ﬂ SCNSors m\py

Article
PADL: A Modeling and Deployment Language for
Advanced Analytical Services

Josu Diaz-de-Arcaya 1*(9, Ratil Mifién 1, Ana I. Torre-Bastida !, Javier Del Ser *(0 and
Aitor Almeida 3

1 TECNALIA, Basque Research & Technology Alliance (BRTA), 48160 Derio, Spain;

raul. minon@tecnalia.com (R.M.); isabel.torre@tecnalia.com (A.L.T.-B.); javier.delser@tecnalia.com (J.D.S.)

Department of Communications Engineering, Faculty of Engineering, University of the Basque

Country (UPV/EHU), 48013 Bilbao, Spain

3 DeustoTech, University of Deusto, Avenida de las Universidades 24, 48007 Bilbao, Spain;

aitor.almeida@deusto.es

Correspondence: josu.diazdearcaya@tecnalia.com

t This paper is an extended version of our paper published in Diaz-de-Arcaya, J.; Mifién, R.; Torre-Bastida,
A.L; Del Ser, J.; Almeida, A. PADL: a Language for the Operationalization of Distributed Analytical Pipelines
over Edge/Fog Computing Environments. In the Proceedings of the 5th International Conference on Smart
and Sustainable Technologies, Virtual, 23-26 September 2020.

check for
Received: 8 October 2020; Accepted: 18 November 2020; Published: 24 November 2020 updates

Abstract: In the smart city context, Big Data analytics plays an important role in processing the
data collected through IoT devices. The analysis of the information gathered by sensors favors the
generation of specific services and systems that not only improve the quality of life of the citizens,
but also optimize the city resources. However, the difficulties of implementing this entire process
in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their
geographical distribution, and the complexity of the necessary IT infrastructures. For this reason,
the main contribution of this paper is the PADL description language, which has been specifically
tailored to assist in the definition and operationalization phases of the machine learning life cycle.
It provides annotations that serve as an abstraction layer from the underlying infrastructure and
technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the
operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful
in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains
functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition,
we provide tools that facilitate its adoption in production environments. Finally, we showcase the
usefulness of the language by showing the definition of PADL-compliant analytical pipelines over
two uses cases in a smart city context (flood control and waste management), demonstrating that
its adoption is simple and beneficial for the definition of information and process flows in such
environments.

Keywords: edge computing; analytical pipelines; machine learning life cycle; artificial intelligence
description language

1. Introduction

In recent years, the concept of smart cities has emerged in response to the challenges posed by the
continuous development of urban infrastructures and the increase in population density. The main
objective of this paradigm is to enhance the management of the city by providing smarter, safer,
and more sustainable ecosystems [1]. In order to properly address these challenges, specific services

Sensors 2020, 20, 6712; d0i:10.3390/s20236712 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0900-1643
https://orcid.org/0000-0002-1260-9775
https://orcid.org/0000-0002-1585-4717
http://dx.doi.org/10.3390/s20236712
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/23/6712?type=check_update&version=2

Sensors 2020, 20, 6712 2 of 28

and systems have to be developed and provided to citizens. This leads to an improvement of their
quality of life; on the other hand, more complex ICT infrastructures become necessary.

In this context, Artificial Intelligence (Al) is a key enabling technology, since it provides
the necessary foundations for the intelligence and resilience of future cities. Furthermore, ICT
tools can deal with the diverse application domains that exist in a city. For instance, Lim et
al. [2] conducted an intensive study of the related literature to identify twelve distinct domain
categories: “smart device”, “smart environment”, “smart home”, “smart energy”, “smart building”,
“smart transportation”, “smart logistics”, “smart farming”, “smart security”, “smart health”,
“smart hospitality”, and “smart education”. These categories share the objective of building an
integrated and advanced intelligent information ecosystem to enable a framework that will boost
the socioeconomic growth of the city. However, extracting valuable information from the collected
data produced requires effective techniques, tools, and software technologies to collect, store, analyze,
and visualize large amounts of data from the city environment, its organizations, departments, agencies,
and citizens.

Some authors [3] have stated that the ideal model of a smart city is mainly based on the following
pillars, in which Al plays a key role:

1. Smart sensors enable the collection of the necessary data and transform the city into a smart city.
They maintain the city connected and the stakeholders informed, and without them, the rest of
subsystems would not be able to function correctly.

2. Smart citizens are undoubtedly the fundamental part of a smart city since their active involvement

makes it possible to perform these initiatives.
3. Smart services enable citizens and administrative entities to actively participate in the control of

the city. They are based on information technologies that help to control the different subsystems
that comprise the smart city.

In isolation, these statements present challenges that have to be addressed. Nevertheless,
the bottom line is offering a unified solution to enable a coordinated and effective flow of information
(both from sensors and citizens) and the execution of processes among the potential advanced services
offered by the city. Next, the different pillars and the problems detected by each one are introduced in
detail.

The growing adoption of sensors being deployed in cities, smart sensors, has been significantly
favored by certain paradigms such as the Internet of Things (IoT). This paradigm expands the definition
of smart cities, which become more connected. However, this innovation will largely depend on the
capabilities of the underlying technologies to leverage the information and resources supplied by
the vast volume of emerging devices. Therefore, the key to achieve intelligent cities depends on
the adequate analysis of the connected data sources. In addition, IoT devices offer the possibility of
lowering the computations down to the edge layer, that is to say, closer to where data are generated and
collected. This can be particularly attractive in contexts where the latency caused by the interactions
among the elements of the IoT environment and the cloud is too high [4] or crucial. These two
technological advances, a greater distribution of knowledge and its computation and the appearance
of more advanced sensors capable of executing certain computations reducing the latency, must be
included in the services proposed by cities. This is because in spite of presenting a great technological
complexity, they can significantly improve the final experience of citizens.

