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Abstract: Liquid leakage from pipelines is a critical issue in large-scale chemical process plants since
it can affect the normal operation of the plant and pose unsafe and hazardous situations. Therefore,
leakage detection in the early stages can prevent serious damage. Developing a vision-based
inspection system by means of IR imaging can be a promising approach for accurate leakage detection.
IR cameras can capture the effect of leaking drops if they have higher (or lower) temperature than their
surroundings. Since the leaking drops can be observed in an IR video as a repetitive phenomenon
with specific patterns, motion pattern detection methods can be utilized for leakage detection. In this
paper, an approach based on the Kalman filter is proposed to track the motion of leaking drops and
differentiate them from noise. The motion patterns are learned from the training data and applied to
the test data to evaluate the accuracy of the method. For this purpose, a laboratory demonstrator
plant is assembled to simulate the leakages from pipelines, and to generate training and test videos.
The results show that the proposed method can detect the leaking drops by tracking them based on
obtained motion patterns. Furthermore, the possibilities and conditions for applying the proposed
method in a real industrial chemical plant are discussed at the end.

Keywords: leakage detection and localization; anomaly detection; image analysis; Kalman filter;
motion pattern detection; multi-object tracking

1. Leakage Inspection in Chemical Process Plant

Pipe networks are one of the most important elements of chemical process plants and a reliable
condition monitoring of pipelines is indispensable for safe transportation of toxic or hazardous chemical
substances. Considering the high maintenance cost [1] as well as safety demands [2], the ability to
detect and localize failure in pipelines at an early stage has become a critical issue. Based on a study [2],
the risk level of hazardous situations caused by leakage of poisoning substances from the pipelines
is unacceptable.

The conventional leakage inspection in chemical process plants relies on human operators, which
is highly dependent on the competency of the operator and the frequency of the inspection. Therefore,
an automatic leakage inspection mechanism is required to permanently monitor the plant, to detect
and localize the leaking drops [3]. One promising approach for automatic leakage monitoring is using
thermal infrared (IR) cameras [4]. There are several applications of these cameras in real industrial
environments in recent years [5]. They have several advantages, e.g., high accuracy and high speed in
recording the images.
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In the case of leakage detection, IR cameras can capture the effect of leaking drops independent of
the physical properties of the substances inside the pipelines, pipeline materials, shapes, and sizes [4].
Furthermore, the use of IR cameras can be very practical in capturing the effect of comparatively small
leaking drops, if the temperature difference between the liquid and the environment is high enough.
IR cameras usually can capture a minimum temperature difference in the range of 273.2–273.25 K [4],
and, therefore, if the temperature difference of leaking drops satisfies this minimum range, they can
be observable in thermographic images. Most chemical processes, e.g., crude oil refining, work with
liquid streams with higher temperature than the environment [6]. Therefore, the required temperature
difference for leakage detection using IR cameras is often satisfied in this domain and, thus, they
are applicable for leakage detection. Using IR cameras and taking advantage of machine vision
techniques [7,8] provide an automatic vision-based system for leakage monitoring in large-scale
chemical process plants.

The main contribution of this paper is to propose a method for liquid leakage detection in chemical
process plants Using IR cameras. The leaking liquid drops are considered as moving objects in the IR
video data, and leakage detection and localization are done by a multi-object tracking approach in the
video data. The motion pattern of a single drop is tracked using the Kalman filter in training videos
and the leaking drops are differentiated from noise if their motion patterns can be predicted by learned
Kalman filters from training data.

The rest of the paper is structured as follows: In Section 2, the requirements for an efficient
leakage detection system are discussed. Section 3 provides an overview of recent studies in leakage
detection and investigates them regarding the defined requirements. Furthermore, in this section, an
overview of recent approaches in object tracking and motion pattern detection in image and video
data is provided as well. Section 4 describes the detailed steps of the proposed method using IR video
data of a laboratory demonstrator plant. The evaluation of the proposed method and the results are
given in Section 5. In order to evaluate and compare the performance of the proposed approach,
the particle filter as a non-parametric and baseline method is also applied for leakage tracking. Finally,
the conclusion and outlook are discussed in Section 6.

2. Requirements for Efficient Leakage Detection

In order to provide an efficient and applicable leakage detection mechanism to identify leakages in
the early stage before leading to a hazardous situation, some requirements should be met. To guarantee
the safety aspects in an industrial environment and have a reliable leakage detection mechanism,
the proposed method should have a high accuracy (Requirement R1) and be robust against the noise in
the environment (Requirement R2).

In noisy environments, the detection of small drops and the differentiation from the noise is
a crucial task since the small leaks can be neglected or removed as noise in the video. Therefore,
the proposed method should be able to detect small drops and differentiate them from noise as well
(Requirement R3). In recent existing studies, there is a focus on small leakage detection. In comparison
with a large leakage area, small leakages do not make significant changes in the pressure and flow of the
liquid and, therefore, it is difficult to detect them [9–11]. In liquid leakage detection, a clear definition
of small drops is challenging and existing literature measures the size of leaking drops differently.
In general, small leaks usually refer to a situation that pressure changes related to leakage are relatively
small concerning the levels of noise and the whole pressure range [9]. However, in the recent leakage
study, different metrics are defined to measure the size of the leakage. Ostapkowicz defines the small
leakage as a certain percentage of the whole flow rate in the pipes [9], Liu et al. define the small
leakage as a certain ratio of leakage orifice to pipe diameter [11], He et al. define a certain leakage
volume and amount of liquid that exits from the orifice as a measure for small leakages [10]. In this
paper, the size of the leakage is considered in the number of pixels in the images in the vision-based
inspection method. A small leak is considered as the minimum number of pixels that form a leaking
drop in the image which make a single leaking drop observable in the infrared image. Furthermore,
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in this paper a demonstrator plant is used as a testbed, in which the entire plant is observable in each
image (see Figure 1a).Sensors 2020, 20, x FOR PEER REVIEW 3 of 23 
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Figure 1. (a) Raw infrared image of the demonstrator plant used in this experience. (b) Sample frame 
of the demonstrator plant with leakage resulting from the MP4 format in gray scale. (c) Subtracted 
frame resulting from subtracting subsequent frames. (d) Subtracted frame after background noise 
removal. After background noise removal, the noise along the pipes still remains. Leaking drops are 
marked with solid line circles. 
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Figure 1. (a) Raw infrared image of the demonstrator plant used in this experience. (b) Sample frame
of the demonstrator plant with leakage resulting from the MP4 format in gray scale. (c) Subtracted
frame resulting from subtracting subsequent frames. (d) Subtracted frame after background noise
removal. After background noise removal, the noise along the pipes still remains. Leaking drops are
marked with solid line circles.

As another important requirement for leakage detection, the detection of multiple simultaneous
leakages should be addressed as well (Requirement R4). In large-scale chemical process plants,
there are cases that multiple leakages from different positions of the plant occur simultaneously.
Detection of multiple simultaneous leakages based on existing methods requires sophisticated sensor
equipment [12] and there is still a research gap in efficient and practical leakage detection in the case of
multiple and simultaneous leakages.

