Damage Identification and Quantification in Beams Using Wigner-Ville Distribution
Abstract
:1. Introduction
2. Theoretical Background
3. Analyzed Structure and Damage Scenarios
4. Results of Damage Identification
4.1. Baseline-Free Approach
4.2. Baseline Approaches
4.2.1. Baseline Approach Based on the Transform of Differences
4.2.2. Baseline Approach Based on the Differences of the Transformed Modes
4.3. Displacements vs. Rotations
5. Results of Damage Quantification
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdel Wahab, M.M.; De Roeck, G. Damage detection in bridges using modal curvatures: Application to a real damage scenario. J. Sound Vib. 1999, 226, 217–235. [Google Scholar] [CrossRef]
- Mehnen, J.; Tinsley, L.; Roy, R. Automated in-service damage identification. CIRP Ann. 2014, 63, 33–36. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Rezaei, M.M.; Behzad, M.; Moradi, H.; Haddadpour, H. Modal-based damage identification for the nonlinear model of modern wind turbine blade. Renew. Energy 2016, 94, 391–409. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Zhang, C.-D.; Zhan, S.; Spencer, B.F. Multi-level damage identification of a bridge structure: A combined numerical and experimental investigation. Eng. Struct. 2018, 156, 53–67. [Google Scholar] [CrossRef]
- Wu, B.; Wu, G.; Yang, C.; He, Y. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving load. Mech. Syst. Signal Process. 2018, 104, 415–435. [Google Scholar] [CrossRef]
- Gong, Y.; Shao, H.; Luo, J.; Li, Z. A deep transfer learning model for inclusion defect detection of aeronautics composite materials. Compos. Struct. 2020, 252, 112681. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib. 2020, 491, 115741, in press. [Google Scholar]
- Lee, Y.-S.; Chung, M.-J. A study on crack detection using eigenfrequency test data. Comput. Struct. 2000, 77, 327–342. [Google Scholar] [CrossRef]
- Kim, J.-T.; Stubbs, N. Crack detection in beam-type structures using frequency data. J. Sound Vib. 2003, 259, 145–160. [Google Scholar] [CrossRef]
- Xiang, J.; Liang, M.; He, Y. Experimental investigation of frequency-based multi-damage detection for beams using support vector regression. Eng. Fract. Mech. 2014, 131, 257–268. [Google Scholar] [CrossRef]
- Altunışık, A.C.; Okur, F.Y.; Kahya, V. Structural identification of a cantilever beam with multiple cracks: Modeling and validation. Int. J. Mech. Sci. 2017, 130, 74–89. [Google Scholar] [CrossRef]
- Sampaio, R.P.C.; Maia, N.M.M.; Silva, J.M.M. Damage detection using the frequency-response-function curvature methods. J. Sound Vib. 1999, 226, 1029–1042. [Google Scholar] [CrossRef]
- Araújo dos Santos, J.V.; Mota Soares, C.M.; Mota Soares, C.A.; Maia, N.M.M. Structural damage identification in laminated structures using FRF data. Compos. Struct. 2005, 67, 239–249. [Google Scholar] [CrossRef]
- Dilena, M.; Limongelli, M.P.; Morassi, A. Damage localization in bridges via the FRF interpolation method. Mech. Syst. Signal Process. 2015, 52–53, 162–180. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M.; Samman, M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332. [Google Scholar] [CrossRef]
- Ratcliffe, C.P. Damage detection using a modified Laplacian operator on mode shape data. J. Sound Vib. 1997, 204, 505–517. [Google Scholar] [CrossRef]
- Messina, A.; Williams, E.J.; Contursi, T. Structural damage detection by a sensitivity and statistical-based method. J. Sound Vib. 1998, 216, 791–808. [Google Scholar] [CrossRef]
- Gomes, H.M.; Silva, N.R.S. Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method. Appl. Math. Model. 2008, 32, 2216–2232. [Google Scholar] [CrossRef]