Currently, knowledge, computing, and storage infrastructures tend to be distributed. This implies
that systems, architectures, algorithms, and techniques designed for cities have to face additional
requirements when being implemented (e.g., scalability, partitioning, and distribution).

The smart city concept lies at the intersection of city administration, citizen value creation,
local business, ICT development and application, urban Big Data, economics, and sociology, citizen
engagement (smart citizens) being a key element of most definitions of smart cities. Additionally,
Information and Communication Technologies (ICTs) play a crucial role as the drivers and enablers
of citizen participation, being the necessary technologies for processing the information with Al and

Sensors 2020, 20, 6712 3 of 28

providing in this way a better service to the relevant actors. In this context, it is essential that new
services have functionalities like self-monitoring in order to guarantee their stability and correct
maintenance. On the other hand, users need to interact appropriately with the smart city ecosystem.
Therefore, it is necessary to provide services with the possibility of sending notifications, alerts,
and mechanisms for actuating on the devices.

In recent times, the continuous advances in Al have revolutionized intelligent solutions in a
plethora of domains. Specifically in the smart city domain, it becomes clear that Al must be the
cornerstone to generate new valuable services, the formerly called smart services. The main areas of
improvement in which Al affects cities are efficient resource management [5] and the improvement
of the citizens’ quality of life [6]. Regarding the data being generated by smart cities, two main
considerations must be taken into account: its massive volume, due to the growing generation of
data by citizens and devices, and its sparseness, due to the ubiquitous deployment of various types
of sensors. These characteristics require a new computing paradigm to offer location-aware and
latency-sensitive monitoring and intelligent control [7].

As aresult of this new architectural landscape, new Al approaches have arisen in recent times, with
a manifold of implications in terms of operationalization: (i) federated learning is a distributed machine
learning paradigm that enables privacy-aware learning over distributed data by using edge computing
and (ii) stream learning techniques on the edge, in which nearly real-time learning algorithms can be
deployed closer to IoT devices for lower latencies, resiliency, efficient use of bandwidth, and compliance.
This work indeed addresses this particular strand of challenges, which is collectively referred to as
“operationalization” since the proposed language does not only focus on the definition, but also
includes functionalities for the deployment and monitoring of analytical services.

However, the scientific community working in the fields of Al and Data Science (DS) has mainly
been focused on the development of new algorithms and learning techniques, in many cases under
laboratory or experimental setups. Consequently, transferring these prototypes and tests to real
production environments, as is very often demanded by smart city stakeholders, has proven to be
difficult to achieve with those approaches. This article stresses this vision, namely the way in which
smart data-based services are provisioned in real infrastructures.

In this work, a proposal to tackle this is provided from the ICT perspective: a description
language that eases the definition and operationalization of these data flows and the associated
processes. By virtue of this language, the difficulties emerging when working with complex disciplines
such as Big Data, Al, or IoT, alongside those explained above: (i) infrastructure distribution, (ii) Al
operationalization, and (iii) the large number and ubiquity of sensors, can be minimized. Summarizing,
this manuscript revolves around the different needs presented by the services and use cases that fall
within the smart city domain, such as: (a) the definition of complex and composite analytical services
through different phases in which various actors and data sources can be involved; (b) the deployment
of these services in the form of analytical pipelines on very diverse ICT infrastructures (i.e., edge,
fog, and cloud); and (c) the provision of heterogeneous actuation mechanisms, using the devices and
sensors (actors), in the form of alerts or actuators. As a consequence, the main contribution of this
article is a domain specific language coined as the Analytical Pipeline Definition and Deployment
Language (PADL), which is devoted to supporting the operationalization of analytical pipelines in
heterogeneous infrastructures by enabling the definition and provision of complex analytical services
in the domain of smart cities. In addition, data scientists do not need to fathom the infrastructure and
underlying technologies in detail; instead, they can use annotations so the models are operationalized
appropriately, in a reproducible manner. Finally, certain tools for the smooth deployment of analytical
pipelines in production environments are presented.

The proposed language is validated using two use cases in the domains of flood control and waste
management. In both cases, we exemplify how to use PADL to define the pipeline and the technical
complexities in detail, as well as the benefits it brings to the city ecosystem (ICT infrastructure and
actors). To the best of our knowledge, there are no languages or tools similar to the one proposed in

Sensors 2020, 20, 6712 4 of 28

this article. Therefore, instead of comparing its efficiency against other works, the demonstrations
focus on highlighting its usefulness.

The rest of the paper is organized as follows. Section 2 presents related work in the scope
of provisioning analytic services in smart cities and technologies related to the deployment in the
production of analytical processes. Section 3 describes the main features of the proposed language
PADL. Section 4 elaborates on the technical details of the language implementation, along with a set of
auxiliary tools that assist in its use. Section 5 presents the two use cases, which serve as the validation
of the practical utility of the PADL language. Finally, conclusions and future work are presented in
Section 6. A preliminary study, which did not include the implementation and tools provided in
this paper and was not specifically focused on the smart city domain, was presented as a conference

paper [8].
2. Deploying Data Analytics in Smart Cities

Different software solutions have been proposed in the literature to provide smarter, safer,
and more sustainable cities through new paradigms like Big Data, Al, or IoT. The main objective
of these solutions is to generate innovative services to citizens leveraging Al techniques. This section
is divided into two parts: the first introduces different research projects and initiatives that deal with
advanced analytical services that can be integrated into the city ecosystem; the second part explains
the technological background necessary to understand the difficulties of deploying these solutions and
services in production environments.