Beside the leakage detection, leakage localization (Requirement R5) is another important issue in
leakage monitoring to direct to the right place of the leakage and avoid further disturbances in that
area. Finally, in order to be able to extend the method to other types of liquids and pipeline materials
and shapes, the leakage inspection method should be independent of the physical properties of the
liquid in the pipes and physical characteristics of the pipelines (Requirement R6). In the following
section, the existing methods in leakage detection are reviewed based on the defined requirements.
The summary of the requirements is provided in Table 1.



Sensors 2020, 20, 6659 4 of 22

Table 1. Summary of the requirements.

R1 R2 R3 R4 R5 R6

Summary of the
requirements

High
accuracy

Robust to
the noise

Detection of
small drops

Multiple
leakages

Leakage
localization

Independent of
physical properties

3. State of the Art

In this section, the existing literature in leakage monitoring is first reviewed. Then, the existing
approaches for motion pattern detection in image and video data are summarized.

3.1. State of the Art in Leakage Monitoring

Leakage detection methods have been extensively studied in recent years and applied in many
industrial fields, such as water distribution, gas transportation, and chemical process plants. These
methods range from manual inspection to sophisticated sensor equipment [12]. In some existing
methods, a mathematical model based on the process parameters is derived to model the flow inside
the pipeline. In these models, leakage can be detected when the physical behavior of substances
inside the pipes deviates from the model. Model-driven methods are usually based on Negative
Pressure Wave (NPW) [13], or based on analysis of amplitude attenuation of the pressure signal [11] to
detect leakage. Modeling the equilibrium point for flow and pressure and detecting the leakage by
the deviation of the model from the equilibrium point [14] is another approach for leakage detection.
However, in these methods, profound knowledge of the process is required which is difficult to obtain
in most of the cases [15], and in the case of multiple simultaneous leakages (R4), the mathematical
model is very difficult to obtain. Furthermore, the accuracy (R1) of the methods based on NPW is
highly dependent on the precision of the sensors [12]. Using Acoustic Emission (AE) sensors is another
approach to model the process parameters and to detect the leakage [16,17]. However, this method is
highly dependent on the material and the characteristics of the pipelines (R6) [12] and the accuracy of
the method decreases when the leaking drops are very small (R1, R3) [4].

In some other existing approaches, mathematical models of process parameters are jointly used
with process data to detect leakages. Optimization of the error between the measured pressure and
computed pressure by the model [18], or signal processing of the measured pressure and comparison
with the computed pressure [9,19] are common approaches in this case. However, these methods are
not accurate enough (R1) to capture all dynamics of the flow in the pipelines [11]. Some other existing
approaches in leakage detection are only based on data-driven methods using sensor data: for instance,
measuring the vibration of the pipes using fiber optic sensors and classifying it based on normal and
abnormal vibration signals [20]. However, fiber optic sensors are very sensitive to environmental noise
(R2) [12]. Using a fuzzy classifier [21,22] to classify the residuals between measured flow and predicted
flow is another approach; however, it is not applicable for small drops (R3) due to very small residuals
between measured flow and predicted flow in this case.

Among exiting approaches for leakage detection, IR cameras are used in the literature to detect
leakage in different fields, such as water distribution, gas transportation, and other process plants [4].
Nellis [23] used IR cameras for the first time to monitor water canals. Another application of IR cameras
for leakage detection can be found in the work of Adefila et al. [24]. They evaluate the sensitivity of IR
cameras in capturing temperature changes in the leaking area, but they do not apply further image
processing for automatic leakage detection. Kroll et al. [25] use two-dimensional Gaussian distribution
based on the temperature profile of a typical leak to model the leakage area in thermographic images.
A similar approach is proposed by Dai et al. [26] to detect the region of leaking gas in IR images
by the means of an improved Surendra algorithm. The methods introduced in [25,26] are also not
suitable for the detection and localization of small leaking drops (R3), since they are more applicable
for region-growing leaks such as the region of spreading liquid on a surface. Leaking drops from
pipelines can be observed as an object moving along the pipes, and therefore have a different pattern
than a region-growing leak pattern. Atef et al. [27] use IR images for an automatic leakage detection
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mechanism in water transportation pipes. For leakage localization, they propose a segmentation
method based on the region-growing method, and the region with high temperature changes is marked
as the area of the leakage. They consider the water leakage as spreading water on the surface which
can be detected by region-growing pattern detection. An oil leakage monitoring system based on IR
cameras and applied wavelet transformation on the images is proposed by Kuzmanic et al. [28] to
detect leaking oil drops. However, their method is very sensitive to noise, and in the case of small
drops of oil, it is difficult to distinguish them from noise (R2). Fahimipirehgalin et al. [29] propose a
method based on PCA (Principle Component Analysis) and KNN (K-Nearest Neighbor) classification
to classify the normal (no leakage) and abnormal (leakage) operations of a chemical plant using
thermographic images. Their method can only detect the leakage but it cannot localize the leaking
drops (R5). Furthermore, if the intensity of the noisy pixels is high, the proposed method will detect
the noisy video as an abnormal (leakage) case. The noisy pixels with high intensity will affect the
variance of the pixel values. Since the PCA method is highly dependent on the variance of the pixels’
value, in this method, noisy pixels with high intensity are detected as leakages.

3.2. State of the Art in Motion Pattern Detection

As mentioned before, in this paper, a method for leakage detection by identifying the motion
patterns of the leaking drops in IR videos is proposed. In recent years, there are several studies in the
analysis and modeling of motion patterns in image and video data. In this domain, different methods
such as Kalman filter, particle filter, region-based, and active contour-based strategies are studied
widely to track objects [30]. An adaptive motion tracking is introduced by Grimson et al., 1998 [31] in
which the location, velocity, and size of the object are used as features to track the object based on the
numeric iterative hierarchical clustering method. This method is not applicable for object tracking
in the case of unknown size, location, and velocity of an object. Hu et al. [32] propose a system for
learning motion patterns based on the hierarchical clustering of the spatial and temporal position of an
object. However, the method has high computational complexity. Basharat et al. [33] represent the
spatial state of the visual object over time using a Gaussian Mixture Model (GMM) and non-parametric
representations of track statistics and use the detected motion patterns for abnormal motion detection.
Since they consider some of the changes in the environment as part of the background, some motion
patterns might be missing in their method.

One of the common approaches for object tracking in the literature is the particle filter [34].
This method is based on a set of samples using a sequential Monte Carlo method to represent
and predict the probability density function of the system state and update it based on the latest
measurement. This approach has high computational complexity and is more suitable for tracking
nonlinear, non-Gaussian, and non-parametric motions [34]. The method requires several Monto Carlo
simulations for the estimation of the next possible position of the tracked objects. Therefore, it is
especially useful when the motion of the tracked object follows a chaotic model and several simulations
are required to detect the next position. However, a particle filter is highly sensitive to measurement
noise and requires quite a large number of initial particles to achieve a good tracking model [35].