- Lu, X.B.; Liu, J.K.; Lu, Z.R. A two-step approach for crack identification in beam. J. Sound Vib. 2013, 332, 282–293. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, W.; Zhu, H. Damage identification in beam type structures based on statistical moment using a two step method. J. Sound Vib. 2014, 333, 745–760. [Google Scholar] [CrossRef]
- Sung, S.H.; Jung, H.J.; Jung, H.Y. Damage detection for beam-like structures using the normalized curvature of a uniform load surface. J. Sound Vib. 2013, 332, 1501–1519. [Google Scholar] [CrossRef]
- Silva, T.A.N.; Maia, N.M.M. Detection and localisation of structural damage based on the error in the constitutive relations in dynamics. Appl. Math. Model. 2017, 46, 736–749. [Google Scholar] [CrossRef]
- Brasiliano, A.; Doz, G.N.; de Brito, J.L.V. Damage identification in continuous beams and frame structures using the Residual Error Method in the Movement Equation. Nucl. Eng. Des. 2004, 227, 1–17. [Google Scholar] [CrossRef]
- Lestari, W.; Qiao, P. Damage detection of fiber-reinforced polymer honeycomb sandwich beams. Compos. Struct. 2005, 67, 365–373. [Google Scholar] [CrossRef]
- Ciambella, J.; Vestroni, F. The use of modal curvatures for damage localization in beam-type structures. J. Sound Vib. 2015, 340, 126–137. [Google Scholar] [CrossRef]
- He, M.; Yang, T.; Du, Y. Nondestructive identification of composite beams damage based on the curvature mode difference. Compos. Struct. 2017, 176, 178–186. [Google Scholar] [CrossRef]
- Gorgin, R. Damage identification technique based on mode shape analysis of beam structures. Structures 2020, 27, 2300–2308. [Google Scholar] [CrossRef]
- Colombo, L.; Sbarufatti, C.; Giglio, M. Definition of a load adaptive baseline by inverse finite element method for structural damage identification. Mech. Syst. Signal Process. 2019, 120, 584–607. [Google Scholar] [CrossRef]
- Colombo, L.; Oboe, D.; Sbarufatti, C.; Cadini, F.; Russo, S.; Giglio, M. Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions. Mech. Syst. Signal Process. 2021, 148, 107163. [Google Scholar] [CrossRef]
- Gentile, A.; Messina, A. On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams. Int. J. Solids Struct. 2003, 40, 295–315. [Google Scholar] [CrossRef]
- Douka, E.; Loutridis, S.; Trochidis, A. Crack identification in beams using wavelet analysis. Int. J. Solids Struct. 2003, 40, 3557–3569. [Google Scholar] [CrossRef]
- Rucka, M.; Wilde, K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib. 2006, 297, 536–550. [Google Scholar] [CrossRef]
- Rucka, M. Damage detection in beams using wavelet transform on higher vibration modes. J. Theor. Appl. Mech. 2011, 49, 399–417. [Google Scholar]
- Han, J.-G.; Ren, W.-X.; Sun, Z.-S. Wavelet packet based damage identification of beam structures. Int. J. Solids Struct. 2005, 42, 6610–6627. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.Q.; Law, S.S. Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J. Solids Struct. 2006, 43, 2299–2317. [Google Scholar] [CrossRef] [Green Version]
- Bayissa, W.L.; Haritos, N.; Thelandersson, S. Vibration-based structural damage identification using wavelet transform. Mech. Syst. Signal Process. 2008, 22, 1194–1215. [Google Scholar] [CrossRef]
- Montanari, L.; Spagnoli, A.; Basu, B.; Broderick, B. On the effect of spatial sampling in damage detection of cracked beams by continuous wavelet transform. J. Sound Vib. 2015, 345, 233–249. [Google Scholar] [CrossRef]
- Grabowska, J.; Palacz, M.; Krawczuk, M. Damage identification by wavelet analysis. Mech. Syst. Signal Process. 2008, 22, 1623–1635. [Google Scholar] [CrossRef]
