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Abstract: Spain is Europe’s leading exporter of tomatoes harvested in greenhouses. The production
of tomatoes should be kept and increased, supported by precision agriculture to meet food and
commercial demand. The wireless sensor network (WSN) has demonstrated to be a tool to provide
farmers with useful information on the state of their plantations due to its practical deployment.
However, in order to measure its deployment within a crop, it is necessary to know the communication
coverage of the nodes that make up the network. The multipath propagation of radio waves between
the transceivers of the WSN nodes inside a greenhouse is degraded and attenuated by the intricate
complex of stems, branches, leaf twigs, and fruits, all randomly oriented, that block the line of
sight, consequently generating a signal power loss as the distance increases. Although the COST235
(European Cooperation in Science and Technology - COST), ITU-R (International Telecommunications
Union—Radiocommunication Sector), FITU-R (Fitted ITU-R), and Weisbberger models provide
an explanation of the radio wave propagation in the presence of vegetation in the 2.4 GHz ICM
band, some significant discrepancies were found when they are applied to field tests with tomato
greenhouses. In this paper, a novel method is proposed for determining an empirical model of
radio wave attenuation for vegetation in the 2.4 GHz band, which includes the vegetation height
as a parameter in addition to the distance between transceivers of WNS nodes. The empirical
attenuation model was obtained applying regularized regressions with a multiparametric equation
using experimental signal RSSI measurements achieved by our own RSSI measurement system for
our field tests in four plantations. The evaluation parameters gave 0.948 for R2, 0.946 for R2 Adj
considering fifth grade polynomial (20 parameters), and 0.942 for R2, and 0.940 for R2 Adj when a
reduction of parameters was applied using the cross validation (15 parameters). These results verify
the rationality and reliability of the empirical model. Finally, the model was validated considering
experimental data from other plantations, reaching similar results to our proposed model.

Keywords: wireless propagation model; precision agriculture; COST235; FITU-R; ITU-R;
Weisbberger model; propagation model; regularized regressions
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1. Introduction

The wireless sensor networks (WSN) are an integral part of the Internet of Things (IoT) that
connects the digital world with the real world [1,2]. It is usually used for low-cost applications in
outdoor environments [3,4] to study the variability in the collection of environmental parameters for
precision agriculture [5,6], such as temperature, humidity, soil nutrients, etc., deployed in vegetation
environments [7,8]. The nodes are equipped with a microprocessor, transceiver, energy unit, and sensors
that collect, process, and store data [9].

The adoption of this technology in precision agriculture [10] will help to improve agricultural
yields by counteracting the negative effects of climate change, the reduction in the area of land used for
agriculture, and the reduction of fresh water, among others [11,12]. Increasing agricultural production
will provide essential elements for humans [13] because the world’s population will grow by 31% by
2050 [14]. According to the Food and Agriculture Organization of the United Nations, feeding the
Earth’s growing population will require producing 70% more food in 2050 than in 2006 [15].

Precision agriculture (PA) is defined as the management of spatial and temporal variability in
agriculture through the use of information and control technologies for the collection of data with higher
resolution than those obtained from remote sensing, laboratory tests, etc. [16]. The WSN, part of the
PA, provides real-time information on crop land that helps farmers to make decisions and implement
practices in a timely and correct manner in the field [13,17]. For example, mitigating water scarcity,
saving water, and being more efficient in agricultural irrigation, which accounts for approximately
70% of the world’s total fresh water [18,19], by reliably measuring soil moisture in real time over
large agricultural areas [20]. In fact, the plains of the Almeria province represent one of the greatest
potential for the use of PA in Spain. It is located in the southeast of the Iberian Peninsula and has
the largest concentration of greenhouses in the Mediterranean basin (>31,000 ha) [21] and in the
world [22]. This region has the largest area of landless vegetable production in the country and is the
leading producer of tomatoes in Spain [23,24], followed in descending order by sweet peppers and
cucumbers [25].

Given this perspective and the potential usefulness of WSN in the PA, the propagation path loss
of radio waves was analysed to ensure the reliability of wireless communication in the coverage of the
sensor nodes distributed in a tomato greenhouse in Almería, Andalusia, Spain. The values obtained
through field tests are compared with empirical models, such as Weissberger and ITUR [26], but many
discrepancies can be found because, in general, these models only take account the distance between
transceivers of WSN nodes. In order to improve the current accepted empirical models specifically
for tomatoes greenhouse we elaborate our own empirical model by means of regularized regressions
taking into account the height in addition to the distance.

The most important contributions of this article are the following:

• A new empirical model of radio wave attenuation for vegetation is developed for the 2.4 GHz
band which includes the vegetation height as a parameter to be taken into account in addition to
the distance between the transmitter and receiver node.

• This attenuation model has been obtained from attenuation measurements made with our own
RSSI measurement system from four tomato greenhouses. The proposed model has then been
validated with experimental data from other plantations.

• A method is presented to determine the signal attenuation in an empirical way that can be applied
to other greenhouse plantations.

• The research contributes to more accurate measurements of attenuation due to vegetation that
allows a better planning of the deployment of WSN nodes within a tomato greenhouse for, e.g.,
humidity control.

Section 2 discusses the state of the art and works related to our research. Section 3 details the
empirical models that are used for the calculation of radio propagation in vegetation presence. Section 4
explains the experimental procedure used to record values of radio wave attenuation when passing
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through vegetation. Section 5 proposes a method to determine radio wave attenuation in the presence
of vegetation. Section 6 shows the results obtained and analyses them after comparing our model with
real measurements in tomato greenhouses. The next section explains the advantages of our proposed
model compared to the classical empirical models of radio propagation in vegetation environments.
Finally, in the last section, we present the conclusions and possible future works.

2. State of the Art and Related Works

The multipath propagation of radio waves between the transceivers of the WSN nodes [7,27] is
degraded due to propagation loss [13]. The incident electromagnetic field is attenuated by diffraction,
scattering, reflection of the intricate complex of stems, branches, leaf twigs, and fruits, all randomly
oriented [28,29], that block the line of sight (LOS) [13] in a greenhouse, consequently generating a
signal power loss. The calculation of this loss determines the reliability of the wireless link along
with the success of the target application of the WSN deployment [6,30]. Their knowledge allows
for the creation of more appropriate models in the design of wireless communication networks [31].
In our study, we modeled radio wave propagation from the received signal strength indicator (RSSI),
a measurement obtained through the received power of the wireless signals at different transmission
distances and different antenna heights inside a tomato greenhouse [11]. This serves to establish the
maximum effective distance between nodes and to predict the number of sensors needed to cover the
deployment of WSN in a crop area [7].