If the state of the tracked object can be estimated by a linear model, the Kalman filter provides
the optimum solution [34] and avoids additional optimization problems. Furthermore, due to the
computational efficiency and robustness of the Kalman filter, it has been known as an efficient method
for motion pattern detection [36] and multiple object tracking [37]. There are several studies in the
literature which use a Kalman filter to track one or several objects in image or video data. Li et al. [38]
use a Kalman filter for multi-object tracking for the human body and vehicle tracking. They consider a
new Kalman filter motion tracking per each individual object and track them in a specific assigning
tracking window. A similar approach for vehicle tracking is proposed by Shantaiya et al. [39], in which
they improve the method for occlusion handling as well. In the methods proposed by Li et al. and
Shantaiya et al. [38,39], object detection is based on the center of mass of a moving object. Chavan and
R. Gengaje [40] propose an object detection method based on GMM and track the detected objects using
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a Kalman filter. However, if the number of objects is unknown, it is difficult to adapt GMM for object
detection. An object tracking method based on the Kalman filter and the Hungarian data association
algorithm is proposed in [41] for the crop detection system. In their method, first, the position of
the new crop is detected by the Kalman filter, then the Hungarian algorithm is used to assign each
detected position to a correct trajectory. However, in highly noisy environments with a lot of false
alarms, the performance of the Hungarian data association will significantly deteriorate [42].

In this paper, to detect leaking drops from the pipelines in an IR video, they are tracked as multiple
objects in the video. It is assumed that the motion of leaking drops from the pipelines can be estimated
as linear motion in the vertical direction. Based on the reviewed literature, the Kalman filter is the most
efficient method for tracking linear motions and, therefore, it can be a suitable method to track the
leaking drops as multiple objects and localize them in the video data. Furthermore, leakage should be
detected as fast as possible with low time complexity. As the Kalman filter has a low time complexity
for tracking linear motions [36], it can provide fast leakage detection as well.

4. Leakage Detection Using Kalman Filter

In this section, the steps of leakage detection based on motion pattern detection using the Kalman
filter method are discussed in detail. In order to evaluate the reliability of this method, a laboratory
demonstrator plant along with an IR camera serve as a testbed.

4.1. Data Acquisition and Pre-Processing

In the provided testbed, a laboratory demonstrator plant is assembled which includes a thermostat
with an integrated pump to circulate water through a series of pipes. Leakage can be generated
by losing some of the connectors in the pipes. An IR camera is used to capture video data of the
demonstrator plant in normal (without leakage) and anomalous operations (including leakages).
Among anomalous videos, the speed and positions of leakages are varied. All videos have a length of
one minute and the frame rate is 25 frames per second, while the resolution of the camera is 320 × 240
pixels in the MP4 format. Furthermore, in order to learn the motion patterns of the leaking drops and
evaluate the proposed method, the video data are divided into training and test videos. A thermal
image with colors of the demonstrator plant without leakage taken by IR camera is shown in Figure 1a.
This figure shows the setting of the demonstrator plant. This image is a raw image with RAVI format
without any compression effect resulted from MP4 format. The provided video data set is in MP4
format and a sample of a frame in MP4 with leakage in gray scale is presented in Figure 1b. The reason
that the Figure 2b smeared is the effect of the background noise and the additional noise resulted from
the compression in MP4 format.
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Figure 2. Object definition for leakage detection. (a) The fading problem in leakage detection. Leaking
drops lose temperature, and therefore the intensity of the pixels gets less when they reach the bottom of
the frame. (b) Zoomed area in a frame and object definition for leaking drops as a set of points with at
least h and g non-zero neighbours in vertical and horizontal directions, respectively.
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In this study, the subsequent frames are subtracted to eliminate the effect of background and keep
the effect of leaking drops (see Figure 1c). For better visualization of small leaking drops, pixels with
zero values are shown as white and the pixels with high intensity are shown as black. As seen in
Figure 1c, there is noise spreading over the subtracted frame, and the most intensive noise is along
the pipes. The noise along the pipes can highly affect the analysis and avoid detecting the leaking
drops correctly. However, the noise has a chaotic pattern in subsequent frames while the leaking drops
follow a specific motion pattern. Therefore, in order to differentiate the noise from actual leaking drops
in the images, the pattern for leaking drops should be identified. Before identifying the pattern of
the leaking drops, the level of noise in subtracted frames can be reduced by applying background
noise removal [29]. For this purpose, a threshold, Ta, can be considered and the pixels, whose absolute
values are lower than this threshold, are set to zero (see Figure 1d). The remaining noise in the frames
will be differentiated from the tracking objects by means of Kalman filter.

4.2. Typical Kalman Filter

Detection of leaking drops from different positions of the plant in a video can be modeled as
the problem of tracking multiple objects in machine vision. This requires predicting the position of
the tracking object in the following frames and matching it with the actual position of the object in
these frames. In most of the cases, in a process plant, leaking drops from the pipelines move vertically
downwards due to gravity. Therefore, they can be observed in a vertical line. This assumption cannot
be held if the leakage is at the bottom part of the plant on the ground, in which the leakage appears
as spreading liquid on the surface. In this paper, the focus is on the cases that leaking drops can
be observed as moving objects in the vertical direction. Furthermore, the leakage in a video can be
observed as a repetitive phenomenon. It starts from the starting point, it moves downwards through
the several subsequent frames and it repeats again. Therefore, the whole video can be considered
as several intervals (subsequent frames) representing a repetitive phenomenon. However, due to a
variety of random noise caused by external forces (e.g., air friction) and the errors in cameras and
video compression, the motion is not completely the same at different intervals. By considering these
properties of leaking drops in a video, the motion of the leaking drops can be modeled as a linear
stochastic system. In this system, the noise in the motion itself caused by external factors, and the
noise in the measurements caused by measurement devices can be represented as process noise and
measurement noise respectively, in the Kalman filter model [43]. For a linear motion, it has been
proved that the Kalman filter is the stable and optimum model [43,44] and it has been used in tracking
linear motions in different applications domain such as human motion tracking [45] and vehicle
tracking [46] in recent years. Therefore, if the motion of the leaking drop can be modeled by a linear
model, then the Kalman filter can provide an optimum estimation of the motion pattern (position,
velocity, and acceleration) for the leaking drop and a stable prediction of its next position.

In order to estimate the internal states of this linear stochastic system, such as the position, velocity,
and acceleration of a leaking drop, the discrete Kalman filter is utilized. It is not only computationally
efficient and robust [36], but also theoretically precise, since the optimal state can be found with the
smallest possible variance error, recursively. In comparison with other existing methods for object
tracking in a video, such as a particle filter, the Kalman filter has better performance when the motion
of the tracking object can be estimated as a linear process, and it is more robust to noise [34]. In Kalman
filter, a discrete-time process can be described by a linear stochastic differential equation as:

yk = Ayk−1 + wk−1 (1)

where yk represents the state at time stamp k, A is the state transition matrix that projects the state
at time stamp k − 1 to the state at time stamp k, and wk−1 is the Gaussian process noise with normal
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distribution p(w) ∼ N(0, Q). The actual measurement is assumed to occur at discrete time stamps and
satisfies the linear relationship with the state:

zk = Hyk + vk (2)

where zk is the actual measurement at time step k, H is the connection matrix and gives the ideal
connection between the measurement zk and the state vector yk, and vk is the Gaussian measurement
noise with normal distribution p(v) ∼ N(0, R). The discrete Kalman filter algorithm consists of two
steps: prediction and correction. In the prediction step, the algorithm obtains the prior estimation of
yk, which is denoted as ŷ−k , based on the state transition matrix as follows:

ŷ−k = Aŷk−1 + wk−1 (3)

It is assumed that an initial estimation of the process at time stamp k − 1 is known. After

prediction, by substituting Equation (3) into the error covariance matrix, P−k = E
[(

yk − ŷ−k
)(

yk − ŷ−k
)T

]
,

the prediction error can be rewritten as P−k = APk−1AT + Q.
In the correction step, the algorithm updates the estimation by incorporating the measurement

into the prior estimation to obtain and update estimation, ŷk, as follows:

ŷk = ŷ−k + Kk
(
zk −Hŷ−k

)
(4)

where Kk is known as Kalman gain. By substituting Equation (4) into P−k and minimizing it, the Kalman
gain, Kk, and updated error covariance matrix, Pk, can be calculated as:

Kk = P−k HT
(
HP−k HT + R

)−1
(5)

Pk = (1−KkH)P−k (6)

In the next subsection, the steps towards obtaining the Kalman filter model of the leaking drops
are explained.

4.3. Calculation of Measurement Points in Training Set: Segmentation, Object Definition,
and Feature Extraction

In this study, the training data are used to obtain the state of the Kalman filter. Since there are
different leakages with different velocities in training videos, different Kalman filter models can be
derived to capture all possible motion patterns of leakages in the training data. Then, the velocity
and acceleration estimated from training videos can be used to predict the positions of leakages in a
test video.

Particularly, leakages in this study move approximately vertically, whereby the x-coordinate
(horizontal position of a leakage) remains constant during the entire movement. Therefore, only the
motion along the y-axis is considered for analysis and is used as an actual measurement in the Kalman
filter algorithm. To estimate the velocity and acceleration of leakages in training videos, it is essential
to obtain the measurement as precisely as possible. In order to measure the y-coordinate of a leakage in
a training video, suitable image segmentation is required [8]. For this purpose, the subtracted frames
are divided into vertical strips with size 240× α pixels, where α is the width of each strip. Dividing the
frames to the strips limits the search area for tracking the leaking drops as objects. This division will
reduce the time complexity of the algorithm, and instead of searching for the next possible position of
the tracked object (leaking drop) in the entire frame, a limited area will be searched.

The strips including the leaking drops in a training video are processed individually to obtain
the Kalman models. This means that if in a video there are n leakage positions, n different Kalman
filters should be defined for n different leakage patterns. In other words, each leakage is considered as
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a single object tracking problem, and therefore multiple leakages are considered as multiple object
tracking. In general, if there are L different videos in training data including leakages, there are NP
= L × n different leakage patterns in the training data, and therefore NP Kalman filters are required.
Furthermore, since the leakage is a repetitive phenomenon, each training video is divided into the
intervals (including f frames), in which each interval shows a complete motion of a single drop from
the top to the bottom of the frame. This interval is referred as the tracking window to track one single
drop from a specific leakage. The value of f in each tracking window (the length of tracking window)
is different per each individual leakage in the training videos and it depends on the pattern (positions
and velocity) of the individual leakage. This number can be obtained by observing training videos per
each individual leakage and checking how many frames are required until a single drop reaches the
bottom of the frame. Therefore, different tracking windows are considered to track each individual
leakage in training videos.

In order to track leaking drops in an individual leakage during a tracking window, it is necessary
to define a single leaking drop as an object. Since the leaking drops do not have specific shape or
size, it is challenging to define them as objects in the noisy frames. There are several techniques to
define a moving object in the existing literature [30]. One possible technique to define the leaking
drops as objects is to consider a probability density appearance model for leaking drops [30]. In this
model, a probability density function such as the Gaussian model is defined to model the pixels which
form an object. However, this object definition is not suitable for leaking drops. One reason is that in
thermographic images, when the leaking drop reaches the bottom of the frame, it loses the temperature,
and therefore the intensity of the pixels which form a leaking drop is changed while the object is
moving in subsequent frames. This is referred to as the fading problem. Therefore, one single drop
does not have the same probability density appearance model in subsequent frames (see Figure 2a).
Another possible and pragmatic way to define the leaking drops as objects is to define them as a set of
neighboring points [30]. In this case, it is assumed that a leaking drop is a non-zero pixel with at least h
and g neighbors in the vertical and horizontal directions, respectively (see Figure 2b)

The steps for tracking a leaking drop are shown in Figure 3. Assume that the upper bound and
the lower bound of the strip in y-coordinate is known as

[
ylb, yub

]
, which is (1, 240) at the beginning

(the index of the pixels in the vertical direction is increasing from the top of the frame to the bottom,
see Figure 3a). In order to measure the first position of the leakage in the first frame of the tracking
window, the pixel with the highest intensity, which has at least h and g neighbors in the vertical
and horizontal directions respectively, is selected. Furthermore, as an additional feature to form and
differentiate the leaking drop as an object from the noise, the relative mass of the detected pixel and its
neighbors to the mass of the whole strip is considered as well. Assume that C is the matrix, which
shows the intensity of pixels in the strip. If in this matrix ci,j shows the intensity of a pixel in position i
and j, then the average mass in the strip, mc, can be calculated as follows:

mc =

∑yub

i=ylb

∑α
j=1 ci, j

α·(yub − ylb)
(7)

Assume that the average mass of the most intensive pixel with its neighbors is ms. If ms ≥ ξ·mc,
0.5 < ξ < 1, then the selected point can be considered as a leaking drop. This additional feature means
that the pixels which form a leaking drop as an object should have a reasonable intensity as well, which
can be compared relatively to the average intensity of pixels in the entire strip. In order to measure the
position of the leaking drop, the center of mass of the detected leaking drop as an object is considered
in the measurements as follows:

z1 = ylb +

∑h
i=1

∑g
j=1 i·si, j∑h

i=1
∑g

j=1 si, j
(8)
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where si, j is the intensity of each pixel in the vicinity of the selected pixel. In order to compute the
second measurement point of the leakage, a similar process is repeated in the next frame in the tracking
window, but with a change in the dimension of the strip (see Figure 3b). In the next frame, the next
candidate pixel to track the same leaking drop is searched below the first measured position of the
leaking drop. Therefore, the lower bound of the strip is increased to ylb

new = ylb + z1 + δ, where δ is
selected as a small number of pixels to make sure the new lower bound is lower than the first measured
position. This process is repeated until the last frame in the tracking window. In order to get the new
measurements for the same single drop, the next tracking window for the same leakage is processed as
well. An example of different measurements (position of tracking object) in four tracking windows for
a single drop in one selected video are listed in Table 2.

Table 2. An Example of Measurement Results of a Single Leaking Drop in Four Subsequent Tracking
Windows in a Training Video. Shading is to differentiate the row.

Position of the Leakage in Vertical Direction

y1 y2 y3 y4 y5 y6

Tracking Window 1 47 85 115 148 185 225
Tracking Window 2 46 88 114 150 182 221
Tracking Window 3 46 82 118 147 189 224
Tracking Window 4 47 91 120 196 - -Sensors 2020, 20, x FOR PEER REVIEW 10 of 23 
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Figure 3. (a–f) Subsequent subtracted frames during an interval. The leaking drop is tracked based on
its intesity and its neighbors along the strip. The lower boundry of the strip is increased to correctly
measure the next position of the leaking drop.The tracked leaking drop is marked with dash-line circle.

