG features. Beyond that, EEG characteristics may capture
relevant features related to emotional states. In this work, we aim to understand if the aperiodic
component of the power spectrum, as shown for resting-state experimental paradigms, is able to
capture EEG-based subject-specific features in a naturalistic stimuli scenario. In order to answer this
question, we performed an analysis using two freely available datasets containing EEG recordings
from participants during viewing of film clips that aim to trigger different emotional states. Our study
confirms that the aperiodic components of the power spectrum, as evaluated in terms of offset
and exponent parameters, are able to detect subject-specific features extracted from the scalp EEG.
In particular, our results show that the performance of the system was significantly higher for the
film clip scenario if compared with resting-state, thus suggesting that under naturalistic stimuli it is
even easier to identify a subject. As a consequence, we suggest a paradigm shift, from task-based or
resting-state to naturalistic stimuli, when assessing the performance of EEG-based biometric systems.
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1. Introduction

During the last several years, the electroencephalogram (EEG) has been proven to be a
promising technique for personal identification and/or verification [1]. Despite its noisy characteristics,
several scalp EEG features still contain relevant subject-specific traits that have been tested under any
conceivable scenario. In particular, EEG fingerprints have been successfully observed and reported in
resting-state [2–4], motor, visual, auditory, imagined speech or even multi-functional systems [5–7].
More recently, the aperiodic component of the power spectrum [8], as defined by the offset and the
exponent, which reflect its 1/f-like characteristic, was shown to outperform other commonly used EEG
features [9].

Beyond that, EEG characteristics may be sensitive to or may capture relevant features related
to emotional states [10–13], which may also play an important role in the development of the
brain-computer interfaces (BCI) [14]. Although there is ample literature about this last topic, the possible
effects of emotional states in EEG-based identification systems have not been widely investigated.
Nevertheless, some recent findings suggest that the influence of emotional states on EEG biometric
systems should be properly taken into account [15,16].
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In this work, we aim to understand if the aperiodic component of the power spectrum, used in
the resting-state experimental paradigm [9], is able to capture EEG-based subject-specific features in
naturalistic stimuli scenarios. In order to answer this question, we performed an analysis using a
freely available EEG dataset [17] containing EEG recordings from 23 participants during the viewing
of film clips that aim to trigger different emotional states. Moreover, we have replicated our results
using another EEG dataset from 32 participants also recorded during naturalistic viewing (i.e., movie
watching) [18]. Such naturalistic paradigms, which represent a better approximation of real-life
scenarios, using stimuli such as films, spoken narratives, or music emerged in response to the common
concerns about the use of simple tasks or no-tasks resting-state paradigms [19]. The analysis was
performed using the FOOOF tool [8] that works on the frequency representations (power spectra),
fits the model, shows original power spectrum with the associated model fit, and provides the
parameters of the model fit, namely the aperiodic components (offset and exponent). Moreover,
the study was also replicated using the classical analysis performed in terms of the more common
periodic components, namely theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz)
frequency bands. For both approaches, the performance evaluation procedure was performed using a
standard approach to evaluate biometric systems [20].

We would like to highlight that the aim of this study is twofold. It represents a verification
of the stability and robustness of the aperiodic component of the power spectrum in picking up
relevant subject-specific features over several and different naturalistic stimuli, which, to the best of
our knowledge, was never evaluated before and, moreover, we argue that this is also important to
realize how individual variability may be relevant when automated emotion recognition represents
the ultimate goal.

2. Materials and Methods

2.1. Datasets

In this work, we used DREAMER [17], a freely available dataset for emotion recognition from
wireless low-cost devices, which includes EEG signals from 23 participants recorded during affect
elicitation by means of audio-visual stimuli. The EEG signals were recorded using a sampling rate
of 128 Hz with an Emotiv EPOC fourteen-channel system. Emotions were elicited by using 18 film
clips that have been shown to evoke a wide range of emotions such as amusement, excitement,
happiness, calmness, anger, disgust, fear, sadness, and surprise. Together with the EEG signals,
the participants’ self-assessment of their affective state after each stimulus (in terms of valence, arousal,
and dominance) was also acquired. Our analysis was performed on two different segments, each one
lasting 1 min. The first segment (video_start) includes the first 60 s of the stimulus and the second
segment (video_end), which represents a replication of the study, includes the last 60 s of the same
stimulus. The reason for reproducing the analysis using two different segments was to understand
how the film clip length may play a significant role in defining the final results [19]. Moreover, as for
the video stimuli, the analysis was further replicated using a baseline condition, which represents a
60 s eyes-open resting-state condition, where a neutral clip was shown in order to help the subject
return to a neutral emotional state. The whole analysis was later replicated using another EEG dataset,
the DEAP dataset, a dataset for emotion analysis using EEG, physiological, and video signals [18],
where the EEG and peripheral physiological signals of 32 participants were recorded as each watched 40
one-minute-long music videos. The data also contain, for each single participant, a baseline recording
(eyes-open resting-state) that we used to compare the differences between the two conditions (i.e.,
resting-state and naturalistic viewing). For both analyses, each segment was successively organized
into non-overlapping epochs of 15 s [21].
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2.2. Features Extraction