Analyzing relating researches we can find similar works that characterize the influence of
vegetation when it is traversed by a radio wave with a frequency of 2.4 GHz by a mango greenhouse [32],
green pepper greenhouse [33], and a plum orchard [34]. These studies showed that the attenuation of
the radio wave varies with the height and type of vegetation it passes through. Empirical models of
radio wave propagation in the presence of vegetation vary considerably from the measurements taken
in field tests, as is the case in [35] where a new model based on linear regression had to be developed
in a mango greenhouse, or the study in [26] where cubic regression was used to define a model of
attenuation in tomato greenhouses.

The modelling of electromagnetic wave propagation is an essential tool for wireless network
design and radio frequency (RF) interference studies [36]. It can be divided into two categories:
empirical (or statistical) and deterministic (analytical) models. Empirical models are more widely used
to solve practical problems, relying on actual measurements of radio frequency on communication
channels. Such models are simple to apply and can offer a quick solution. However, their predictions
are not always accurate. Unlike empirical models, deterministic models of greater complexity,
are based on numerical approaches to Maxwell’s equations that significantly improve the reliability of
predictions [37,38]. Statistical models were originally developed to provide estimates without field
data [39]. Empirical models based on regression methods are commonly used for cover estimates,
depending on the type of vegetation where the measurements were made [35,40]. The most commonly
used radio propagation models for the design of wireless networks in the presence of vegetation
are the empirical ones (see Table 1). Therefore, a method of moderate complexity that provides
greater accuracy and generality than empirical models is still needed to estimate the electromagnetic
attenuation that passes through vegetation [41].

The empirical models of attenuation by vegetation defined in Table 1 depends on the radio wave
frequency and the distance in the depth of the vegetation. However, all of them give an estimate of
the attenuation of the signal that is quite different from the one obtained in the field tests. This is the
reason why, in this paper, we present a novel general method to determine an empirical model of the
attenuation by vegetation.
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Table 1. Empirical propagation models.

Model Equation Description Frequency Range

The modified exponential
decay model (EDM) is the
generic empirical model

[13,41]

LMED = AfBdc

f = Frequency (MHz)
d = Vegetation depth (m)
B,C = Model parameters

A, B, y C are empirical
constants. This model is

suggested by the International
Telecommunication Union

(UIT)

30 MHz to 30 GHz

Weissberger
[28,35,42]

LWeiss = 0.45f0.284d0

m < d < 14 m
LWeiss = 1.33f0.284d0.558

14 m < d < 400 m

f is the frequency in GHz and
d is the depth of the vegetation

in meters
230 MHz to 95 GHz

ITU-R [28] LITU-R = 0.2f 0.3 d0.6,
d < 400 m.

f is the frequency in MHz and
d is the depth of vegetation

in meters
200 MHz to 95 GHz

COST235
[28,35,42]

LCOST235 =
26.6f−0.2d0.5out-of-leaf

LCOST235 =
15.6f−0.009d0.26in-leaf

f is the frequency in MHz and
d is the depth of vegetation in

meters, d < 200 m
9.6 GHz to 57.6 GHz

Fitted ITU-R
(FITU-R) Model

[28,35,42]

LFITU-R =
0.37f−0.18d0.59out-of-leaf

LFITU-R =
0.39f−0.39d0.25in-leaf

f is the frequency in MHz and
d is the depth of vegetation

in meters,

VHF to
millimetric waves

3. Experimental Determination of Attenuation in Vegetation

An accurate determination of the signal attenuation in vegetation is significant in precise agriculture
to know how the WSN nodes should be deployed in a greenhouse. The attenuation can be calculated
by the usage of a RSSI measurement system that provides an accurate measurement of the signal
strength between a transmission node and a receiver node at different distances and heights. In this
case, our own development of the RSSI measurement system was applied in this study.

3.1. RSSI Measurement System

Our system is divided into two parts. The first one is the node that sends the signal (TX node)
(Figure 1a) and the second one is the receiver (RX) (Figure 1b) which consists of a wireless node
(RX node) that collect the signal sent by the TX node and an embedded computer that stores the power
signal received in dBm. TX and RX devices are supported by a mast on a 17-kg base (See Figure 1a),
to avoid trembling movements that affect the measurement and radio link stability. The following
hardware and software elements are used to carry out field measurements of radio wave attenuation
in the 2.4 GHz frequency band in the presence of vegetation inside a greenhouse:

(1) The deployment nodes, both on the transmitting (TX) and receiving side (RX), are the Re-Mote
with the technical characteristics described in [43]. They work with the Contiki Operating System
and their applications are written in C language. The nodes communicate in the 2.4 GHz industrial
scientific medical (ISM) band (λ = 12.24 cm), with the IEEE802.15.4 standard that defines the
media access control (MAC) and physics (PHY) layer, designed for low energy consumption,
low speed and short-range technologies [44,45]. It has a 3-dBi gain dipole antenna, the receiver
sensitivity is −100 dBm with omnidirectional radiation pattern, i.e., the radiated signal has the
same intensity in all directions [13]. Figure 2 describes the TX node powered by a 3.7 V Li-ion
battery with capacity of 6600 mAh, which gave it autonomy of operation because only it moved
away from the RX node. These elements are enclosed in a PVC box with an IP65 protection rating,
prepared to prevent dust and water jets from entering. In Figure 2 we can see that the electrical
energy with which the RX node operated was obtained from its connection to the Raspberry Pi
USB port. In addition, in Figure 2, we see that this embedded computer was powered through a
220 V electrical outlet in the greenhouse. There are other studies on this subject, which also use
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wireless sensor networks (WSN), and use modular devices based on Arduino boards and Xbee
radio modules [10]. However, the authors prefer to use the Re-Mote nodes due to it being a small
device (7.3 × 4 cm), with integrated radio modules in the 2.4 GHz, 868/915 MHz frequency bands,
in addition to having previous knowledge of their configuration.