In this table, each row represents the measurement positions of a leaking drop in a tracking
window. As seen, the leakage in this strip appears repeatedly and its motion lasts for approximately 6
frames. However, note that the fourth row has significantly fewer measurements (the leaking drop is
not observed at the two last positions) and the values deviate highly from the other values in the same
column. Noisy pixels are likely mistaken as an object or the intensity of the leakage at frames four and
five is too low to be observed due to fading. To obtain an accurate mean value of the measurements,
outliers such as y4 in the fourth row should be removed in advance. The outliers are detected using
the interquartile range (IQR). Outliers are defined as values that fall outside of either 1.5× IQR below
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the first quartile or 1.5× IQR above the third quartile. In this case, IQR is applied for each column in
Table 1. Afterwards, the mean value of each column is computed and used as the measurement input
of the Kalman filter, and the variance in each column (yk) is considered as the measurement error, vk,
in this model.

4.4. Estimation of Velocity and Acceleration for Each Leakage Pattern in Training Set

The obtained measurements can be used to estimate velocity,
.
y, and acceleration,

..
y, by applying

the Kalman filter for each leakage pattern individually. Based on linear motion Equations (1) and (2)
can be rewritten as follows:

y
.
y
..
y


k

=


1 ∆t 0.5∆t2

0 1 ∆t
0 0 1

︸                  ︷︷                  ︸
A


y
.
y
..
y


k−1

+


0.5∆t2

∆t
1


k−1

σ2 (9)

zk =
[

1 0 0
]

︸         ︷︷         ︸
H


y
.
y
..
y


k−1

+ vk (10)

where ∆t is the time difference between two consequent observation of yk−1 and yk, and defined as
∆t = 1. σ2 is the variance of the process error and it is assumed as a constant. Since the measurements
are only available for positions, H is considered as

[
1 0 0

]
and measurement error, vk, is calculated

by means of variance in different measurements of yk in different tracking windows. Based on the state
Equation (9), measurement Equation (10), and Kalman Equations (4)–(6), the velocity and acceleration
of the motion can be estimated as well. Finally, the estimated model for the motion can be considered
as the motion pattern of a leaking drop as follows:

yk = yk−1 +
.
yk−1∆t +

1
2

..
yk−1∆t2 (11)

This model can be derived for any leakage in the training videos, and therefore NP individual
models the same as Equation (11) can be derived for all possible leakage patterns in the training videos.
A summary of the steps of the proposed algorithm for motion pattern detection of leaking drops is
presented in Figure 4.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 23 

windows. Based on the state Equation (9), measurement Equation (10), and Kalman Equations (4)–
(6), the velocity and acceleration of the motion can be estimated as well. Finally, the estimated model 
for the motion can be considered as the motion pattern of a leaking drop as follows: 𝑦 = 𝑦ିଵ + 𝑦ሶିଵ∆𝑡 + 12 𝑦ሷିଵ∆𝑡ଶ (11) 

This model can be derived for any leakage in the training videos, and therefore 𝑁 individual 
models the same as Equation (11) can be derived for all possible leakage patterns in the training 
videos. A summary of the steps of the proposed algorithm for motion pattern detection of leaking 
drops is presented in Figure 4. 

Start

Read the next 
training video 

Select the next leakage in the 
training video

Divide the frames to the intervals that show 
complete motion of a single drop

Track the single drop in the next interval to 
get new measurement points

Is there any
 un-processed

 interval remaining?

Remove the outliers in the measurements 
and get the average of measurements

Apply Kalman filter and get the 
motion pattern

Is there any
 new leakage

 remaining in the training 
video?

Save the detected motion 
patterns

End

No

Yes

No

Yes

 

Figure 4. Steps to obtain the measurement points of leakage positions for Kalman filter and motion 
pattern detection in training videos. 

4.5. Leakage Detection in Test Video: Possible Positions and Predicted Positions 

The obtained patterns from the training videos can be used to check for leakages in test videos. 
First of all, the test video is divided into the frames and subtracted frames are used for the analysis. 
Since the positions of the leaking drops are not known in a test video, all the strips with the width 𝛼 
should be searched to detect the possible leakage area. In each strip, the possible positions for the 
leakage are detected by a similar method introduced for the calculation of measurement points in the 
training video in subsection C. Since the length of the tracking windows is not known in test data, 
the possible positions for a leaking drop are searched frame by frame until the bottom of the strip. 
When the search reaches the bottom of the strip, one set of possible positions for a leaking drop is 
determined. Since leakage is a repeating process and can be observed again in the next frames, the 
second set of possible positions for the same leaking drop can be determined again. In order to obtain 
a set of possible positions of the leakage, the test video is parsed for 𝛾 subsequent frames. It is 
assumed that these 𝛾 frames include 𝑤 tracking windows. Each tracking window includes several 
positions of the leaking drop in some subsequent frames. Assume that the first tracking window 
includes 𝑓ଵ frames. In this case, 𝑌ଵ௦௦ = ൣ𝑦ଵ௦௦ 𝑦ଶ௦௦ ⋯ 𝑦భ௦௦൧, shows the possible 
positions of the leaking drop in the first tracking window. When the position tracking reaches the 
end of the frame, a new tracking window is started. After 𝛾 frames, several measurement vectors 
(resulted from several tracking windows) are available for the possible positions of a leaking drop as 
follows: 𝑌ଵ௦௦ = ൣ𝑦ଵ௦௦ 𝑦ଶ௦௦ ⋯ 𝑦భ௦௦൧, 𝑌ଶ௦௦ = ൣ𝑦ଵ௦௦ 𝑦ଶ௦௦ ⋯ 𝑦మ௦௦൧, 𝑌௪௦௦ = ൣ𝑦ଵ௦௦ 𝑦ଶ௦௦ ⋯ 𝑦ೢ௦௦൧. (12) 

Figure 4. Steps to obtain the measurement points of leakage positions for Kalman filter and motion
pattern detection in training videos.



Sensors 2020, 20, 6659 12 of 22

4.5. Leakage Detection in Test Video: Possible Positions and Predicted Positions

The obtained patterns from the training videos can be used to check for leakages in test videos.
First of all, the test video is divided into the frames and subtracted frames are used for the analysis.
Since the positions of the leaking drops are not known in a test video, all the strips with the width α
should be searched to detect the possible leakage area. In each strip, the possible positions for the leakage
are detected by a similar method introduced for the calculation of measurement points in the training
video in subsection C. Since the length of the tracking windows is not known in test data, the possible
positions for a leaking drop are searched frame by frame until the bottom of the strip. When the
search reaches the bottom of the strip, one set of possible positions for a leaking drop is determined.
Since leakage is a repeating process and can be observed again in the next frames, the second set
of possible positions for the same leaking drop can be determined again. In order to obtain a set
of possible positions of the leakage, the test video is parsed for γ subsequent frames. It is assumed
that these γ frames include w tracking windows. Each tracking window includes several positions
of the leaking drop in some subsequent frames. Assume that the first tracking window includes f 1

frames. In this case, Ypossible
1 =

[
ypossible

1 ypossible
2 · · · ypossible

f1

]
, shows the possible positions of the

leaking drop in the first tracking window. When the position tracking reaches the end of the frame, a
new tracking window is started. After γ frames, several measurement vectors (resulted from several
tracking windows) are available for the possible positions of a leaking drop as follows:

Ypossible
1 =

[
ypossible

1 ypossible
2 · · · ypossible

f1

]
,

Ypossible
2 =

[
ypossible

1 ypossible
2 · · · ypossible

f2

]
,

Ypossible
w =

[
ypossible

1 ypossible
2 · · · ypossible

fw

]
.