2.1. Analytic Services for Smart Cities

There has been an enormous increase in the data generated in urban ecosystems. These data
can be useful for providing high-value services in different domains by using analytical techniques.
Arasteh et al. [9] provided a review of the concept of smart cities, its motivations, and applications.
Additionally, they examined IoT technologies for smart cities and their main components and features.
Sanchez et al. [10] performed a study on the future technological challenges of smart cities, where they
pointed out the complexity of the analytical process flows needed in this context. For instance, in the
smart city domain, the work in [11] proposed a Big Data-driven analysis and a cloud-based analytic
service that utilizes urban environment indicators such as quality of life. Hossain et al. in [12] analyzed
GIS data, historical data, and other parameters such as building slope, flow accumulation, land use, soil
types, and distance from the river in order to explore individual residential and business buildings for
flooding risk in Birmingham (U.K.). Mazhar et al. [13] proposed a system with various types of sensors
ranging from smart homes, vehicular networking, and weather, water, and smart parking sensors,
surveillance objects and a four-tier architecture devoted to manage IoT sources, communications,
and data, using Big Data technologies for processing and serving data. This way, they analyzed both
in batch and real-time smart homes, smart parking, weather, pollution, and vehicle datasets aiming at
optimizing the urban planning and enhancing the future city development. These types of approaches
could be potentially simplified by using the PADL syntax, since it provides an abstraction layer over
the underlying infrastructure deployment and eases the analytical pipeline conceptualization.

Citizens are one of the pillars of smart cities, and the article presented by Aguilera et al. [14]
focused on how to accelerate the generation of citizen-centric apps that exploit urban data in different
domains. Furthermore, there are very interesting studies that try to take advantage of citizen potential
(data and participation) through applications, based on IoT or Al, and by means of initiatives like citizen
science. The study proposed by Lopez-Novoa et al. [15] is a clear example, explaining how to use an
IoT communications platform to promote a citizen science project, where individuals collect, categorize,
and sometimes analyze scientific data. Furthermore, there are studies like [16] that acknowledged the
huge amount of information citizens are exposed to and proposed a cognitive-driven, personalized
information system to minimize potential cognitive overload issues.

Sensors 2020, 20, 6712 5 of 28

In addition to the previous works that offered overhauls on the benefits of analytical data in the
context of smart cities, there are currently many works focused on solving very specific problems or
use cases in the smart city domain, like that presented by Cerchecci et al. [17] for optimizing waste
collection or that presented by Obinikpo et al. [18] for smarter health care in smart cities. Additional
literature in the field of smart city analytics was explored by Wang et al. in [19] , where a survey of deep
learning techniques in smart cities was offered. Concretely, it examined algorithms applied to video
analytics of smart cities in terms of different research categories: object detection, object tracking, face
recognition, image classification, and scene labeling. Moreover, Saggi et al. in [20] deeply explored the
concept of Big Data analytics, and a methodical analysis for the usage of Big Data analytics in various
domains including smart cities was presented. Lavalle et al. in [21] proposed a methodology based on
visualization techniques, which assist users, the goal being to improve the evidence-gathering process,
in this way contributing to the optimization of the city resources.

Urban mobility is yet another field of study in smart cities. Vergis et al. in [22] proposed a low
cost traffic monitoring system using IoT devices and fog computing and provided a system capable of
estimating traffic flow, which can be exploited by the authorities. Tekouabou et al. [23] proposed a
system that integrates IoT and set-based regression models to predict the availability of free places for
parking, hence reducing urban congestion. Hirtan et al. in [24] presented a reputation system with the
purpose of providing users with an optimal travel route, focusing at the same time on privacy and
confidentiality.

However, all these works focus on building dedicated systems over a specific infrastructure.
The approach presented in this article is positioned at a higher level of abstraction from the ICT
perspective. The main idea is to provide an analytical service definition and deployment language
in the domain of smart cities. This way, these definitions can be integrated with the existing city
ecosystem/model and ICT infrastructure. Additionally, each new advanced analytical service does not
have to be conceptualized as a particular solution or independent system, but be defined appropriately
according to the proposed language aiming at being deployed in the existing infrastructure.

2.2. Technological Background

There are two main approaches in the context of the deployment of analytical pipelines in
production environments:

e Deployment frameworks: In this field, there are novel works such as MLflow [25], which provides
tools for packaging and deploying analytical pipelines in different environments. ML.NET [26] is
another open-source framework proposed by Microsoft to deploy machine learning pipelines.
For typical operational workflow operationalization, on the other hand, Verma et al. [27] proposed
a cluster manager to execute hundreds of workloads across thousands of machines. This project
was the cornerstone for Kubernetes [28]. Another effort towards the orchestration of workloads
in distributed environments is Docker Swarm [29], which offers less features than Kubernetes,
but at a lower technological footprint. However, both Kubernetes and Docker Swarm are
general-purpose deployment frameworks and do not focus specifically on ML or AL

e Description languages: In the machine learning domain, the Predictive Model Markup Language
(PMML) [30] was one of the first solutions that tackled the problems associated with the
operationalization of Al and ML models. Subsequently, Portable Format for Analytics (PFA) [31]
was conceptualized claiming that, in contrast to PMML, it is an extensible language for the
definition of pre-processing and post-processing code, provides better features to create analytical
workflows, integrates easily with distributed and event-based data processing platforms, and is
safer to use within IT operational environments.

PADL is conceived of to coexist at the intersection of these two approaches, with a twofold goal:
first, to be specific to the analytical scope and to understand its nuances; and secondly, to be sufficiently
expressive, providing a means for the deployment of these pipelines in heterogeneous environments,

Sensors 2020, 20, 6712 6 of 28

technologies, and infrastructures. Table 1 offers a comparison of the aforementioned technologies in
conjunction with some trends found in academia, and all of them are evaluated against the criteria
explained below:

1. Deployment awareness, allowing for the definition of the restrictions an analytical pipeline needs
to adhere to when deployed in production.

