MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection
Abstract
:1. Introduction
2. Method
2.1. MW-ACGAN Network
2.1.1. GAN and ACGAN
2.1.2. MW-ACGAN
Wasserstein Distance and Gradient Penalty Terms
Multiscale Loss
2.2. Ship Detection Using Yolo v3 Model and Composite Dataset
3. Experiment
3.1. Data Set Description
3.2. Network Parameters Setting
3.3. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Maio, A.; Orlando, D.; Pallotta, L.; Clemente, C. A Multifamily GLRT for Oil Spill Detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 63–79. [Google Scholar] [CrossRef]
- Lombardo, P.; Oliver, C.J. Optimum detection and segmentation of oil slicks using polarimetric SAR data. In Proceedings of the 2000 IEEE International Conference on Radar, Alexandria, VA, USA, 12 May 2000; pp. 309–321. [Google Scholar]
- Kanjir, U.; Greidanus, H.; Oštir, K. Vessel detection and classification from spaceborne optical images: A literature survey. Remote Sens. Environ. 2018, 207, 1–26. [Google Scholar] [CrossRef]
- Lombardo, P.; Sciotti, M. Segmentation-based technique for ship detection in SAR images. IEE Proc. Radar Sonar Navig. 2001, 148, 147–159. [Google Scholar] [CrossRef]
- Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Dres, D.; Bimpas, M. Stacked autoencoders for outlier detection in over-the-horizon radar signals. Comput. Intell. Neurosci. 2017, 2017, 5891417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.-Z.; Zhang, F.-N. Ship detection for visual maritime surveillance from non-stationary platforms. Ocean Eng. 2017, 141, 53–63. [Google Scholar] [CrossRef]
- Makantasis, K.; Protopapadakis, E.; Doulamis, A.; Matsatsinis, N. Semi-supervised vision-based maritime surveillance system using fused visual attention maps. Multimed. Tools Appl. 2016, 75, 15051–15078. [Google Scholar] [CrossRef]
- Tello, M.; López-Martínez, C.; Mallorqui, J.J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci. Remote Sens. Lett. 2005, 2, 201–205. [Google Scholar] [CrossRef]
- Touzi, R.; Charbonneau, F.J.; Hawkins, R.K.; Vachon, P.W. Ship detection and characterization using polarimetric SAR. Can. J. Remote Sens. 2004, 30, 552–559. [Google Scholar] [CrossRef]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep Transfer Learning for Few-shot SAR Image Classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR dataset of ship detection for deep learning under complex backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, G.; Pan, Z.; Lei, B.; An, Q. Inshore Ship Detection in Sar Images Based on Deep Neural Networks. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 25–28. [Google Scholar]
- Chen, S.; Zhang, J.; Zhan, R. R2FA-Det: Delving into high-quality rotatable boxes for ship detection in SAR images. Remote Sens. 2020, 12, 2031. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention. IEEE Trans. Geosci. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention receptive pyramid network for ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, C.; Zhang, H.; Wang, Y.; Zhang, B. Impact Analysis of Incident Angle Factor on High-Resolution Sar Image Ship Classification Based on Deep Learning. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 1358–1361. [Google Scholar]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and excitation rank Faster R-CNN for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 751–755. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J. Learning deep ship detector in SAR images from scratch. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4021–4039. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, W.; Zhang, Z.; Yu, W. A coupled convolutional neural network for small and densely clustered ship detection in SAR images. Sci. China Inf. Sci. 2018, 62, 42301. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, Z.; Yu, W.; Truong, T.-K. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images. IEEE Access. 2018, 6, 50693–50708. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wu, F.; Zhang, B.; Tian, S. Ship classification with deep learning using COSMO-SkyMed SAR data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 558–561. [Google Scholar]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved Faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar]
- Sun, X.; Wang, Z.; Sun, Y.; Diao, W.; Zhang, Y.; Fu, K. AIR-SARShip-1.0: High-resolution SAR ship detection dataset. J. Radars 2019, 8, 852–862. [Google Scholar]
- Wei, S.; Su, H.; Ming, J.; Wang, C.; Yan, M.; Kumar, D.; Shi, J.; Zhang, X. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet. Remote Sens. 2020, 12, 167. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Hou, B.; Wu, Q.; Wen, Z.; Jiao, L. A Distribution and Structure Match Generative Adversarial Network for SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3864–3880. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 3-from Theory to Applications; Artech House Press: Norwood, MA, USA, 1986. [Google Scholar]
- Franceschetti, G.; Iodice, A.; Riccio, D.; Ruello, G. SAR raw signal simulation for urban structures. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1986–1995. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Y.-Q. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3219–3234. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Greidanus, H.; Bruzzone, L. Radar imaging simulation for urban structures. IEEE Geosci. Remote Sens. Lett. 2010, 8, 68–72. [Google Scholar] [CrossRef]
- Balz, T. Real-time SAR simulation on graphics processing units. In Proceedings of the 2006 European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006; pp. 1–4. [Google Scholar]