- Ren, W.-X.; Sun, Z.-S. Structural damage identification by using wavelet entropy. Eng. Struct. 2008, 30, 2840–2849. [Google Scholar] [CrossRef]
- Khorram, A.; Bakhtiari-Nejad, F.; Rezaeian, M. Comparison studies between two wavelet based crack detection methods of a beam subjected to a moving load. Int. J. Eng. Sci. 2012, 51, 204–215. [Google Scholar] [CrossRef]
- Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Chate, A. Multiple damage identification in beam structure based on wavelet transform. Procedia Eng. 2017, 172, 426–432. [Google Scholar] [CrossRef]
- Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Chate, A. Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature methods. Measurement 2017, 102, 253–270. [Google Scholar] [CrossRef]
- Qiao, P.; Cao, M. Waveform fractal dimension for mode shape-based damage identification of beam-type structures. Int. J. Solids Struct. 2008, 45, 5946–5961. [Google Scholar] [CrossRef] [Green Version]
- Radzieński, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters. Mech. Syst. Signal Process. 2011, 25, 2169–2190. [Google Scholar] [CrossRef]
- Dessi, D.; Camerlengo, G. Damage identification techniques via modal curvature analysis: Overview and comparison. Mech. Syst. Signal Process. 2015, 52–53, 181–205. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Cao, M.; Xu, W.; Ostachowicz, W.; Su, Z. Damage identification for beams in noisy conditions based on Teager energy operator-wavelet transform modal curvature. J. Sound Vib. 2014, 333, 1543–1553. [Google Scholar] [CrossRef]
- Cao, M.; Radzieński, M.; Xu, W.; Ostachowicz, W. Identification of multiple damage in beams based on robust curvature mode shapes. Mech. Syst. Signal Process. 2014, 46, 468–480. [Google Scholar] [CrossRef]
- Cao, M.-S.; Xu, W.; Ren, W.-X.; Ostachowicz, W.; Sha, G.-G.; Pan, L.-X. A concept of complex-wavelet modal curvature for detecting multiple cracks in beams under noisy conditions. Mech. Syst. Signal Process. 2016, 76–77, 555–575. [Google Scholar] [CrossRef]
- Shahsavari, V.; Chouinard, L.; Bastien, J. Wavelet-based analysis of mode shapes for statistical detection and localization of damage in beams using likelihood ratio test. Eng. Struct. 2017, 132, 494–507. [Google Scholar] [CrossRef]
- Katunin, A.; Przystałka, P. Detection and localization of delaminations in composite beams using fractional B-spline wavelets with optimized parameters. Eksploat. Niezawodn. 2014, 15, 391–399. [Google Scholar]
- Jiang, Y.; Wang, N.; Zhong, Y. A two-step damage quantitative identification method for beam structures. Measurement 2021, 168, 108434. [Google Scholar] [CrossRef]
- Xu, Y.F.; Chen, D.-M.; Zhu, W.D. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system. Mech. Syst. Signal Process. 2017, 92, 226–247. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.F.; Chen, D.-M.; Zhu, W.D. Modal parameter estimation using free response measured by a continuously scanning laser Doppler vibrometer system with application to structural damage identification. J. Sound Vib. 2020, 485, 115536. [Google Scholar] [CrossRef]
- Padovese, L.R. Hybrid time–frequency methods for non-stationary mechanical signal analysis. Mech. Syst. Signal Process. 2004, 18, 1047–1064. [Google Scholar] [CrossRef]
- Wu, J.-D.; Huang, C.-K. An engine fault diagnosis system using intake manifold pressure signal and Wigner-Ville distribution technique. Expert Syst. Appl. 2011, 38, 536–544. [Google Scholar] [CrossRef]