2. Domain orientation, providing annotations specific for the analytical domain.

3. Interacts with technologies already existing in the infrastructure (i.e., Apache Spark [32], Apache
Flink [33]).

4. Permits the definition of the entire pipeline alongside the annotations in a single text file, so it can
be versioned and integrated into continuous integration and delivery workflows.

5. Has a low technological footprint, facilitating the use of existing infrastructures with
heterogeneous devices.

6. Enables the deployment of analytical pipelines in different layers of the architecture (i.e., edge,
fog, cloud).

Table 1. Technologies for deploying analytical pipelines in production environments.

Deployment Analytics Technology Text Based Small Technological Multilayer

Awareness Oriented Agnostic Footprint Awareness
PADL f f f f f f
PFA n f n f n n
PMML n f n f n n
MLflow s f s n f n
ML.NET s f n n n n
Kubernetes f n n f n n
Docker Swarm f n s f s n
Stratum s f s n s n
DEEP-Hybrid-DataCloud s f s n s n

f, full support; n, not supported; s, to some extent.

Both PMML and PFA excel at the formalization of analytical pipelines, but fail in terms of
integration with existing technologies. Additionally, they do not contemplate the deployment
over different computation layers, nor do they consider distributed processing. On the other
hand, Kubernetes and Docker Swarm are proficient at deploying ecosystems at multiple nodes,
but are general-purpose tools; hence, they lack the ability to understand analytical pipelines towards
distributing them properly. Finally, MLflow and ML.NET shine in training and packaging analytical
pipelines, but only cover the deployment to some extent, without being able to fully utilize the existing
technologies, nor being aware of the various computational layers (e.g., edge, fog, cloud). Among
the most recent works, we do not find similar approaches, and we can only review the Stratum and
DEEP-Hybrid-DataCloud frameworks. Stratum [34] focuses on analytics, but it is not text based
nor does it focus on multilayered deployments. The DEEP-Hybrid-DataCloud [35] framework is
very similar to Stratum, and it lacks the awareness for being deployed in multiple processing layers.
Summarizing, currently, there is no tool that can efficiently compete in all the different aspects of the
operationalization of data-based pipelines. Those of the analytical domain do not easily adopt the
benefits of distributed environments. Conversely, deployment tools lack the capacity of understanding
analytical pipelines and cannot parallelize them effectively across edge and fog environments.

3. PADL Specification

Our proposed PADL domain specific language enables the definition of analytical pipelines and
provides a specific syntax for enriching it with functional and non-functional requirements. Among
other features, PADL: (i) abstracts the user from the underlying infrastructure and technologies; (ii)
enables the deployment of the analytical pipeline in various computational layers (edge, fog, cloud);
(iii) promotes the operationalization of these pipelines over continuous integration and deployment

Sensors 2020, 20, 6712 7 of 28

environments; (iv) provides a means for specifying performance, security, and monitoring capabilities
alongside its definition; and (v) simplifies the development process, since data scientists can test the
models in different infrastructures before deploying them in production. PADL is a fresh twist on
the everything-as-code [36] trend and can be written/edited with a simple text editor in YAML [37]
format, which makes it readable by humans and machines. Documents written in PADL should be
validated against a schema that can be found in the official PADL repository [38].

3.1. Ecosystem

An architecture that reconciles various computing layers within a Big Data paradigm is proposed
by Diaz-de-Arcaya et al. in [39]. This architecture expands across the edge, fog, and cloud computing
layers and is oriented toward the deployment of analytical pipelines in heterogeneous infrastructures.
Among the assorted components that integrate this architecture, the focus of this research work is to
provide a basic building block for the implementation of the Analytic Orchestrator and Life Cycle
Management module, a domain specific languagecalled PADL. This component is able to understand
a PADL document and deploy the defined analytical pipeline in the infrastructure. PADL, on the other
hand, serves as the definition for the analytical pipeline and offers annotations to abstract the user
from the shortcomings of production deployments (e.g., infrastructure details, network constraints,
technologies).

The PADL deployment flow is schematically depicted in Figure 1. It comprises three stages:
(i) training and packaging, (ii) pipeline orchestration, and iii) deployment and monitoring. Initially,
the data scientist builds his/her analytical pipeline using his/her preferred library and packages the
different models either using a definition language (e.g., PFA [31], PMML [30]) or a machine learning
specific packaging system (e.g., MLflow Projects (https://mlflow.org/docs/latest/projects.html)).
Then, he/she creates a PADL document with the definition of the analytical pipeline and enriches it
with deployment specific annotations (i.e., how the pipeline should be deployed in the production
environment) and machine learning related annotations (i.e., which action should be taken if the
performance of a model drops below a certain threshold). The data scientist sends (1) the model
over to the architecture, where the (a) PipeHub module persists (2) both the trained models and the
PADL document in a (b) database. In addition to this, it sends (3) a message to the (c) Orchestrator
through the (d) Message Bus, which is the module in charge of the communications across the whole
architecture, and with the infrastructure (7). Then, the Orchestrator retrieves (4) a document from the
database with information related to the infrastructure in which the pipeline will be deployed. At
this point, the Orchestrator has both the PADL and the infrastructure documents and is capable of
making a decision on where each stage of the pipeline will be deployed in the production environment.
This information will be communicated (5) to the infrastructure through the (d) Message Bus . Finally,
the (e) Monitoring module ensures (6) that the pipeline is deployed and operates according to the
annotations. Should an anomaly occur, a notification is sent to the stakeholders through a predefined
channel.

https://mlflow.org/docs/latest/projects.html

Sensors 2020, 20, 6712 8 of 28

(e) Monitoring

g [3% (a) PipeHub
\1/6 0
Message

PADL \L l_>

Database :l/
5 |
c) Orchestrator
Training and Pipeline Deployment
Packaging Orchestration and Monitoring

Figure 1. Reference PADL architecture.