For each subject, film clip, segment, and epoch, we computed the aperiodic components of the
power spectrum, reflecting 1/f-like characteristics, namely the offset and the exponent, using the
FOOOF tool [8]. In particular, the FOOOF algorithm works on frequency representations (power
spectra in linear space), fits the model, shows the original power spectrum with the associated model
fit, and provides the parameters of the model fit, the aperiodic components (offset and exponent).
The FOOOF tool is freely available both for MATLAB and Python [8]. Before computing the aperiodic
components, the raw EEG signals were filtered using a band-pass filter between 1 and 50 Hz using the
‘eegfilt’ function in EEGLAB [22] and subsequently the power spectral density was estimated using the
‘pwelch’ method in MATLAB (The MathWorks, Inc., Natick, MA, USA, version 9.8.0.1323502, R2020a).
Finally, for each film clip and each subject, we obtained a feature vector, consisting of fourteen values
(one value for each EEG channel), separately for the two aperiodic components. The relevance of these
parameters in the context of this study and the implementation of the aperiodic components as EEG
fingerprints in a different experimental scenario (resting-state paradigm) were previously investigated
and reported in [9]. Finally, we compared our results with the classical analysis performed using the
common periodic components, namely theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma
(30–45 Hz) frequency bands.

2.3. Performance Evaluation and Statistical Analysis

The performance of the two aperiodic components was obtained using a standard approach used
to evaluate biometric systems [20]. The approach requires the definition of genuine and impostor
scores (equal to 1/(1 + d), where d is the Euclidean distance), computed between pairs of feature
vectors. In more detail, for each feature vector, consisting of fourteen values (one value for each
EEG channel), we computed the similarity score against every other feature vector, thus obtaining
the genuine scores (within-subject) and impostor score (between-subjects) distributions. The overall
performance was successively evaluated from the false acceptance rate (FAR, the error occurring
when an impostor is accepted) and the false rejection rate (FRR, the error occurring when a genuine
is rejected) using different thresholds. The equal error rate (EER), the point where FAR equals
FRR, was reported to outline the final results, so that low EER values represent high performance.
The Wilcoxon rank test was used in order to test possible statistical differences among the different
experimental scenarios. The statistical results are reported in terms of p-value, confidence interval,
and effect size. All the analysis was performed using MATLAB (The MathWorks, Inc., Natick, MA,
USA, version 9.8.0.1323502, R2020a) and all the figures were realized using Jamovi (version 1.0.8.0)
available from https://www.jamovi.org. All the scripts used to perform the analysis are freely available
at the following link: https://github.com/matteogithub/EEG-fingerprints-for-Sensors.

3. Results

3.1. 1/f Offset Parameter

A visual representation of the extracted feature vectors for a single video-clip are represented in
Figure 1. The best absolute performance, in terms of EER, was observed during naturalistic stimuli as
shown in Figure 2. In particular, for the video_start condition, we obtained an EER equal to 0.08 for an
excitement target video, which represents overall the best performance found during this analysis.
The results from corresponding statistical analysis, including p-values, confidence intervals, and effect
sizes, performed using a Wilcoxon rank test, are summarized in Table 1. As reported, we observed
significant differences between baseline and task conditions, irrespective of the time window (first or
last part of the experiment) used for the analysis.

https://www.jamovi.org
https://github.com/matteogithub/EEG-fingerprints-for-Sensors
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Figure 1. Features vector for offset (upper panel) and exponent (lower panel) computed for a single 
video clip extracted from the DREAMER dataset. Rows represent subjects and columns represent 
electroencephalogram (EEG) channels. 

 
Figure 2. Scatter-plots represent the equal error rates (EERs) for each experimental condition for the 
offset parameter. 

Table 1. Statistical analysis for the 1/f offset parameter. 

1/f Offset Parameter—Wilcoxon Rank Test 
 95% Confidence Interval  

   Statistic p Lower Upper Cohen’s d 
Baseline Videos_start Wilcoxon W 171 <0.00001 0.0345 0.05941 2.022 
Baseline Videos_end Wilcoxon W 165 0.00011 0.0267 0.06013 1.349 

Videos_start Videos_end Wilcoxon W 76 0.70188 −0.0222 0.00955 −0.192 

3.2. 1/f Exponent Parameter 

Again, the best absolute performance, in terms of EER, was observed during naturalistic stimuli 
as shown in Figure 3. As for the 1/f offset parameter, for the video_start condition, we obtained an 
EER equal to 0.12 for an amusement target video, which, however, represents a lower performance 
if compared with the 1/f offset parameter. The results from corresponding statistical analyses, 

Figure 1. Features vector for offset (upper panel) and exponent (lower panel) computed for a single
video clip extracted from the DREAMER dataset. Rows represent subjects and columns represent
electroencephalogram (EEG) channels.
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Figure 2. Scatter-plots represent the equal error rates (EERs) for each experimental condition for the
offset parameter.