(12)

where w is the number of tracking windows within γ frames. The tracking windows [1, . . . , w]

include f1, f2, . . . , fw frames, respectively. In order to take the average over all detected possible
positions, f = max( f1, f2, . . . , fw) is selected, outliers in each column are removed, and the average
of each column is calculated for existing values in the corresponding column. The final vector of

possible positions in the selected strip is referred as Ypossible =
[

ypossible
1 ypossible

2 · · · ypossible
f

]
. After

determining the possible positions, the predicted positions are calculated by the obtained Kalman filter
models from training videos using Equation (11).

In order to assign the detected possible positions to the predicted positions, the following process
is proposed. Assume that the predicted position by one of the obtained Kalman filters is as follows:

Ypredict =
[

ypredict
1 ypredict

2 · · · ypredict
p

]
(13)

For a measurement ypossible
l and a predicted ypredict

m , if they satisfy:∣∣∣∣ypredict
m − ypossible

l

∣∣∣∣ ≤ Tmatch, l = 1, . . . , f , m = 1, . . . , p (14)

they are denoted as a matching pair of positions and excluded from the rest of comparison. In this
matching, Tmatch is a threshold to compensate for errors in measurements in the test video. After
the comparison between all the pairs, the number of matching pairs is counted and denoted as
nmatch. The matching ratio rmatch for this group of measurements and predictions is computed as
rmatch = nmatch/p. This ratio is computed for all obtained Kalman filters as well. If the highest matching
ratio after comparison with all obtained Kalman filters, rmatch

max , is more than 80%, the possible positions
in the corresponding strip in the test video are marked as leakage, otherwise the detected possible
positions are considered as noise and will be ignored. This process is done for all strips in the test video.
The proposed process is relatively robust to the occurring noise. In fact, the defined matching ratio
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(rmatch) avoids assigning noisy pixels to the predicted positions. This ratio ensures that more than 80%
of the detected possible positions are compatible with the predicted positions by a Kalman filter in the
tracking windows along each vertical stipe. In the proposed method in this paper, dividing the image
to the vertical stripes and searching for the next possible position of the leakage in the same stripe
reduces the search space. Furthermore, the matching ratio (rmatch) in the same stripe ensures robustness
to noise while other methods such as the Hungarian association algorithm are more sensitive to the
noise [42].

4.6. Leakage Detection in Test Video: Particle Filter as a Baseline Method

One of the most challenging problems in leakage detection from the pipelines is to differentiate
the actual small leaking drops from the environmental noise. In this case, a promising approach is to
show that the leaking drops have a certain motion pattern while the noise does not follow any specific
pattern. The introduced Multi Kalman filter approach tries to learn the motion pattern from training
data and tune the parameters of the motion such as velocity and accelerator. These patterns are applied
to the test data to differentiate the leakage from the noise.

In order to evaluate the performance of the proposed method, a particle filter as a non-parametric
method is applied to the leakage detection as well. Since the particle filter is an online and
non-parametric method and does not require training to learn specific parameters, it is considered
a baseline approach for evaluation of the performance of the proposed method. The comparison
between proposed method and the particle filter as a general model for motion tracking can provide
an overview of pros and cons of the proposed Multi Kalman filter model.

In the case of leakage detection, the particle filter is directly applied to the test data. For this

purpose, the possible positions measured in test data, Ypossible =
[

ypossible
1 ypossible

2 · · · ypossible
f

]
,

introduced in a previous section, are used. Since there is no pattern detection step in a particle filter,
there are not any predicted positions available from the training model in the case of a particle filter.
Therefore, a comparison between the possible positions and the predicted positions is not possible.
According to the particle filter algorithm [34], the method generates a set of samples which are called
particles and uses these particles to estimate the state of the system. The state of each particle is
updated in each iteration of the algorithm. At the end of each iteration, the particles which can estimate
the target measurement positions more precisely get higher weights than the other particles, and the
particles with higher weights are selected for resampling for the next iteration. In the case of leakage
detection, Ypossible is considered as the target measurement points in which the generated particles in
the particle filter model should estimate these measurement points.

Suppose that Mp f is the number of particles in a particle filter model and x
mp f
t is the state (position)

of the particle mp f , 1 ≤ mp f ≤ Mp f , at iteration t of the particle filter algorithm. For simplicity,
this position is considered as the vertical position of particles in the frames, since the leaking drops
move vertically. In the particle filter model, there are two main steps in each iteration of the algorithm:
the prediction step and the correction step. In the prediction step, x

mp f
t is sampled from the probability

P(x
mp f
t

∣∣∣∣xmp f

t−1 , u
mp f
t ) , where x

mp f

t−1 is state of the particle at the iteration t − 1 and u
mp f
t is the control

parameter. In this paper, it is assumed that P
(
x

mp f
t

∣∣∣∣xmp f

t−1 , u
mp f
t

)
= N

(
x

mp f

t−1 , u
mp f
t

)
, which is the normal

distribution centered in x
mp f

t−1 with variance u
mp f
t .

In the correction step, the distance between the measurement points, Ypossible, and the current state
of each particle x

mp f
t is calculated. According to this distance, each particle gets an importance weight.

This importance weight is calculated as w
mp f
t = P

(
Ypossible

∣∣∣∣xmp f
t

)
. This weight assignment means that

the estimated state x
mp f
t , which is closer to the measurement positions Ypossible gets a higher weight.

In the next iteration, the particles are resampled based on their weights and the particles with higher
importance weight are selected for the next state estimation step. For this purpose, each importance
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weight w
mp f
t should be normalized according to w̃

mp f
t =

w
mp f
t∑Mp f

i=1 wi
t

. In fact, the particle x
mp f
t is selected

with probability w̃
mp f
t for the next iteration. Finally, the selected particles with high weights are fit to

the measurement positions, and therefore they can track the leakage.
In the evaluation section, the proposed multi Kalman filter method and the particle filter both are

applied to the leakage detection problem and are compared regarding their performance.

5. Evaluation of the Proposed Method in Leakage Detection and Localization

In this section, the accuracy of the proposed method for leakage detection in test videos is
evaluated first. Then, the possibilities and limitations for extending the method for real industrial
applications are discussed.