- Auer, S.; Bamler, R.; Reinartz, P. RaySAR-3D SAR simulator: Now open source. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6730–6733. [Google Scholar]
- Hammer, H.; Kuny, S.; Schulz, K. Amazing SAR imaging effects-explained by SAR simulation. In Proceedings of the 2014 European Conference on Synthetic Aperture Radar (EUSAR), Berlin, Germany, 3–6 June 2014; pp. 1–4. [Google Scholar]
- Niu, S.; Qiu, X.; Lei, B.; Ding, C.; Fu, K. Parameter Extraction Based on Deep Neural Network for SAR Target Simulation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4901–4914. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 4401–4410. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2020, arXiv:1809.11096. [Google Scholar]
- Bissoto, A.; Perez, F.; Valle, E.; Avila, S. Skin Lesion Synthesis with Generative Adversarial Networks. In Proceedings of the 2018 ISIC Skin Image Analysis Workshop and Challenge, Granada, Spain, 20 September 2018; pp. 294–302. [Google Scholar]
- Park, T.; Liu, M.-Y.; Wang, T.-C.; Zhu, J.-Y. Semantic Image Synthesis with Spatially-Adaptive Normalization. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 2337–2346. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the 2017 International conference on machine learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Guo, J.; Lei, B.; Ding, C.; Zhang, Y. Synthetic Aperture Radar Image Synthesis by Using Generative Adversarial Nets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1111–1115. [Google Scholar] [CrossRef]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P.; Mdakane, L.W.; Meyer, R.G.V. Synthetic aperture radar ship discrimination, generation and latent variable extraction using information maximizing generative adversarial networks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2263–2266. [Google Scholar]
- Marmanis, D.; Yao, W.; Adam, F.; Datcu, M.; Reinartz, P.; Schindler, K.; Wegner, J.D.; Stilla, U. Artificial Generation of Big Data for Improving Image Classification: A Generative Adversarial Network Approach on SAR Data. arXiv 2017, arXiv:1711.02010. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2020, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein GANs. In Proceedings of the 2017 Advances in neural information processing systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO v3: An Incremental Improvement. arXiv 2020, arXiv:1804.02767. [Google Scholar]
- Zhang, T.; Zhang, X.; Shi, J.; Wei, S. High-speed ship detection in SAR images by improved yolov3. In Proceedings of the 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 4–15 December 2019; pp. 149–152. [Google Scholar]
- Gao, F.; He, Y.; Wang, J.; Hussain, A.; Zhou, H. Anchor-free Convolutional Network with Dense Attention Feature Aggregation for Ship Detection in SAR Images. Remote Sens. 2020, 12, 2619. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X. ShipDeNet-20: An Only 20 Convolution Layers and <1-MB Lightweight SAR Ship Detector. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Chen, X.; Qi, L.; Yang, Y.; Postolache, O.; Yu, Z.; Xu, X. Port ship detection in complex environments. In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–6. [Google Scholar]
- Wang, Z.; Zhou, Y. A HED-optimized Automatic Detection and Tracking Algorithm for Marine Moving Targets based on YOLO V3. J. Phys. Conf. Ser. 2020, 1449, 012126. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Wang, C.; Wang, Y. Fine-grained ship classification based on deep residual learning for high-resolution SAR images. Remote Sens. Lett. 2019, 10, 1095–1104. [Google Scholar] [CrossRef]
- Bissoto, A.; Valle, E.; Avila, S. The Six Fronts of the Generative Adversarial Networks. arXiv 2019, arXiv:1910.13076. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 25 June–1 July 2016; pp. 770–778. [Google Scholar]
Ship | Cargo | Container | Tanker | Total |
---|---|---|---|---|
Number | 342 | 262 | 231 | 835 |
Ship Types | ||
---|---|---|
Cargo | 279 | 63 |
Container | 211 | 51 |
Tanker | 185 | 46 |
Total number | 675 | 160 |
Category | ACGAN’s Average Score | MW-ACGAN’s Average Score |
---|---|---|
Cargo | 0.91 | 0.93 |
Container | 0.78 | 0.88 |
Tanker | 0.85 | 0.92 |
Average | 0.85 | 0.91 |
Image ID | Object Confidence >= 0.3 | Object Confidence >= 0.5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Number of Ships | 835 Slices | +2000 Slices | +4000 Slices | 835 Slices | +2000 Slices | +4000 Slices | |||||||
Detec-Ted | FALSE ALARM | Detec-Ted | False Alarm | Detec-Ted | False Alarm | DETEC-TED | False Alarm | Detec-Ted | False Alarm | Detec-Ted | False Alarm | ||
a | 8 | 4 | 1 | 8 | 0 | 8 | 0 | 2 | 0 | 5 | 0 | 8 | 0 |
b | 9 | 2 | 0 | 7 | 0 | 9 | 0 | 2 | 0 | 3 | 0 | 7 | 0 |
c | 16 | 3 | 0 | 13 | 0 | 15 | 0 | 2 | 0 | 8 | 0 | 8 | 0 |
Accuracy | False Alarm Rate | Accuracy | False Alarm Rate | |
---|---|---|---|---|
835 real ship slices | 27% | 3% | 18% | 0 |
+2000 MW-ACGAN generated slices | 85% | 0 | 48% | 0 |
+4000 MW-ACGAN generated slices | 94% | 0 | 70 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Zhang, H.; Wang, C.; Wu, F.; Gu, F. MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection. Sensors 2020, 20, 6673. https://doi.org/10.3390/s20226673
Zou L, Zhang H, Wang C, Wu F, Gu F. MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection. Sensors. 2020; 20(22):6673. https://doi.org/10.3390/s20226673
Chicago/Turabian StyleZou, Lichuan, Hong Zhang, Chao Wang, Fan Wu, and Feng Gu. 2020. "MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection" Sensors 20, no. 22: 6673. https://doi.org/10.3390/s20226673
APA StyleZou, L., Zhang, H., Wang, C., Wu, F., & Gu, F. (2020). MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection. Sensors, 20(22), 6673. https://doi.org/10.3390/s20226673