(2) The RSSI information collected in the sink node is forwarded to the Raspberry-Pi 3 embedded
computer and stored in its microSD memory in CSV format to facilitate its processing.
The Raspberry Pi performs its functions through the Raspbian operating system. It physically
communicates with the Re-Mote sink node through the USB port and receives the RSSI values by
executing the script written with the Python programming language.
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3.2. Deployment and Field Testing

Our field tests were carried out in four tomato greenhouses with dimensions of 1000 m2,
on flat ground, in four locations in the province of Almeria (Spain): (a) La Cañada–8 m.a.s.l,
(b) Retamar–12 m.a.s.l., (c) El Alquian–42 m.a.s.l., (d) Níjar–248 m.a.s.l. All of them are close to
the Alboran Sea, with the exception of the one located in Níjar, as it is the closest to the mountain.
The greenhouses have a main aisle (Figure 1c) and the side aisles (Figure 1d) that are separated
from each other by the "tomato plant walls (Figure 1e)". The steps for the tests were as follows in
each greenhouse:

(a) The nodes are placed at the same height. The sink node receives the value of the attenuated
signal. The sink node receives the value of the attenuated signal sent by the remote node every
5 min, repeating this measurement 10 times. It is located at the end of the greenhouse and another
node behind the first wall of tomato plants, which transmits the signal (TX node) as shown in
Figure 3a. In other words, a wall of tomato plants between the nodes blocks the signal.

(b) The sink node remains in its same position RX1, while the other node, the transmitter (TX), moves
away in a straight line to two tomato plant walls in the TX2 position described in Figure 3b,
thus successively increasing the number of “tomato plant walls” and reach the final position:
TXN, increasing the distance between both nodes (TX and RX), as well as the attenuation of the
signal detailed in Figure 3c.

(c) When it reaches the limit of coverage between the two nodes, the process is restarted, but moving
the nodes 2 m along the “tomato wall”, with the receiver node now in position RX2 as shown in
Figure 3d, and then repeat the two previous steps. Thus, in Figure 3e, the sink node called “RX1”
moves like this to “RX4” passing previously through the positions “RX2” and “RX3”, each one
receiving the attenuated signal sent by the transmitter nodes from TX1 to TXN. 160 RSSI values
are recorded for each specific distance between the TX and RX nodes, 10 values in each position
of the sink node RX1, RX2, RX3, RX4 and this process is carried out in 4 different greenhouses.
The collected values are averaged.

(d) The steps shown above are repeated for new heights. The communication between the nodes
was evaluated when the height of their antennas was 30 cm, 50 cm, 70 cm, 90 cm, 100 cm, 150 cm,
and 200 cm.

3.3. Attenuation of Radio Waves in Free Space

The attenuation of radio waves in free space is calculated from the equation

L f spl = 10log10
(
λ

4πd

)2
[38], being on a logarithmic scale: L f spl(dB) = 20log10( f ) + 20 log(d) − 147.56

(f in Hz, d in meters) with line of sight (LoS). Figure 4 is the received power measurement obtained
without line-of-sight obstruction (Pr_fspl), the attenuation of the received signal is caused only by L f spl.

3.4. Received Signal Strength in the Presence of Vegetation

The measurements of the powers received in the sink node (RX), attenuated by the presence
of vegetation is Prx_ f oliage. These values are recorded according to the deployment steps shown in
Figure 3, and are shown in the curve graph in Figure 5. Here, we observe that greater coverage is
achieved between the TX and RX nodes when the heights of the antennae of the nodes are 50 cm from
the ground, with a maximum distance between them of 35 m.
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3.5. Calculation of Attenuation by the Presence of Vegetation

Equation (3) provides the attenuation caused by the foliage (Lfoliage), it is obtained by subtracting
Prx_ f oliage (Equation (2)) with the power reception when the signal travel in free space path loss Prx_ f spl
(Equation (1)) [28], the result can be seen in the graph of curves in Figure 6, where the X axis indicates
the depth of the thickness of the vegetation in sections that increase by one meter as this is the width of
the wall of each “tomato tree wall”. Below, Ptx denotes transmit power, Gtx transmit antenna gain,
and Grx receive antenna gain.

Prx_ f spl(dBm) = Ptx + Gtx + Grx − L f spl (1)

Pr_ f oliage(dBm) = Ptx + Gtx + Grx − L f spl − L f oliage (2)

L f oliage(dB) = Prx_ f oliage(dBm) − Prx_ f spl(dBm) (3)
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The foliage attenuation curve (L f oliage) can be compared with empirical models of: Weissberger,
ITU-R, FITU-R, COST235. As shown in Figure 7, none of them resembles the value obtained empirically,
so the need to find a new model arises.
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4. Proposed Method for Determining the Attenuation by the Presence of Vegetation

4.1. Parametric Optimization of the Attenuation

For this process, we use the average L_foliage in the measurements at different distances between
the TX and RX with the heights of the antennas 30 cm, 50 cm, 70 cm, 90 cm, 100 cm, 150 cm, and 200 cm
in each location (La Cañada, Retamar, El Alquian, Níjar). Finally, the development of the proposed
model is obtained using the average of the L_foliage value in all the locations for a specific height and
distance (69 values in total). The empirical models considered until now could only determine the
attenuation of the signal as a function of frequency and distance. In this article, we determine this
attenuation also taking into account the height of the node antennas. For this purpose, we look for a
polynomial equation based on the exponential decay model (EDM), the Weissberger model, and the
receiver height described in Equation (4),

L f oliage(d, h) = θ1 + θ2 fθ0dθ3hθ4 +
20∑

k=1

θkdih j
∀ i, j = {0, 1, 2, . . . , 5} (4)

where the parameters are {θ1,θ2, . . . ,θk}, fθ0 is the value of the emission frequency, this value is
constant because we evaluate in the 2.4 GHz central frequency ISM band, d is the value of the distance
between transmitter and receiver, and h is the value of the heights of the receiver and transmitter.
Equation (5) was developed for 20 parameters leaving it this way,

Lfoliage(d, h) = θ1 + θ2dθ3 hθ4 + θ5d2h + θ6dh2 + θ7d2h2 + θ8d3h + θ9d3h2

+θ10d3h3 + θ11d2h3 + θ12dh3 + θ13d2 + θ14h2 + θ15d3 + θ16h3

+θ17d4 + θ18h4 + θ19d5 + θ20h5x
(5)

L f oliage has been developed for fifth grade polynomial. The selection of the polynomial grade
addresses the need to have a sufficiently large grade to explain the physical behaviour of the attenuation.
A polynomial of grade 5 (i,j from 0 to 5) is sufficiently large to explain this physical behaviour of
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attenuation, verifying this statement by the small error achieved, then proceed to eliminate terms by
simplifying the equation. The parameters of Equation (8) are fitted using Equation (6), function cost
J(θ). To accomplish this optimization, it is used the optimization algorithm based on Nelder–Mead
simplex method [46]

The multiparametric equation has been obtained by optimizing the following regularization problem,

min
θ∈Rn
‖L f oliage(θ) − dB‖2 + λ‖θ‖2 (6)

where L f oliage(θ) is the attenuation as function of θ, dB is the measured values, λ > 0 is the regularization
parameter, ‖·‖ = ‖·‖2 is the Euclidian norm. The number of experiments taken that corresponds to 69
averaged values (from the four locations). L f oliage(θ) is the model represented in Equation (4).