Table 1. Statistical analysis for the 1/f offset parameter.

1/f Offset Parameter—Wilcoxon Rank Test

95% Confidence Interval

Statistic p Lower Upper Cohen’s d

Baseline Videos_start Wilcoxon W 171 <0.00001 0.0345 0.05941 2.022
Baseline Videos_end Wilcoxon W 165 0.00011 0.0267 0.06013 1.349

Videos_start Videos_end Wilcoxon W 76 0.70188 −0.0222 0.00955 −0.192

3.2. 1/f Exponent Parameter

Again, the best absolute performance, in terms of EER, was observed during naturalistic stimuli
as shown in Figure 3. As for the 1/f offset parameter, for the video_start condition, we obtained an
EER equal to 0.12 for an amusement target video, which, however, represents a lower performance if
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compared with the 1/f offset parameter. The results from corresponding statistical analyses, including
p-values, confidence intervals, and effect sizes, performed using a Wilcoxon rank test, are summarized
in Table 2. As reported, we observed significant differences between baseline and task conditions,
irrespective of the time window (first or last part of the experiment) used for the analysis. Furthermore,
a significant difference was also observed between the first part and the last part of the baseline.
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Table 2. Statistical analysis for the 1/f exponent parameter.

1/f Exponent Parameter—Wilcoxon Rank Test

95% Confidence Interval

Statistic p Lower Upper Cohen’s d

Baseline Videos_start Wilcoxon W 171 <0.00001 0.0375 0.0636 2.174
Baseline Videos_end Wilcoxon W 166 0.00008 0.027 0.0602 1.371

Videos_start Videos_end Wilcoxon W 70 0.51354 −0.0240 0.0101 −0.250

3.3. Correlation with Participants’ Self-Assessment

Finally, we also observed moderate correlations between the dominance (computed as the mean
over all the subjects) and the EER for the offset parameter, both for the first (rho = −0.477, p = 0.045)
and the second (rho = 0.412, ns) block, using the non-parametric Spearman method.

3.4. Periodic Components

As for the periodic components, we observed the following performance in terms of EER for the
first 60 s of film clip viewing: 0.24 ± 0.03 for the theta band, 0.24 ± 0.04 for the alpha band, 0.15 ± 0.02 for
the beta band, and 0.19 ± 0.03 for the gamma band. Moreover, we observed the following performance
in terms of EER for the last 60 s of film clip viewing: 0.25 ± 0.04 for the theta band, 0.23 ± 0.04 for the
alpha band, 0.14 ± 0.03 for the beta band, and 0.17 ± 0.03 for the gamma band. Finally, we observed
the following performance in terms of EER for the baseline condition: 0.28 ± 0.02 for the theta band,
0.28 ± 0.02 for the alpha band, 0.20 ± 0.03 for the beta band, and 0.24 ± 0.03 for the gamma band.
The differences among the three conditions, namely baseline, video_start and video_end, for the beta
band, which was the periodic component with the higher performance, are represented in Figure 4.
The corresponding statistics are reported in Table 3.
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Table 3. Statistical analysis for the beta band.

Beta Band—Wilcoxon Rank Test

95% Confidence Interval

Statistic p Lower Upper Cohen’s d

Baseline Video_start Wilcoxon W 168 0.00004 0.03658 0.0617 1.73
Baseline Video_end Wilcoxon W 169 0.00002 0.04634 0.0839 1.85

Video_start Video_end Wilcoxon W 129 0.05994 −0.00142 0.0357 0.479

3.5. Replication on the DEAP Dataset

In the replication part of the study, we observed the best absolute performance, in terms of EER,
during naturalistic stimuli using the offset parameter, with a minimum EER value equal to 0.099 and
a mean of 0.166 ± 0.031. The exponent parameter performed worse, with a minimum EER value
equal to 0.201 and a mean of 0.285 ± 0.030. Therefore, as for the original results, the use of video clips
outperformed the use of resting-state paradigms, where, for this latter approach the EER was equal to
0.350 for the offset and equal to 0.362 for the exponent. It is important to highlight that, for this second
dataset we have only one resting-state (i.e., baseline) recording for each subject since these traces
were recorded before the video clips were presented. As for the periodic component of the power
spectra, again, the naturalistic stimuli outperform the baseline condition for 3 out of 4 frequency bands,
namely theta (minimum EER value equal to 0.147 and a mean of 0.184 ± 0.026 for the naturalistic
stimuli and EER value equal to 0.194 for the baseline), alpha (minimum EER value equal to 0.159 and
a mean of 0.204 ± 0.023 for the naturalistic stimuli and EER value equal to 0.233 for the baseline),
and beta (minimum EER value equal to 0.146 and a mean of 0.194 ± 0.029 for the naturalistic stimuli
and EER value equal to 0.147 for the baseline), where the opposite was observed for the gamma band
(minimum EER value equal to 0.249 and a mean of 0.285 ± 0.022 for the naturalistic stimuli and EER
value equal to 0.173 for the baseline).