- Zou, J.; Chen, J. A comparative study on time–frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform. J. Sound Vib. 2004, 276, 1–11. [Google Scholar] [CrossRef]
- Kim, B.S.; Lee, S.H.; Lee, M.G.; Ni, J.; Song, J.Y.; Lee, C.W. A comparative study on damage detection in speed-up and coast-down process of grinding spindle-typed rotor-bearing system. J. Mater. Proces. Technol. 2007, 187–188, 30–36. [Google Scholar] [CrossRef]
- Climente-Alarcon, V.; Antonino-Daviu, J.A.; Riera-Guasp, M.; Puche-Panadero, R.; Escobar, L. Application of the Wigner-Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electr. Power Syst. Res. 2012, 91, 28–36. [Google Scholar] [CrossRef]
- Rajshekhar, G.; Gorthi, S.S.; Rastogi, P. Detection of defects from fringe patterns using a pseudo-Wigner-Ville distribution based method. Opt. Laser. Eng. 2012, 50, 1059–1062. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, H.; Tian, G.; Hu, G. Application of laser ultrasound imaging technology in the frequency domain based on Wigner-Ville algorithm for detecting defect. Opt. Laser Technol. 2015, 74, 72–78. [Google Scholar] [CrossRef]
- Ramapriya, D.M.; Gradoni, G.; Creagh, S.C.; Tanner, G.; Moers, E.; Arteaga, I.A. Nearfield acoustical holography—A Wigner function approach. J. Sound Vib. 2020, 486, 115593. [Google Scholar] [CrossRef]
- Gillich, G.-R.; Praisach, Z.-I. Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis. Signal Process. 2014, 96, 29–44. [Google Scholar] [CrossRef]
- Dai, D.; He, Q. Structure damage localization with ultrasonic guided waves based on a time-frequency method. Signal Process. 2014, 96, 21–28. [Google Scholar] [CrossRef]
- Spagnoli, A.; Montanari, L.; Basu, B.; Broderick, B. Nonlinear damage identification in fiber-reinforced cracked composite beams through time-space wavelet analysis. Procedia Mater. Sci. 2014, 3, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Reis Lopes, H.M.; Araújo dos Santos, J.V.; Mota Soares, C.M.; Miranda Guedes, R.J.; Pires Vaz, M.A. A numerical-experimental method for damage location based on rotation fields spatial differentiation. Comput. Struct. 2011, 89, 1754–1770. [Google Scholar] [CrossRef]
- Lopes, H.; Ribeiro, J. Structural health monitoring in composite automotive elements. In New Advances in Vehicular Technology and Automotive Engineering; Carmo, J.P., Ribeiro, J.E., Eds.; InTechOpen: London, UK, 2012; pp. 285–302. [Google Scholar]
- Gabor, D. Theory of communication. J. Inst. Electr. Eng. 1946, 93, 429–457. [Google Scholar] [CrossRef]
- Goupillaud, P.; Grossman, A.; Morlet, J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 1984, 23, 85–102. [Google Scholar] [CrossRef]
- Ville, J. Théorie et applications de la notion de signal analytique. Cables Transm. 1948, 2, 61–74. [Google Scholar]
- Cohen, L. Time-Frequency Analysis; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Boashash, B. (Ed.) Time-Frequency Signal Analysis and Processing, 2nd ed.; Elsevier: London, UK, 2016. [Google Scholar]
- Katunin, A. Application of time-frequency distributions in diagnostic signal processing problems: A case study. Diagnostyka 2016, 17, 95–103. [Google Scholar]
- Katunin, A. Localization of damage in beam-like structures applying time-frequency distributions to modal shapes of vibration. Diagnostyka 2016, 17, 53–58. [Google Scholar]
- Minnini, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J.V. Damage identification in beams using speckle shearography and an optimal spatial sampling. Mech. Syst. Signal Process. 2016, 79, 47–64. [Google Scholar] [CrossRef]