The prevention of the over-adjustment of variables is carried out by means of a regularising
term called Tikhonov’s regularisation [47–49], where λ is the regularising term and determines the
weight that the parameters should have in the cost function. This type of problem ensures that there is
no over-adjustment in the parameterised functions. To this optimization problem, it is necessary to
calculate the gradients for each direction. Equation (7) shows how these gradients can be calculated.

J(θ) = ‖L f oliage(θ) − dB‖2 + λ‖θ‖2

∂J(θ)
∂ θ1

= 2‖L f oliage(θ) − dB‖
∂L(m)

f oliage
∂1

+ 2λ‖θ‖

∂J(θ)
∂ θ2

= 2‖L f oliage(θ) − dB‖
∂L(m)

f oliage
∂2

+ 2λ‖θ‖
. . .

∂J(θ)
∂ θ20

= 2‖L f oliage(θ) − dB‖
∂L(m)

f oliage
∂20

+ 2λ‖θ‖

(7)

The values taken by the parameters that determine their importance, called “projected parameter
importance” (PIP). Parameter values less than 0.03 are considered not to contribute to the model.
The determined PIP is represented in the following Figure 8. Taking into account the previous criterion,
it can be observed that some parameters hardly contribute to the L f oliage function. These parameters
are θ8,θ9, θ17, θ10 y θ19.Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 
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Figure 8. PIP values for the chosen model. Values lower than 0.03 are excluded from the model, so the
parameters θ8,θ9, θ17, θ10 and θ19 are excluded from the model.
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The multiparametric equation has been reduced using the PIP parameters for those greater than
0.03. The quadratic validation mean square error (RMSECV) has been applied for the reduction of
latent parameters in order to have a reduced equation without losing information when the model is
applied, as shown in Figure 9.
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Figure 9. Root mean squared error of cross validation (RMSECV) as a function of number of parameters
used in the L f oliage model.

Figure 10 shows the solution obtained for the 20 parameters set. This figure shows a 3D view of
the Equation (4) (Figure 10a), where the x-axe is the variable distance (d) and the y-axis is the variable
height (h), both in meters. The z-axe are the values when the function L f oliage(d, h) is evaluated for each
value of distance and height. The black dots are the measured values in the greenhouse. Figure 10b
shows the residual values between the measured data and the predicted data. In Table 2, we can see
the values of the optimized parameters.

The quality of this model has been expressed by the cross validation of parameters, R2 and
Q2, which represent the explained variability, giving values of 0.948 and 0.938 respectively. Also,
the RMSECV (mean square error of quadratic validation) has been used as an index, whose value is
2.29. The model has been validated by the permutation test.Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 
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model for 20 parameters. (b) Residual values of L f oliage(d, h) determined as difference between measured
data and predicted data.
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Table 2. Parameter values optimized using the cost function of the Equation (6). Some parameters as it
can be seen have values close to zero.

θ 1 2 3 4 5 6 7 8 9 10

Value 3.89 −0.80 1.09 −1.20 −0.63 −4.68 0.55 0.00 0.00 0.00

θ 11 12 13 14 15 16 17 18 19 20

Value −0.09 1.01 0.67 30.07 −0.03 −54.33 0.00 33.72 0.00 −6.22

It is used as a model evaluation, the mean square error (MSE), the root of the mean square
error (RMSE) and the mean absolute percentage error (MAPE). In addition, the Akaike information
criterion (AIC) is provided, indicating the loss of information in the model considered and the Schwarz
information criterion (SBC) which establishes the goodness of fit with the estimated parameters.
Both the AIC and SBC are comparative indices that must be compared with other models. They will be
used later to check that there is no loss of information in the estimate. The evaluation values of the
optimized multiparametric function are shown in Table 3, where the adjusted R2 value is 0.946.

Table 3. Evaluation parameters of the regularised optimisation carried out for 20 parameters.

Nº Parameters R2 R2 Adj. MSE RMSE MAPE AIC SBC

Lfoliage(d, h) 20 0.948 0.946 5.27 2.29 0.167 410 199

4.2. Reduced Parametric Optimization of the Attenuation

The reduction of Equation (5) can be deduced using Figures 8 and 9. Observing Figure 9 in
detail, from 15 parameters used the RMSECV does not vary. Therefore, in Figure 8, we observe that
the parameters close to zero that must be cancelled are: θ8,θ9, θ17, θ10 y θ19, because they do not
contribute any quantity to the L f oliage model. Equation (5) can be reduced in the following Equation (8),

L f oliage(d, h) = θ1 + θ2dθ3hθ4 + θ5d2h + θ6dh2 + θ7d2h2 + θ11d2h3 + θ12dh3

+θ13d2 + θ14h2 + θ15d3 + θ16h3 + θ18h4 + θ20h5 (8)

where:
L f oliage(d, h) = θ2dθ3 hθ4 + fcompensation (9)

and:
fcompensation = θ1 + θ5d2h + θ6dh2 + θ7d2h2 + θ11d2h3 + θ12dh3 + θ13d2 + θ14h2

+θ15d3 + θ16h3 + θ18h4 + θ20h5 (10)