4. Discussion

In summary, this study confirms that the aperiodic components of the power spectrum [8,9],
as evaluated in terms of offset and exponent parameters, are able to detect subject-specific features
extracted from the scalp EEG.

In particular, our results show that the performance of the system was significantly higher (lower
EER value) for the film clip scenario, thus suggesting that under a naturalistic stimulus it is even
easier to identify a subject. This is of special relevance since naturalistic stimuli represent a better
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approximation of real-life scenarios [19] if compared with the more classical approaches based on
arbitrary tasks or resting-state paradigms. Furthermore, our results also show a moderate correlation
between the system performance and the participants’ self-assessment, especially for the dominance
scale where the magnitude of the association was particularly high and significant, at least for the
offset parameter.

Moreover, we reproduced the study using the more common approach based on the classical
decomposition of the EEG signals in frequency contents, namely theta, alpha, beta, and gamma bands.
In this case, it is of relevance to highlight that, as expected [3,9], the high frequency contents, beta and
gamma bands, represent the periodic components that gave the best performance, in all the investigated
scenarios. Furthermore, we argue that this approach represents an important replication of the results
obtained using the aperiodic components, since, even in this case, we successfully demonstrated that
the naturalistic stimuli, as provided using film clips, outperform the use of no-task conditions. Finally,
it is also interesting to note that, as previously shown [9], the aperiodic component of the power
spectrum outperforms the use of the more classical approach based on periodic components (frequency
bands decomposition).

In order to understand to what extent the reported results are dependent on the specific set of data
used in this study, we decided to replicate the whole analysis using another fresh dataset. Specifically,
we used the DEAP dataset [18], a dataset for emotion analysis using EEG, physiological, and video
signals, which have several similarities with the original one. Interestingly, we may conclude that we
successfully replicated the original findings and thus we are more confident that the reported results
can be considered robust, and at least in part generalizable.

We also want to emphasize that a recent work [23], even though performed using the functional
magnetic resonance technique, shows that compared to the resting-state, naturalistic viewing allows
a more accurate prediction of trait-like phenotypes in both cognitive and emotional domains,
also suggesting that naturalistic stimuli amplify individual differences. In line with this result,
our study, even using a different recording technique and a different set of features, confirms that
naturalistic viewing allows the increase of the performance in a subject identification scenario such as
the one explored in this work. In this context, our study suggests that even with a much lower spatial
resolution, as represented by the use of low-density scalp-EEG, the naturalistic stimuli, as observed in
functional magnetic resonance, amplify individual differences.

Nevertheless, we recognize two important limitations of the present study. The first limitation
concerns the number of subjects involved in the study since we used a freely available dataset, which on
the other hand represents a strong point in terms of reproducibility, and it is not straightforward to
collect such complex data; this limitation is not easy to overcome. However, we think that future
studies should aim to replicate these results on a bigger dataset in order to generalize these findings.
The second limitation concerns the use of scalp EEG recordings, moreover from a low-cost device,
which is very well known to be affected by diverse sources of noise. We argue that, even if not relevant
for biometric systems, it would be important to investigate whether these findings still hold when
using source-reconstructed analysis with high-density EEG, since individual variability still represents
a very important issue or limit when comparing groups or conditions [24].

The stronger point, which to the best of our knowledge was never discussed before, is that the
use of naturalistic stimuli, representing experiences from everyday life and recently proposed as
potential alternative to resting-state [19], outperforms the same EEG features when used in a baseline
(no-stimulus) condition. We think that this result may represent valuable information for the EEG
community working on individual variability and that in the near future it may drive a paradigm shift
to test the performance of EEG-based biometric systems.

5. Conclusions

In conclusion, our study confirms, performing two completely separate analyses, that the aperiodic
components of the power spectrum are able to grab subject-specific features extracted from the scalp
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EEG and that the performance of this approach based on naturalistic stimuli outperforms the same
EEG features when used in a baseline (no-stimulus) condition. As a consequence, our results suggest
focusing on naturalistic stimuli when assessing the performance of EEG-based biometric systems
as this approach seems more prone to unveiling subject-specific features compared to task-based or
resting-state paradigms.
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