Evaluation of the Accuracy of the Proposed Method for Leakage Detection in Test Videos

In order to evaluate the proposed method, a testbed as described in Section 4.1 is set up (see
Figure 1a). In this testbed environment, an IR camera is used to capture video data of the complete
demonstrator plant and this data is used for image analysis. The resolution of the camera is 320 × 240
and it has temperature resolution of 75 mK. The format of the video data is MP4, it is compressed
video, and data were captured for one minute during each measurement. During all measurements,
the pumped liquid inside the pipelines is water with a regulated temperature of about 40–45 ◦C, while
the testbed is operated at room temperature. At first, some video footage was taken while the plant
was in normal operation (without leakage). These videos are called “normal videos”. Then, to provide
a dataset for model training, different liquid leakages with different leakage speeds and positions in
the demonstrator plant are provided. These videos are called “anomalous videos”. In these videos,
the leakage is generated by opening the provided small valves in the demonstrator or by losing distinct
pipe connections in different positions.

The data obtained from the IR camera are divided into training and test videos. The training
data are used for model training and test data are used for evaluation of the model. The data
set includes 23 videos, eight normal videos, and fifteen anomalous videos with different leakages.
For training, nine anomalous videos are used since there are no objects to track in normal videos.
For the test data, four normal videos and six anomalous videos are used. The leakage tracking is done
by the proposed Kalman filter model as well as the particle filter as the baseline model. In order to
evaluate the effectiveness of the proposed method for leakage detection, the classification results are
investigated in terms of accuracy, misclassification, F_1 score, recall, and precision for test data. In this
evaluation, the values for defined parameters for the proposed method and also for the particle filter
are summarized in Table 3.

Table 3. Selected Values for the Defined Parameters.

Parameters Ta α h×g ξ σ2 γ Tmatch Mpf u
mpf

t

value 0.5 10 5 × 3 0.7 9 50 10 20,000 2

In the parameter setting in Table 2, Ta is the threshold for background noise. Increasing the value
of Ta, will affect the leakage pattern detection, especially at the bottom of the frames when the leaking
drops lose the temperature and have less intensity. α is the width of strips in the frames. By increasing
the value of α, one strip might include more than one leakage which will affect the detection of them,
and decreasing the α, will increase the time complexity by searching very small strips that do not
include any leakages. The selected value for α can be adjusted to the approximate size of the leaking
drop. In this paper, the minimum size of a leaking drop is considered as h× g = 5× 3 (minimum size
of the tracked object), which is the minimum number of neighboring pixels in vertical and horizontal
directions of the pixel with the highest intensity in the strip in the object definition process. Therefore,
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the selection of α = 10 can help to find larger leaking drops (approximately three times larger than the
minimum size) in the strip as well. ξ is selected as 0.7, which means the average mass of the detected
object (leaking drop) should be at least 70% of the average mass in the strip; otherwise, the leaking
drop is not properly observable. The variance of process error is considered as σ2 = 9, which means it
is assumed that the new measurement position of the object, yk, can be affected by process noise of
approximately 4 or 5 pixels based on Equation (9). The number of frames for searching leakages in test
data is considered as γ = 50, and if no leakage is detected in the first 50 frames, the search will continue
for the next 50 frames. Finally, the Tmatch for matching (assigning) the possible positions of leakage in
test data with predicted positions by Kalman filter model is considered as Tmatch = 10. Furthermore,
for the particle filter model, the initial number of particles are selected as Mp f = 20, 000 and u

mp f
t = 2.

For implementing the particle filter, the Robotic System Toolbox of Matlab 2020a (MathWorks, Munich,
Germany) is used.

To perform the evaluation, each frame in a test video is divided into blocks with a size of 40× 40
pixels (see Figures 5 and 6). For the classification purpose, the actual class of each block is marked as
normal (positive) if there is not any leaking drop in that area, and is marked as anomalous (negative)
if the block includes leakage (or is expected to include leakage due to the path of the leaking drops).
The results of the classification of normal (positive) videos and anomalous videos for the test data and
the accuracy of the classification are summarized in Tables 4 and 5 for the proposed multi Kalman filter
method and the particle filter as baseline method, respectively. Since the localization of the leakage is
important in this paper, each video is divided into regions (blocks) and the classification is applied
on each video region-wise. This classification makes sure that in one single video, all the regions
including leakage can be detected. If the normal region is detected as normal, then it is considered as
True Positive (TP). If the normal region is detected as the leakage region, then it is considered as False
Negative (FN). If the leakage region is detected as the normal region, then it is considered as False
Positive (FP). Finally, if the leakage region is detected as the normal region, it is considered as True
Negative (TN). These numbers are given in Tables 4 and 5. The numbers in these tables show how
many regions in one single video are classified correctly.
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Table 4. Actual class, predicted class, and accuracy (acc. in percentage) of the classification for test
videos, proposed multi Kalman filter. In this table, Normal represents a region (block) without leakage
(positive) and Anomalous represents a region (block) with leakage (negative). Shading is to differentiate
the rows.

Actual Class

Normal Videos

Normal Anomalous Acc. F1

Video 1 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Video 2 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Video 3 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Video 4 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Anomalous Videos

Video 5 Predicted class
Normal 40 (83%) 0 (0.0%)

100 1Anomalous 0 (0.0%) 8 (17%)

Video 6 Predicted class
Normal 32 (67%) 0 (0.0%)

100 1Anomalous 0 (0.0%) 16 (33%)

Video 7 Predicted class
Normal 40 (83%) 1 (2%)

93 0.96Anomalous 2 (4%) 5 (11%)

Video 8 Predicted class
Normal 35 (72%) 0 (6%)

93 0.95Anomalous 3 (6%) 10 (20%)

Video 9 Predicted class
Normal 32 (67%) 0 (6%)

91 0.94Anomalous 4 (8%) 12 (25%)

Video 10 Predicted class
Normal 36 (75%) 2 (4%)

91 0.94Anomalous 2 (4%) 8 (17%)
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Table 5. Actual class, predicted class and accuracy (acc. in percentage) of the classification for test
videos, proposed particle filter. In this table, Normal represents a region (block) without leakage
(positive) and Anomalous represents a region (block) with leakage (negative). Shading is to differentiate
the rows.

Actual Class

Normal Videos

Normal Anomalous Acc. F1

Video 1 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Video 2 Predicted class
Normal 48 (100%) 0 (0%)

100 1Anomalous 0 (0%) 0 (0%)

Video 3 Predicted class
Normal 48 (100%) 0 (0%)

93 0.96Anomalous 0 (0%) 0 (0%)

Video 4 Predicted class
Normal 48 (100%) 0 (0%)

93 0.96Anomalous 0 (0%) 0 (0%)

Anomalous Videos

Video 5 Predicted class
Normal 40 (93%) 0 (0.0%)

100 1Anomalous 0 (0.0%) 8 (17%)

Video 6 Predicted class
Normal 30 (62%) 2 (4%)

95 0.96Anomalous 0 (0.0%) 16 (34%)

Video 7 Predicted class
Normal 38 (80%) 4 (8%)

91 0.95Anomalous 0 (0.0%) 6 (12%)

Video 8 Predicted class
Normal 35 (73%) 0 (0.0%)

93 0.95Anomalous 3 (6%) 10 (21%)

Video 9 Predicted class
Normal 32 (67%) 4 (8%)

91 0.94Anomalous 0 (0.0%) 12 (25%)

Video 10 Predicted class
Normal 33 (69%) 1 (2%)

87 0.91Anomalous 5 (10%) 9 (19%)

In all normal videos, the Kalman filter method classifies the intensive pixels as noise correctly.
The noise arises at random and is not repeated at the positions regularly. Therefore, the measurements of
possible positions deviate from the predicted positions significantly. The deviation of the measurement
positions and the predicted positions leads to lower matching ratio. In this case, the measurement
positions are considered as noise by the algorithm and not assigned to the leakage. However, in particle
filter, since there is not any learnt pattern in advance for prediction and comparison, the noisy normal
videos are classified as anomalous videos and the noisy blocks are marked as the leakage in these
normal videos (see Videos 3 and 4 in Table 4).