Equation (9) has a first term equivalent to the attenuation model given by Weissberger and a second
term fcompensation that determines the compensation to the Weissberger model that has to be added in
order to estimate L f oliage. Taking into account Figures 8 and 9, the parameters θ5,θ7,θ11,θ13,θ15 of
Equation (8) could be ignored in the model because of their slight root mean square error (RMSE).
As expected, this error would be around 3.12, meaning that the model does not depend on distance
when varying the height. However, we only override those parameters that have an approximate
value of zero, these parameters are θ8,θ9, θ17, θ10 y θ19. The application of the parametric function is
applied to adjust experimental values obtained by Equation (3). The parameters of the Equation (8)
are fitting using the function cost J(θ), Equation (6). To acomplish this optimization, it is used the
optimization algorithm based on Nelder–Mead simplex method [46]

Figure 11 shows the solution obtained for the 15 parameters set. This figure shows a 3D view of
the Equation (4) (Figure 11a), where the x-axe is the variable distance (d) and the y-axis is the variable
height (h), both in meters. The z-axe are the values when the function L f oliage(d, h) is evaluated for each
value of distance and height. The black dots are the measured values in the greenhouse. Figure 11b
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shows the residual values between the measured data and the predicted data. In Table 4, we can see
the values of the optimized parameters.
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Table 4. Parameter values that have been optimized using the cost function of the Equation (3).

θ 1 2 3 4 5 6 7

Value −6.73 −0.08 1.62 −1.59 −0.57 −3.33 0.49

θ 11 12 13 14 15 16 18 20

Value −0.12 1.10 0.30 100.59 0.00 −167.33 95.02 −17.69

The quality of this new model is expressed by the cross validation of parameters, R2 and Q2,
in order to make the comparison with the previous model. The RMSECV is worth 2.40. The model has
also been validated by the permutation test.

As with the previous model, the mean square error (MSE), the root of the mean square error (RMSE)
and the mean absolute percentage error (MAPE) have been used as assessments. In addition, the Akaike
information criterion (AIC) and the Schwarz information criterion (SBC) are provided, indicating a
good fit with the estimated parameters. The evaluation values of the optimized multiparametric
function are shown in Table 5. The adjusted R2 value is 0.940.

Table 5. Evaluation parameters of the regularised optimisation carried out for 15 parameters.

Nº Parameters R2 R2 Adj. MSE RMSE MAPE AIC SBC

Lfoliage(d, h) 15 0.942 0.940 5.80 2.40 0.189 417 206

The results of the radio wave attenuation models for vegetation in a tomato greenhouse developed
in this research are very similar, the R2 for both are only 0.004, establishing that the correlation between
the model and the data obtained is 0.942 for the first and 0.946 for the second model. Also, the adjusted
R2, in both cases, is very similar, differing by only 0.006. The values of MSE and RMSE show hardly
any significant differences. The ASM, the ACI, and the SBC belong to the same order of magnitude,
so it follows that there is no loss of information when one model or the other is applied.

Both 15 and 20 parameter models are valid. In both cases, good evaluation indicators are obtained
so that either of them can be used. However, the 15-parameter model has an advantage over the
20-parameter model. This advantage is that it uses five fewer parameters than the 20-parameter model
(see Table 6).
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Table 6. Evaluation parameters comparison of the regularized optimization carried out for 15 and
20 parameters.

Nº Parameters R2 R2 Adj. MSE RMSE MAPE AIC SBC

Lfoliage(d, h) 15 0.942 0.940 5.80 2.40 0.189 417 206

Lfoliage(d, h) 20 0.948 0.946 5.27 2.29 0.167 410 199

5. Results and Analysis

The model created is contrasted with the experimental measurements taken from the four
greenhouses in February 2020 and the measurement taken in February 2018 at the La Cañada
greenhouse. The values summarised in Table 7 reveal that the model obtained is well suited to tomato
greenhouses, regardless of the sea level where it is located.

Table 7. Evaluation parameters for other greenhouses measurements. The greenhouses are locating in
La Cañada, Retamar, El Alquián and Nijar. All these locations are at Almería province, Spain.

Location Year R2 R2 Adj. MSE RMSE MAPE AIC SBC

Lfoliage(d, h) Cañada 2019 0.921 0.920 8.745 2.957 0.408 445 234
Lfoliage(d, h) Retamar 2019 0.912 0.910 9.196 3.0325 0.261 449 237
Lfoliage(d, h) Alquián 2019 0.901 0.899 9.976 3.158 0.242 454 243
Lfoliage(d, h) Níjar 2019 0.895 0.892 11.486 3.389 0.602 464 253
Lfoliage(d, h) Cañada 2018 0.902 0.900 10.53 3.245 0.603 458 247

In order to evaluate the generalized error, the model was evaluated with real values for fitting the
model. Therefore, in the Table 7 shows the evaluation parameters for other greenhouses measurements.
On the one hand, the R2 parameter is between 0.921 and 0.895. The generalized R2 can be considered
as their average. The R2 average is 0.906. On the other hand, the RMSE parameter is between 3.389 and
2.957. The generalized RMSE can be considered as their average. The RMSE average is 3.156. This error
is greater than the error obtained using the values in the fitting model, something that it is expected.

The values collected in the field tests in 2018 in the tomato greenhouse of La Cañada, in Almería
(Spain), represented with dots, were contrasted to the equation of the proposed model (coloured curves)
in the graph of Figure 12. As expected, the proposed model fits adequately with the experimental data.
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The results prove the validity of the new method, and the possibility of using it for planning the
deployment of WSN nodes in different types of tomato greenhouses. In addition, with the field tests,
it is determined that the most favorable height to achieve the greatest coverage between TX and RX
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nodes is 0.5 m from the surface. With the proposed equation, we established the behavior model of the
radio wave attenuation in its passage through the foliage in the 2.4 GHz band widely used by different
standards or technologies, such as ZigBee, WiFi, IEEE 802.15.4, and IEEE 802.15.1 among others.

6. Discussion

Multi-hop mesh structures between the nodes of wireless sensor networks are particularly useful
in agricultural surveillance systems because of their simplicity of application. The evaluation of path
losses caused by foliage is relevant to network design and planning. Vegetation propagation models,
such as ITU-R, FITU-R, and COST 235, are currently available, but these differ considerably from
empirical models when compared with field test measurements [50]. This has been the reason why
attempts are made to improve such models through linear regressions as in research done in mango
greenhouses [47]. Radio wave attenuation differs from vegetation height because the distribution of
foliage in a plant varies at different distances from the ground as evidenced in orchard studies [48].
Therefore, the importance of our work is because we deliver a model that uses the height variable
giving better precision in the behaviour of the radio wave when it passes through a tomato greenhouse
in the 2.4 GHz band at different distances as well as the mathematical procedure to arrive at this
model equation.