The devices that conform the infrastructure use an agent for communicating with the architecture.
This agent publishes the capacities of the node, so that a map of the whole infrastructure can be
built. The communication between the Orchestrator and the infrastructure is accomplished through a
publish-subscribe protocol (e.g., MQTT, Kafka, CoAP [40]). This technology has been chosen because,
especially in the lower layers (i.e., edge), a single model may be deployed in thousands of devices;
relying on having to send the same message across the network to that many devices would not be
feasible. On the contrary, a publish-subscribe protocol would only require the message to be published
in a single topic to be spread across the network.

In a smart city context, the PADL language can offer additional value since analytical pipelines
can rapidly be defined and deployed without having to modify the existing infrastructure. This
benefit enables modern cities to easily provide new services to citizens and to be able to adapt to new
contexts in an agile way. In addition, it is worth mentioning that due to the monitorization, notification,
and actuation capabilities supported by PADL, as soon as a specific event in the city is identified, a
notification mechanism can be triggered and inform the relevant stakeholders. In addition, specific
actuators can be managed by PADL in order to address the problem.

3.2. Language Details and Application Preconditions

The Analytical Pipeline Definition and Deployment Language (PADL) is a domain specific
language for the description of analytical pipelines, including a definition level intended for their
operationalization that covers the deployment characteristics necessary to implement them on
previously defined and available infrastructures. A data analytic pipeline is comprised of different
data analysis phases, materialized in a compound of command-line tools and custom scripts that
implement each of these analytic processes. For instance, an analytical pipeline could be used to detect
traffic jams and react accordingly through suitable mobility plans. In this context, PADL would act
as the framework for defining all the necessary analytical stages, from the processing of vehicle GPS
signals, to decision-making in the form of alternative routing to be used by citizens. Furthermore, it
allows the automation of all the processes involved in existing heterogeneous IT infrastructures.

PADL is a description language that assists in the deployment of analytical pipelines considering
very heterogeneous production environments. It provides a means for the definition of domain
agnostic analytical pipelines, as well as for the specification of the automation and operationalization
criteria of the implementation processes. Figure 2 showcases the definition process of analytical
pipelines via PADL and how this language enables the enrichment of the analytical models and data
processing stages, by utilizing the available features for the operationalization. At first, the data
scientist trains his/her models and packages them in a certain format. Afterwards, PADL queues
promote the definition of a flow with these models. Then, models can be be deployed in different layers
(e.g., edge, cloud) and be constrained to execute under different infrastructure conditions (e.g., two

Sensors 2020, 20, 6712 9 of 28

CPU cores, 8GB RAM), all this with no knowledge of the infrastructure by the data scientist. Finally,
watches enable the definition of actuators and notifications depending on the desired monitoring
conditions.

PADL
Model Training L - Infrastructure Abstraction Monitoring, Notification
and Packaging Pipeline Composition and Operationalization and Actuation
! E N /

§ $0 b || nil?
>

2 | Co | Ceo|Cef

email
notification 8

i
%
%

Figure 2. Definition and operation of analytical pipelines through the functionalities provided by
PADL.

PADL is intended to be a simple, normalized, and interoperable language; therefore, it has been
built as a subset of the YAML serialization language, with a relatively simple syntax and designed
to be comprehensible. The pipeline stages and their characteristics can be adequately represented as
combinations of lists, mappings, and scalar data (simple values). This way, any library or analytical
platform willing to utilize PADL will need to import and export its definitions in this simple format.

The simplest example of PADL is that composed of an empty pipeline, as can be seen in Figure 3.

version: 0
pipeline:
small:
model: null
queues:
input: null
output: null

Figure 3. Minimum example of a PADL document.

In Section 3.3, an extended syntax explanation is provided, in which each of the elements that
comprises a pipeline is explained in further detail.

Finally, it is important to establish the application conditions to be met and the main objectives
to be achieved through the use of PADL. The application conditions are only two: (i) the models of
each stage of the analytical pipeline must have been previously selected, trained, and packaged in
order to be specified in PADL; (ii) the provisioning and configuration of the infrastructure are not the
responsibility of PADL; it will only be in charge of defining the restrictions and characteristics that
should be met for the operationalization to be successful. The main PADL objectives orbit around the
following points:

1. It should aspire to become a standard for the definition of analytical process flows.
2. It should help data analysts and domain experts overcome the technological barriers that prevent

greater success in the operationalization of analytical processes.
3. Itmust be expressive enough to allow the definition of analytical pipelines as a chain of processing

stages, in which each stage represents a model and its characteristics.

Sensors 2020, 20, 6712 10 of 28

4. It must be able to be easily integrated into different analytical platforms and systems responsible
for the operation of large analytical workloads.

3.3. Language Syntax

In this subsection, a simple PADL document is used to introduce the language. Then, the complete
specification is discussed in further detail. The PADL document portrayed in Figure 4 specifies an
analytical pipeline composed of a single model that has been packaged using the Portable Format for
Analytics language.

The pipeline in Figure 4 will deploy the model decissionTree.pfa into the infrastructure. As there are
no other attributes defined for this particular pipeline, we will assume the existing elements already
fulfill the requirements for its execution. This model will monitor a text file, in this case the logs
generated by an existing web server, and will populate another text file with the results.

version: '1.0'
pipeline:
decissionTree:
model: decissionTree.pfa
queues:
input: apache2-log
output: padl-log

Figure 4. Simple example of a PADL document.