- Katunin, A.; Lopes, H.; Araújo dos Santos, J.V. Identification of multiple damage using modal rotation obtained with shearography and undecimated wavelet transform. Mech. Syst. Signal Process. 2019, 116, 725–740. [Google Scholar] [CrossRef]
- Araújo dos Santos, J.V.; Katunin, A.; Lopes, H. Vibration-based damage identification using wavelet transform and a numerical model of shearography. Int. J. Struct. Stab. Dyn. 2019, 19, 1950038. [Google Scholar] [CrossRef]
- Qian, S. Introduction to Time-Frequency and Wavelet Transforms; China Machine Press: Beijing, China, 2005. [Google Scholar]
- Montanari, L.; Basu, B.; Spagnoli, A.; Broderick, M.B. A padding method to reduce edge effects for enhanced damage identification using wavelet analysis. Mech. Syst. Signal Process. 2015, 52–53, 264–277. [Google Scholar] [CrossRef]
- Bońkowski, P.A.; Bobra, P.; Zembaty, Z.; Jędraszak, B. Application of rotation rate sensors in modal and vibration analyses of reinforced concrete beams. Sensors 2020, 20, 4711. [Google Scholar] [CrossRef]
- Mazanoglu, K. A novel methodology using simplified approaches for identification of cracks in beams. Lat. Am. J. Solids Struct. 2015, 12, 2460–2479. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Barkey, M.E. Nonlinear vibrational response of a single edge cracked beam. J. Mech. Sci. Technol. 2017, 31, 5231–5243. [Google Scholar] [CrossRef]
- Cung, L.T.; Dao, T.D.; Nguyen, P.C.; Bui, T.D. A model-based approach for estimation of the crack depth on a massive metal structure. Meas. Control 2018, 51, 182–191. [Google Scholar] [CrossRef]
- Chettah, M.; Lassoued, R. Comparative study of direct and inverse problems of cracked beams. MATEC Web Conf. 2018, 149, 02015. [Google Scholar]
Scenario | 1I | 2I | 3I | 4I | 5I | 6I | 7I | 8I |
---|---|---|---|---|---|---|---|---|
Slot 1, mm | 0.1 | 0.223 | 0.3 | 0.409 | 0.409 | 0.409 | 0.409 | 0.409 |
Slot 2, mm | 0.028 | 0.1 | 0.2 | 0.3 |
Scenario | 1Q | 2Q | 3Q | 4Q | 5Q | 6Q | 7Q |
---|---|---|---|---|---|---|---|
Depth, mm | 0.03 | 0.06 | 0.09 | 0.15 | 0.3 | 0.45 | 0.6 |
Scenario | 1Q | 2Q | 3Q | 4Q | 5Q | 6Q | 7Q | |
---|---|---|---|---|---|---|---|---|
Baseline-free approach | Mode 1 | 1.42318 | 1.44410 | 1.46614 | 1.51391 | 1.65919 | 1.85357 | 2.11880 |
Mode 2 | 0.31638 | 0.35909 | 0.40564 | 0.51167 | 0.87223 | 1.42781 | 2.28861 | |
Mode 3 | 0.01832 | 0.01945 | 0.02072 | 0.02373 | 0.03492 | 0.05389 | 0.08567 | |
Baseline 1 approach | Mode 1 | 8.328·10−4 | 0.00346 | 0.00809 | 0.02433 | 0.11953 | 0.33466 | 0.75081 |
Mode 2 | 9.535·10−4 | 0.00396 | 0.00927 | 0.02788 | 0.13711 | 0.38436 | 0.86364 | |
Mode 3 | 4.108·10−5 | 1.709·10−4 | 4.01·10−4 | 0.00121 | 0.00600 | 0.01702 | 0.03882 | |
Baseline 2 approach | Mode 1 | 0.01986 | 0.04077 | 0.06281 | 0.11059 | 0.25586 | 0.45024 | 0.71548 |
Mode 2 | 0.03917 | 0.08187 | 0.12842 | 0.23445 | 0.59502 | 1.15060 | 2.01139 | |
Mode 3 | 9.995·10−4 | 0.00213 | 0.00339 | 0.00641 | 0.01759 | 0.03656 | 0.06835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katunin, A. Damage Identification and Quantification in Beams Using Wigner-Ville Distribution. Sensors 2020, 20, 6638. https://doi.org/10.3390/s20226638
Katunin A. Damage Identification and Quantification in Beams Using Wigner-Ville Distribution. Sensors. 2020; 20(22):6638. https://doi.org/10.3390/s20226638
Chicago/Turabian StyleKatunin, Andrzej. 2020. "Damage Identification and Quantification in Beams Using Wigner-Ville Distribution" Sensors 20, no. 22: 6638. https://doi.org/10.3390/s20226638
APA StyleKatunin, A. (2020). Damage Identification and Quantification in Beams Using Wigner-Ville Distribution. Sensors, 20(22), 6638. https://doi.org/10.3390/s20226638