7. Conclusions and Future Work

Radio wave attenuation measurements were taken experimentally inside a tomato greenhouse
using a network of wireless sensors sending a signal in the 2.4 GHz ISM band. The recorded
attenuation data are compared with the values of existing empirical vegetation attenuation models,
giving considerable margin of error between them.

In that sense, to improve the predictability of the current empirical models we developed our
own empirical model using the reduction of variables by means of a regularized regression method,
confirming its usefulness because we ensure that there is no overfitting in the estimation of the
parameters. A reduction of parameters is carried out to ensure that the new model found is not
over parameterized.

Our empirical model, based on the modified exponential decay model (EDM), has the simplicity
of only taking the distance between the nodes as a variable and also includes the height of their
antennas (transmitting and receiving) unlike Weissberger’s model because, as expected, the attenuation
is impacted more by the height variable than by the distance variable.

The evaluation parameters of the empirical model yield robustness and reliability. The first
approach obtained high score for R2 and R2 Adj, 0.948 and 0.946, respectively. As well, the reduced
model got 0.942 for R2 and 0.940 for R2 Adj. Finally, the generalized error yielded 0.906 for R2 and
0.902 for R2 Adj. All these results are expected.

The methodology presented will serve to develop new models of radio wave attenuation in the
presence of other types of crops, where the attenuation function of the foliage is due to two terms,
the first being an exponential attenuation and the second depending on a compensation function related
to the environment where the signal is propagated. In future studies, it is important to investigate the
compensatory part of our proposed modified equation obtained from the modified exponential decay
model (MED) to implement new empirical models, but also to analyse how the model will behave if
the device moves according to plant growth.

The results obtained with the developed model are beneficial in precision agriculture, because it
allows to determine the most suitable locations for the sensor nodes, and to determine their necessary
number when planning their deployment so that the whole greenhouse can be monitored in terms of
its conditions of temperature, environmental humidity, soil moisture, air quality, etc.

Author Contributions: Conceptualization, M.D., J.A.H.-T., F.G.-M., and A.C.-P.; data curation, D.C.-P.,
J.A.H.-T., and F.M.A.-C.; formal analysis, D.C.-P., M.D., J.A.H.-T., F.M.A.-C., F.G.-M., J.A.M.-L., and A.C.-P.;
funding acquisition, D.C.-P. and A.C.-P.; investigation, D.C.-P., M.D., J.A.H.-T., F.M.A.-C., F.G.-M., J.A.M.-L.,



Sensors 2020, 20, 6621 16 of 18

and A.C.-P.; methodology, D.C.-P., M.D., J.A.H.-T., F.M.A.-C., J.A.M.-L., and A.C.-P.; project administration,
D.C.-P., M.D., and F.M.A.-C.; resources, D.C.-P.; software, D.C.-P., F.M.A.-C., and A.C.-P.; supervision, M.D.,
J.A.H.-T., and F.G.-M.; validation, M.D., J.A.H.-T., F.M.A.-C., J.A.M.-L., and A.C.-P.; writing—original draft, D.C.-P.,
F.M.A.-C., F.G.-M., and A.C.-P.; writing—review & editing, J.A.H.-T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Suman, S.; Kumar, S.; De, S. Path Loss Model for UAV-Assisted RFET. IEEE Commun. Lett. 2018, 22, 2048–2051.
[CrossRef]

2. Caicedo-Ortiz, J.G.; De-la-Hoz-Franco, E.; Morales Ortega, R.; Piñeres-Espitia, G.; Combita-Niño, H.;
Estévez, F.; Cama-Pinto, A. Monitoring system for agronomic variables based in WSN technology on cassava
crops. Comput. Electron. Agric. 2018, 145, 275–281. [CrossRef]

3. Zapata-Sierra, A.J.; Cama-Pinto, A.; Montoya, F.G.; Alcayde, A.; Manzano-Agugliaro, F. Wind missing data
arrangement using wavelet based techniques for getting maximum likelihood. Energy Convers. Manag. 2019,
185, 552–561. [CrossRef]

4. Cama-Pinto, D.; Chávez-Muñoz, P.D.; Solano-Escorcia, A.F.; Cama-Pinto, A. Data supporting the
reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood.
Data Brief 2020, 31, 105835. [CrossRef] [PubMed]

5. Hamasaki, T. Propagation Characteristics of A 2.4 GHz Wireless Sensor Module with A Pattern Antenna in
Forestry and Agriculture Field. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency
Integration Technology (RFIT), Nanjing, China, 28–30 August 2019; p. 8929207. [CrossRef]

6. Montoya, F.G.; Gomez, J.; Manzano-Agugliaro, F.; Cama, A.; García-Cruz, A.; De La Cruz, J.L. 6LoWSoft:
A software suite for the design of outdoor environmental measurements. J. Food Agric. Environ. 2013, 11,
2584–2586.

7. Picallo, I.; Klaina, H.; Lopez-Iturri, P.; Aguirre, E.; Celaya-Echarri, M.; Azpilicueta, L.; Eguizábal, A.;
Falcone, F.; Alejos, A. A radio channel model for D2D communications blocked by single trees in forest
environments. Sensors 2019, 19, 4606. [CrossRef]

8. Foerster, A.; Udugama, A.; Görg, C.; Kuladinithi, K.; Timm-Giel, A.; Cama-Pinto, A. A novel data
dissemination model for organic data flows. In Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland,
2015; Volume 158, pp. 239–252. [CrossRef]

9. Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a
monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its
metropolitan area. Ingeniare 2017, 25, 585–598. [CrossRef]

10. Cama-Pinto, A.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Ramírez-Cerpa, E.; Betancur-Agudelo, L.;
Gómez-Mula, F. Received strength signal intensity performance analysis in wireless sensor network using
Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef]

11. Brinkhoff, J.; Hornbuckle, J. Characterization of WiFi signal range for agricultural WSNs. In Proceedings
of the 2017 23rd Asia-Pacific Conference on Communications: Bridging the Metropolitan and the Remote,
(APCC), Perth, Australia, 11–13 December 2017; pp. 1–6. [CrossRef]

12. Montoya, F.G.; Gómez, J.; Cama, A.; Zapata-Sierra, A.; Martínez, F.; De La Cruz, J.L.; Manzano-Agugliaro, F.
A monitoring system for intensive agriculture based on mesh networks and the android system.
Comput. Electron. Agric. 2013, 99, 14–20. [CrossRef]