Even though this is a very simple example, it introduces the use of queues as it can be seen in
Figure 5. The purpose of this code structure is to specify the inputs and outputs for the different
models. For the sake of simplicity, reading and writing to a text file is herein considered, yet a myriad
of other different possibilities exist.

queues:
apache2-log:
format: file
path: 'file://var/log/httpd.log'
padl-log:
format: file
path: 'file://var/log/padl.log'

Figure 5. Example of the queues keyword.

The complete PADL schema can be observed in Figure 6, in which pipeline and queue structures
were discussed previously. These are the most important entities within a PADL document, which
should contain both. The former defines which data transformation processes or models need to
be run as part of the pipeline, whereas the latter defines how these models communicate with their
environment and among themselves.

Sensors 2020, 20, 6712 11 of 28

model

edge

_ node
constraints

hostname

max_execution_time

rollback

update on_failure [retry
\exit

retry

rollback on_failure

exit

max_attempts

restart_policy

condition
. key:value
environment :
pipeline modelName file
input
queues
output
simple
type service
elastic threshold
cpus

resources / memory
_ network

execution_time

inequality

watch

command
format

\ queues geueName oath

Figure 6. Tree diagram showing the PADL schema.

Another important entity is constraints which can be seen in Figure 7. This structure may have
two children: (i) the node attribute specifies variables such as the operating system, the hostname,
or the layer in which the model must run (e.g., this model must only be run in the edge layer);
and (ii) the model itself, which defines constraints specific to the machine learning domain, such as
max_execution_time, which defines the maximum time granted for a model to produce its output
(e.g., a predicted value of the target variable in predictive modeling), beyond which it will halt its
execution.

Sensors 2020, 20, 6712 12 of 28

constraints:
node:
layer: 'edge’
os: 'windows'
hostname: 'slave01.example.com’
model:
max_execution_time: 600s

Figure 7. Example of the constraints keyword.

In Figure 8 the deploy structure determines the behavior during an update (i.e., in case the
efficiency of the deployed model has decreased and needs to be redeployed) and during a rollback (i.e.,
the previous deployment is not performing as expected, so that a previous version will be deployed).
Both cases support the on_failure attribute. In the case of a rollback failure, the counteracting behavior
can be to declare the model as deprecated and stop trying to redeploy it, or to keep trying until it
succeeds. However, an update supports both retry and exit attributes in the case of failure, but it also
supports the rollback of the model to the previous version.

deploy:
update:
on_failure: exit
rollback:
on_failure: retry

Figure 8. Example of the deploy keyword.

Another children of the model structure is the environment attribute. This differs from the
previous ones in which is not constrained to a predefined set of attributes, but it can hold any
key-value pair. It is commonly used for specifying variables the model will have to use in order to
meet its purpose (e.g., specifying the full path to the version of Java the model needs). In addition to
this, instead of having to write all the variables one at a time, it accepts a file path, so all variables can
be added to that file and shared across the whole pipeline.

Labels is another keyword that behaves similarly to the environment keyword, in which it can
accept any amount of non-predefined key-value pairs. A model annotated with a label will match
the devices in the infrastructure annotated with the same label. This is useful to deploy a model in
a geographical location (e.g., legislation differs from European to American servers) or to deploy a
model in a device subject to high security policies. An example of it can be seen in figure 9.

labels:
node.security: "high"
node.zone: "europe"

Figure 9. Example of the labels keyword.

The resources attribute, which can be seen in Figure 10 is used to specify the system requirements
(e.g., CPU, memory) reserved by a certain model to fulfill its task. The Orchestrator depicted in Figure 1
can use this information to guarantee no device is planned over its resource limits.

resources:
cpus: "4"
memory: "16G"
network: "10G"

Figure 10. Example of the resources keyword.

Sensors 2020, 20, 6712 13 of 28

The type attribute, which is portrayed in Figure 11, defines how a model is deployed in production.
Marking a model as simple has no impact, and is deployed once in the infrastructure. Type service, on
the other hand, means a copy of the model will be deployed on all the devices that fulfill the specified
criteria. Lastly, the elastic type represents a model that will scale up or down based on system load
(i.e., if the model is using more than 80% of the system resources, another instance of the pipeline is
created and deployed on another device that fully complies with the specified constraints).

type: "elastic"
threshold: "0.8"

Figure 11. Example of the type keyword.

A key step when moving an analytical pipeline into a production environment is guaranteeing
everything performs under the specified quality constraints. In PADL, this is obtained with the watch
keyword as seen in Figure 12. This keyword is used to define the monitorization by utilizing either
language specific annotations such as execution_time or model specific Key Performancelndicators
(KPI), in which the predicate represents an inequality that should be bigger than or equal to zero.

watch:
execution_time: 600s
kpi_1: 0.8 - kpi_1
kpi_2: kpi_2 - 3

Figure 12. Example of the watch keyword.

If any constraint specified within the watch keyword is violated, an appropriate action may be
specified. Currently, either the notify and/or the actuate keyword may be used. The former provides a
way for sending notifications to the stakeholders when any constraint is activated. Figure 13 shows an
example of its use.

watch:
execution_time: 600s
notify:
mode: slack_1
msg: "The constraint SCONSTRAINT_ID$ has been violated"
dest: ["group1”, "group2"]

Figure 13. Example of the notify keyword.

The latter, which is showcased in Figure 14, represents an automatic action taken as a reaction to
a constraint violation, such as sending a command through the specified channel.

watch:
kpi_1: 0.8 - kpi_1
actuate:
mode: opc_ua
command: CMD_CLOSE_VALVE

Figure 14. Example of the actuate keyword.