In the anomalous videos, the leakage can be detected with an accuracy of more than 90% in all
areas that include leakages in both the proposed Kalman filter method and the particle filter (see
Videos 5–10 in Tables 4 and 5). However, the particle filter method detects the noise in anomalous
videos as leakage more than the Kalman filter. This situation for several subsequent frames for Video 6
are shown in Figures 5 and 6. In the proposed Kalman filter model (Figure 5), the possible positions
which are matched with Kalman filter models are marked as green circles. These green circles show
the trajectory of the leakage. The current position of the leakage in each frame is marked as red. In the
particle filter model (Figure 6), the final positions detected by the particle filter as the positions of
leakages are marked as blue circles and the red circles are the current position of the object in the
current frame. As seen in Figure 6, the particle filter algorithm tracks the noise as well as the leakages.
Therefore, the particle filter is more sensitive to noise and generates more false alarm than the proposed
multi Kalman filter method. In order to compare the sensitive to noise, the recall (sensitivity) metric,
Recall = TP

TP+FP , and precision metric, Precision = TP
TP+FP , of both methods are compared in Figure 7.

The recall metric in Figure 7a shows the sensitivity of particle filter to the noise. Even though this
method can detect the leakages, it generates more false alarms than the proposed method in this
paper. The precision metric in Figure 7b shows that in one video (Video 7), the proposed Kalman filter
classifies one leakage block as normal (see Table 3). The reason for this misclassification is that the
leakage position is at the bottom of the frame, and therefore the Kalman filter cannot track it since
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there is enough measurements along the frame. The misclassification in Video 7 in one sample frame is
shown in Figure 8.
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Figure 7. Recall (a) and Precision (b) of the proposed multi Kalman filter method and the particle filter
for the test videos.
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Figure 8. One sample frame in Video 7. (a) Particle filter can detect the one small leakage at the bottom
of the frame. However, it has more misclassifications due to tracking the noise as well. (b) Proposed
multi Kalman filter method has less misclassification and is more robust to the noise. However, it is
missing one single drop at the bottom of the frame.

In summary, all videos are classified correctly by using the proposed multi Kalman filter method,
although small areas of the trajectory are overlooked by the algorithm. Therefore, if the motion of the
leakage can be observed in the video, the method can detect it with high accuracy (R1). According
to the Table 4, in videos with leakages (anomalous videos), the regions (blocks) including leakages
and regions without leakages (normal) are detected with an accuracy of more than 90%. Furthermore,
all the regions in the normal videos without leakage are classified as normal as well with 100% accuracy.
These results show that the proposed method can differentiate the noise from actual motion (R2) as
well. The fulfillment of Requirement R2 is also shown in Figure 5 (in comparison with Figure 6).
However, in Video 7 and Video 10 in Table 4, a few normal blocks are classified as anomalous blocks
which can indicate the FN classification of these blocks. This shows that if the videos are highly noisy,
it will affect the accuracy of the proposed method and lead to some misclassification and high FN rate.

According to Figure 5, the proposed method can also detect the small drops in a noisy environment
(R3). However, from Videos 7–10 in Table 4, there are a few anomalous regions (blocks) with leakage
which are classified as normal blocks which can indicate the FP classification of these blocks. The main
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reason for such misclassification is that the leakage location is at the bottom of the frames, and therefore
it is not possible to track the trajectory of the leakage. Therefore, it is not possible to get enough
measurement positions to apply the proposed method and track the motion. This situation is shown in
Figure 8b. Even though some regions with leakage are classified as normal region, still in these videos
(Videos 7–10) the majority of the blocks including the leakages (anomalous) are classified correctly as
leakage (anomalous) which shows the high TN rate. The TN rates ( TN

number o f negative ) for Videos 7–10 are
71.5%, 77%, 75%, and 80%, respectively. The size of detected drops is 3× 5 pixels, which is relatively
small in comparison with the size of the whole frame (320× 240). Due to dividing the image into strips
and having multiple Kalman models, several simultaneous leakages in the video can be detected (R4).
By the method proposed for possible position detection and matching them with predicted positions,
the leakage is localized and its trajectory is tracked as well (R5). The only case that the trajectory cannot
be tracked is when the leakage position is at the bottom of the frame. The prior leakage detection
method proposed by the authors on the same dataset [29] can only detect the videos including leakage.
In comparison with [29], the proposed method in this paper not only can detect the videos including
leakages but also can localize and track the leakages in each video. Finally, since the physical properties
of the liquid and pipes are not considered here, it can be applicable for different types of liquid and
material of the pipelines (R6).

6. Conclusions and Outlook

In this paper, an approach based on motion pattern detection using the Kalman filter is proposed
to detect leakages from pipelines in a process plant. In order to apply leakage detection, a testbed
including a demonstrator plant and an IR camera is used. The resolution of the camera is 320 × 240
pixels and the minimum size of the leaking drop in such an image was 5 × 3 pixels. The camera is
placed in front of the plant, and in each video different leakages from different positions of the plant are
generated. The proposed method could capture the motion patterns of leaking drops in training videos
and can be further used for leakage detection and localization in test videos. The results show that the
proposed method can detect leakages in test videos with accuracy higher than 90%. Furthermore, a
particle filter is used as a baseline model to compare and evaluate the performance of the proposed
method in terms of accuracy and misclassification. The results show that the proposed method has
less sensitivity to noise and can differentiate the leakage from noise more precisely than a particle filter.
Further research on this topic will focus on extending the method to apply for a real large-scale process
plant. One way to apply the proposed method to real large-scale plants is the projection of the observed
position in the screen to the real position of the leaking drops. For this purpose, the angle of the camera
and the distance of the camera to the plant should be included in the analysis as well. This can be
achieved by calibrating the camera, using geometry and projecting techniques and estimating the
depth in images. Additionally, different patterns of leakage, such as spreading liquid on the surface as
another type of leakage, can be included in the image analysis as well. In this case, methods such as
region growing and Gaussian models for the probability density appearance model can be used to
detect this type of leakage.

Furthermore, in real application in an indoor large-scale plant, considering several fixed cameras
in front of the plant can be a way of implementing the proposed visual inspection method. Each
camera can observe the specific part of the plant (as a single plant) and the vision-based algorithm
is implemented for each specific part of the plant that is observed by a single camera. For instance,
if the plant is in dimension of 10 m × 70 m, it is not possible to film the entire plant and detect the
leakage. In such a case, the cameras should be installed close to the pipes and valves. However, if the
plant is huge, the possibility of installing a lot of cameras to observe all parts of the plant should be
investigated as well.
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