13. Khairunnniza-Bejo, S.; Ramli, N.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation
canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151–161. [CrossRef]

14. Saeed, N.; Alouini, M.-S.; Al-Naffouri, T.Y. Toward the Internet of Underground Things: A Systematic Survey.
IEEE Commun. Surv. Tutor. 2019, 21, 3443–3466. [CrossRef]

15. Razafimandimby, C.; Loscrí, V.; Vegni, A.M.; Neri, A. Efficient Bayesian communication approach for smart
agriculture applications. In Proceedings of the IEEE Vehicular Technology Conference, Toronto, ON, Canada,
24–27 September 2017; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/LCOMM.2018.2863389
http://dx.doi.org/10.1016/j.compag.2018.01.004
http://dx.doi.org/10.1016/j.enconman.2019.01.109
http://dx.doi.org/10.1016/j.dib.2020.105835
http://www.ncbi.nlm.nih.gov/pubmed/32637469
http://dx.doi.org/10.1109/RFIT.2019.8929207
http://dx.doi.org/10.3390/s19214606
http://dx.doi.org/10.1007/978-3-319-26925-2_18
http://dx.doi.org/10.4067/S0718-33052017000400585
http://dx.doi.org/10.1177/1550147717722691
http://dx.doi.org/10.23919/APCC.2017.8304043
http://dx.doi.org/10.1016/j.compag.2013.08.028
http://dx.doi.org/10.3923/ajsr.2018.151.161
http://dx.doi.org/10.1109/COMST.2019.2934365
http://dx.doi.org/10.1109/VTCFall.2017.8288147


Sensors 2020, 20, 6621 17 of 18

16. Srisooksai, T.; Kaemarungsi, K.; Takada, J.; Saito, K. Radio propagation measurement and characterization in
outdoor tall food grass agriculture field for wireless sensor network at 2.4 GHz band. Prog. Electromagn.
Res. C 2018, 88, 43–58. [CrossRef]

17. Cama-Pinto, A.; Gil-Montoya, F.; Gómez-López, J.; García-Cruz, A.; Manzano-Agugliaro, F.
Wireless surveillance sytem for greenhouse crops. DYNA 2014, 81, 164–170. [CrossRef]

18. Peng, Y.; Xiao, Y.; Fu, Z.; Dong, Y.; Zheng, Y.; Yan, H.; Li, X. Precision irrigation perspectives on the sustainable
water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization.
J. Clean. Prod. 2019, 230, 365–377. [CrossRef]

19. Peng, X.; Ye, T.; Wang, Y. Research and design of precision irrigation system based on artificial neural
network. In Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang,
China, 9–11 June 2018; pp. 3865–3870. [CrossRef]

20. Li, Z.; Sun, Z.; Singh, T.; Oware, E. Large range soil moisture sensing for inhomogeneous environments
using magnetic induction networks. In Proceedings of the 2019 IEEE Global Communications Conference,
(GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [CrossRef]

21. Caparrós-Martínez, J.L.; Rueda-Lópe, N.; Milán-García, J.; de Pablo Valenciano, J. Public policies for
sustainability and water security: The case of Almeria (Spain). Glob. Ecol. Conserv. 2020, 23, e01037.
[CrossRef]

22. Parlato, M.C.M.; Valenti, F.; Porto, S.M.C. Covering plastic films in greenhouses system: A GIS-based model
to improve post use suistainable management. J. Environ. Manag. 2020, 263, 110389. [CrossRef]

23. Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing water and nutrient losses from soilless
cropping in southern Europe. Agric. Water Manag. 2020, 241, 106395. [CrossRef]

24. Manríquez-Altamirano, A.; Sierra-Pérez, J.; Muñoz, P.; Gabarrell, X. Analysis of urban agriculture solid
waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse.
Sci. Total Environ. 2020, 734, 139375. [CrossRef]

25. Téllez, M.M.; Cabello, T.; Gámez, M.; Burguillo, F.J.; Rodríguez, E. Comparative study of two predatory
mites Amblyseius swirskii Athias-Henriot and Transeius montdorensis (Schicha) by predator-prey models
for improving biological control of greenhouse cucumber. Ecol. Model. 2020, 431, 109197. [CrossRef]

26. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Cama-Pinto, A. Path loss determination
using linear and cubic regression inside a classic tomato greenhouse. Int. J. Environ. Res. Public Health 2019,
16, 1744. [CrossRef]

27. Echarri, M.C.; Azpilicueta, L.; Iturri, P.L.; Aguirre, E.; Falcone, F. Performance evaluation and interference
characterization of wireless sensor networks for complex high-node density scenarios. Sensors 2019, 19, 3516.
[CrossRef] [PubMed]

28. Rahim, H.M.; Leow, C.Y.; Rahman, T.A.; Arsad, A.; Malek, M.A. Foliage attenuation measurement at
millimeter wave frequencies in tropical vegetation. In Proceedings of the 2017 IEEE 13th Malaysia
International Conference on Communications (MICC), Johor Bahru, Malaysia, 28–30 November 2017;
pp. 241–246. [CrossRef]

29. Yang, S.; Zhang, J.; Zhang, J. Impact of Foliage on Urban MmWave Wireless Propagation Channel:
A Ray-tracing Based Analysis. In Proceedings of the 2019 International Symposium on Antennas and
Propagation (ISAP), Xi’an, China, 27–30 October 2019.

30. Caicedo, J.G.; Acosta, M.; Cama-Pinto, A. WSN deployment model for measuring climate variables that
cause strong precipitation. Prospectiva 2015. [CrossRef]

31. Popov, V. Cross-polarization effect of radio waves propagation by forest vegetation in wireless communication
systems on transport. Procedia Comput. Sci. 2019, 149, 195–201. [CrossRef]

32. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Kamaruddin, R.; Ahmad, R.B.; Jaafar, M.N.; Aljunid, S.A.;
Chemat, M.H. Influences of parts of tree on propagation path losses for wsn deployment in greenhouse
environments. J. Theor. Appl. Inf. Technol. 2015, 81, 552–557.