Both actions can be specified as isolated from one another or combined so, in addition to an action
being taken, the stakeholders are notified through the proper channel.

4. PADL Implementation

As mentioned above, the deployment of artificial intelligence and machine learning models in
production environments is a cumbersome process. This becomes even more obvious in smart city

Sensors 2020, 20, 6712 14 of 28

environments due to the variety and heterogeneity of the actors involved, whereas within a single
organization, it is easier to make sure everyone is on the same page. Davenport et al. in [41] presented
a survey in which they showed that even though investment keeps increasing, advances remain slow
in this area. Due to this, this section aims to provide tools for alleviating this challenging process of
deploying analytical pipelines in production environments.

Next, in Section 4.1, three tools developed for the use of PADL in real-life scenarios are presented.
In Section 4.2, we showcase how these tools complement each other in the operationalization flow.

4.1. Tools

We provide three new tools that comply with the specifications described above. First,
in Section 4.1.1, we offer PADLIib, a library for facilitating the use of PADL in new and existing
projects. In Section 4.1.2, we showcase a Command Line utility for a better integration with continuous
integration and delivery pipelines, and in Section 4.1.3, we present Web Lint, which facilitates the use
of PADL in the early stages of the development. The source code for these tools is publicly available
on GitHub [38].

4.1.1. PADLib

As part of this research, we developed a library to facilitate the use of PADL in Al and ML projects.
It is a convenient way to start using the language without having to parse the definition from scratch
and provides additional utilities such as the validation of the incoming file and a ready-to-use pipeline
object.

The technological implementation of the specifications, described in Section 3, was developed
using Python 3. The reasoning behind this decision is that Python is a highly regarded programming
language in the fields of artificial intelligence and machine learning. This language has evolved from
mainly being used for fast prototyping to becoming a fully functional programming language with
richly featured analytic libraries (e.g., Numpy ([42]), pandas ([43]), scikit-learn ([44])) that are very
appropriate for mature projects.

On the other hand, a PADL document is defined using the YAML format, which is very appropriate
for being written and modified manually. However, to the best of the authors” knowledge, there is no
mature tool for defining the schema of a YAML document. Given that it is straightforward to transform
a JSON document to YAML and vice versa, we utilize JSON Schema [45], which is a vocabulary that
allows the annotation and validation of documents, as the preferred method for the description and
validation of PADL documents. A snippet of this schema is shown in Figure 15.

"resources": {

"id": "#/definitions/resources",

"type": "object",

"properties": {
"cpus": {"type": "string"},
"gpus": {"type": "string"},
"memory": {"type": "string"},
"disk": {"type": "string"},

"network": {"type": "string"}

}
}

Figure 15. A snippet of the JSON schema definition for PADL language.

The entire definition of PADL using JSON Schema can be found in the GitHub repository
mentioned above. For the sake of brevity, only a snippet corresponding to the resources keyword is
showcased in the listing above. This keyword has been defined as an object, which is comprised of

Sensors 2020, 20, 6712 15 of 28

four different entities; all of them are of the string type. A violation of any of these definitions would
flag an error while trying to validate the document.

This schema combined with Python was used for developing the PADL API. The purpose of
this APl is to facilitate the use of PADL documents within artificial intelligence and machine learning
projects. It provides a validation mechanism for PADL documents and parses the document into a
dictionary to be easily consumed afterwards. In order to validate this development, two utilities are
released within the same repository, as can be seen in Figure 16. A (1) web application (Web Lint),
and a (3) Command Line utility (CLI).

(1) Web Lint (2) PADLIib (3) CLI
—Q O
N N
Paste Input
Document Document
NG N
) [validate] Validate [validate] Execute
Submit > Document < Command
N2
Show Valid [document valid] [document valid] Print Valid [zero]
in screen <> > | Document |
Show Invalid [document invalid] ‘ ‘ [document invalid] Print Error
in screen in Screen
[non-zero] \,
— O

Figure 16. Activity diagram showcasing the interaction of the PADL library with the Web Lint and
Command Line (CLI) utilities.

Any project willing to integrate PADL into their workflow should follow a similar flow as these
two tools. The invocation of the validation method becomes in (2) PADLib validating the document
against the schema. Next, the library specifies whether the document is valid, indicating the cause of
the error if the validation fails. If it succeeds, it will also return a dictionary with the entities of the
document.

4.1.2. Command Line Utility

The first tool developed using PADLib is the Command Line utility. The reasoning behind this
tool is maintaining the validity of PADL documents across the development flow. This tool takes a
PADL document as an input, and it validates that the file is properly formatted against the schema
provided within the API. It solves two different use cases: (i) a user can utilize this tool to manually
validate documents, and to this end, it shows an appropriate message if the document is correct or the
corresponding error message if the document contains any error; (ii) the application returns a zero or a
non-zero value whether the input document is valid or not; hence, it is an appropriate tool to validate
analytical pipelines in continuous integration and deployment environments. This paves the way to a
more successful deployment of analytical models in production environments.

To this end, we offer a Docker image ([46]) with a stable version of the PADL Command Line utility
to be used in continuous integration and deployment environments. In addition, the following snippet
is a working example of the tool in conjunction with Travis-CI ([47]), which is a continuous integration
and deployment server, and can be integrated into existing CI/CDpipelines. A complete example of

Sensors 2020, 20, 6712 16 of 28

the integration of this tool into a CI/CD pipeline can be found on GitHub, and the corresponding
example can be found in Figure 17.

validation:
image: josuarcaya/padl-cli
stage: validation
script:
- /usr/bin/padl input_file
Figure 17. A snippet of the JSON schema defined for PADL language.