33. Li, P.; Peng, Y.; Wang, J. Propagation characteristics of 2.4 GHz radio wave in greenhouse of green peppers.
Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2014, 45, 251–255. [CrossRef]

34. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for
Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef]

35. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless
sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef]

http://dx.doi.org/10.2528/PIERC18062903
http://dx.doi.org/10.15446/dyna.v81n184.37034
http://dx.doi.org/10.1016/j.jclepro.2019.04.347
http://dx.doi.org/10.1109/CCDC.2018.8407794
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013318
http://dx.doi.org/10.1016/j.gecco.2020.e01037
http://dx.doi.org/10.1016/j.jenvman.2020.110389
http://dx.doi.org/10.1016/j.agwat.2020.106395
http://dx.doi.org/10.1016/j.scitotenv.2020.139375
http://dx.doi.org/10.1016/j.ecolmodel.2020.109197
http://dx.doi.org/10.3390/ijerph16101744
http://dx.doi.org/10.3390/s19163516
http://www.ncbi.nlm.nih.gov/pubmed/31405238
http://dx.doi.org/10.1109/MICC.2017.8311766
http://dx.doi.org/10.15665/rp.v13i1.365
http://dx.doi.org/10.1016/j.procs.2019.01.123
http://dx.doi.org/10.6041/j.issn.1000-1298.2014.02.042
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.011
http://dx.doi.org/10.1016/j.compag.2016.07.011


Sensors 2020, 20, 6621 18 of 18

36. Montero, O.R.; Araque, J.L. Approximate modeling of Electromagnetic Propagation through Vegetation.
In Proceedings of the 2018 8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless
Communications (APWC), Cartagena des Indias, Colombia, 10–14 September 2018; pp. 928–931. [CrossRef]

37. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical
Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 6020. [CrossRef]

38. Lytaev, M.S.; Vladyko, A.G. Split-step Padé Approximations of the Helmholtz Equation for Radio
Coverage Prediction over Irregular Terrain. In Proceedings of the 2018 Advances in Wireless and Optical
Communications (RTUWO), Riga, Latvia, 15–16 November 2018; pp. 179–184. [CrossRef]

39. Militaru, L.G.; Popescu, D.; Mateescu, C.; Ichim, L. Correlation between Distance and Frequency Bands
in Hybrid Air-Ground Sensor Networks. In Proceedings of the 5th International Conference on Control,
Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018; pp. 247–252.
[CrossRef]

40. Granda, F.; Azpilicueta, L.; Vargas-Rosales, C.; Lopez-Iturri, P.; Aguirre, E.; Falcone, F. Integration of Wireless
Sensor Networks in Intelligent Transportation Systems within Smart City Context. In Proceedings of the
2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio
Science Meeting (APSURSI), Boston, MA, USA, 8–13 July 2018; pp. 375–376. [CrossRef]

41. Montero, O.; Pantoja, J.J.; Patino, M.; Pineda, E.; Martinez, D.; Angel, G.; Cruz, J.; Suarez, M.; Vega, F.
Attenuation of Radiofrequency Waves due to Vegetation in Colombia. In Proceedings of the 2018 8th IEEE-APS
Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des
Indias, Colombia, 10–14 September 2018; pp. 940–943. [CrossRef]

42. Shutimarrungson, N.; Wuttidittachotti, P. Realistic propagation effects on wireless sensor networks for
landslide management. Eurasip J. Wirel. Commun. Netw. 2019, 94. [CrossRef]

43. Zolertia. Re-Mote Datasheet. 2017. Available online: https://github.com/Zolertia/Resources/wiki/RE-Mote
(accessed on 23 August 2020).

44. Galvan-Tejada, G.M.; Aguilar-Torrentera, J. Analysis of propagation for wireless sensor networks in outdoors.
Prog. Electromagn. Res. B 2019, 83, 153–175. [CrossRef]

45. Anil, G.N. Designing an Energy Efficient Routing for Subsystems Sensors in Internet of Things Eco-System
Using Distributed Approach. Adv. Intell. Syst. Comput. 2020, 1224, 111–121. [CrossRef]

46. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex
method in low dimensions. Siam J. Optim. 1998, 9, 112–147. [CrossRef]

47. Provencher, S.W. A constrained regularization method for inverting data represented by linear algebraic or
integral equations. Comput. Phys. Commun. 1982, 27, 213–227. [CrossRef]

48. Provencher, S.W. CONTIN: A general purpose constrained regularization program for inverting noisy linear
algebraic and integral equations. Comput. Phys. Commun. 1982, 27, 229–242. [CrossRef]

49. Tikhonov, A.N. On the Solution of Ill-Posed Problems and the Method of Regularization. Dokl. Akad.
Nauk SSSR 1963, 151, 501–504. [CrossRef]

50. Ansah, M.R.; Sowah, R.A.; Melià-Seguí, J.; Katsriku, F.A.; Vilajosana, X.; Banahene, W.O. Characterising
foliage influence on LoRaWAN pathloss in a tropical vegetative environment. IET Wirel. Sens. Syst. 2020, 10,
181–197. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/APWC.2018.8503668
http://dx.doi.org/10.1051/matecconf/201815006020
http://dx.doi.org/10.1109/RTUWO.2018.8587886
http://dx.doi.org/10.1109/CoDIT.2018.8394859
http://dx.doi.org/10.1109/APUSNCURSINRSM.2018.8608746
http://dx.doi.org/10.1109/APWC.2018.8503671
http://dx.doi.org/10.1186/s13638-019-1412-6
https://github.com/Zolertia/Resources/wiki/RE-Mote
http://dx.doi.org/10.2528/PIERB18100801
http://dx.doi.org/10.1007/978-3-030-51965-0_10
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1016/0010-4655(82)90173-4
http://dx.doi.org/10.1016/0010-4655(82)90174-6
http://dx.doi.org/10.1090/S0025-5718-1974-0375817-5
http://dx.doi.org/10.1049/iet-wss.2019.0201
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State of the Art and Related Works 
	Experimental Determination of Attenuation in Vegetation 
	RSSI Measurement System 
	Deployment and Field Testing 
	Attenuation of Radio Waves in Free Space 
	Received Signal Strength in the Presence of Vegetation 
	Calculation of Attenuation by the Presence of Vegetation 

	Proposed Method for Determining the Attenuation by the Presence of Vegetation 
	Parametric Optimization of the Attenuation 
	Reduced Parametric Optimization of the Attenuation 

	Results and Analysis 
	Discussion 
	Conclusions and Future Work 
	References