4.1.3. Web Lint

The second tool that uses the API is a web application specifically developed for manually
validating PADL documents. We identified the popularity of similar tools such as JSONlint ([48])
and YAMLIint ([49]). These tools have been widely adopted by developers in order to highlight the
problems in JSON and YAML documents and lessen the complexity of using these interchangeable
formats; hence, we provide an analog utility for PADL. The motivation behind such a tool is that data
scientists can be certain that the pipeline they are tailoring is mature enough to be submitted to the
development or production environment.

Similarly to the Command Line tool, we provide a Docker image ([50]) that can be used locally.
This image can be deployed with the command in Figure 18.

$ docker run -p 5000:5000 josuarcaya/padl-web
Figure 18. Docker command needed for running padl web.
Figure 19 showcases a screenshot of this tool being used for validating a document. Web Lint is
designed to be straightforward to use. A wide text area preceded by a brief introduction in which the
pipeline can be introduced covers the screen. Pressing the Go button will yield whether the pipeline is

correct with the Valid! message highlighted in green or presents some issues that must be corrected
with the Not Valid message highlighted in red.

PADL Lint

PADL Lint Is a validator for PADL, a language for deploying analytical pipelines in edge and fog environments.

version: "1.8"
pipeline:
uniffenverter:
model: i werter.pfa
args:
ufrom: "miles"
uto: "km"
constraints:
node:
layer: "edge”
queues:
input: "disk"
output: "edge2fog"

randomEorest
model: randomforest.pfa
args:
argl: 2
arg2: 3
resources:
LRug: "1"
apus: "2" i

Go

Figure 19. Screenshot of the Web Lint utility validating a PADL document.

Sensors 2020, 20, 6712 17 of 28

4.2. Delivery Flow

The purpose of the above implementations is to provide a means for the deployment in production
environments of artificial intelligence and machine learning pipelines.

Figure 20 showcases the interaction of these tools in the analytic development and deployment
life cycle. In (a), the data scientist develops and tests the pipeline locally and integrates PADLibin
order to utilize PADL within the pipeline. Given that the definition of this pipeline is made by
hand, he/she can make use of (1) Web Lint to make sure the definition is correct, without having to
interact with any programming language at all. Then, the (2) CLI becomes particularly useful in (b),
the continuous integration and delivery pipeline, in order to provide a very high confidence in the
production deployment. Finally, in (c), the data scientists can deploy their pipelines in the production
environment with the extra confidence of having followed the described process.

Cloud
mwes \\ O>0-0 Y, A
o 2 oLl T
(a) Data Preparation (b) CI/CD
and Model Fitting Pipeline

Figure 20. Integration of the PADLib, CLI, and Web Lint tools in the delivery flow.

(c) Operationalization

5. PADL in Cities

In this section, we utilize two use cases from independent authors as validation for the
specifications defined in Section 3 and the implementation presented in Section 4. In Section 5.2, PADL
serves as the definition and deployment language for the analytical pipeline, and it complements the
serious game proposed by the authors. Next, in Section 5.3, PADL complements the operationalization
scenario the authors propose.

5.1. Use Case Selection

In this subsection, we explain the reasoning behind choosing the two use cases detailed as
application examples, and we introduce the evaluation context, specifying features such as the volume
of data handled or the complexity of the information flows. For the selection of these use cases, we
leveraged the V’s of Big Data (i.e., Volume, Variety, Velocity).

e Flood control: In this use case, the data are produced by many sensors (high volume) measuring
the water level spread across the course of the river, all of them gathering data at very low
frequencies (high velocity)

e Waste management: This use case includes multiple and heterogeneous sources of information,
so the variety and volume of datasets can be the main problems. Among the types of data
to consider, we find: city maps, geo-referenced traffic information, garbage collection points,
and other aspects such as the social or consumption information of the inhabitants, which can be
used for the processes of information crossing, optimization, or calculations of indicators.

Both use cases require complex analytical processes to transform the aforementioned data into
information that can assist in the decision-making, which makes them ideal for the validation of PADL.

5.2. Flood Control Use Case

In [51], the authors proposed the use of a serious game in the smart city of Prague, which will serve
as training for the different stakeholders to react appropriately to a variety of disasters. The scenario is
one in which the river Vltava, the longest river in the Czech Republic, overtops its channel’s bank and

Sensors 2020, 20, 6712 18 of 28

floods Prague, leading to property damage and victims. This is because the level of this river depends
heavily on rainfalls taking place during its course. In order to foresee this, the level of the river is
measured in different places. In addition, weather forecasting is leveraged, but due to the inherent
complexity of doing so over an extended period of time, it becomes very difficult to accurately predict
when and where flooding will take place.

This scenario is an example in which PADL excels, as it complements perfectly the serious game
detailed in the paper. PADL can be used to describe the monitoring and analytical needs of the use
case, and the serious game described will train the relevant stakeholders based on this information.
Figure 21 showcases an overview of the relevant elements that can be managed and the relationship
with the stakeholders. Firstly, the water level of the river Vltava is measured by (1) cyber physical
systems installed over its course; should this level rise beyond a predefined threshold, a notification is
sent to the relevant stakeholders. The actors in this scenario are defined in the serious game as follows:
(i) the management team is composed of the (a) mayor and the heads of the (b) police department
and (c) fire brigade; (ii) the observers, which in this scenario are (1) cyber physical systems reporting
the water level in different locations, areas getting flooded, and the integrity of the removable dams;
and the (iii) first responders, (b) police officers and (c) firefighters and medical staff. Secondly, if an
incident (e.g., flooding) preventing a road from being used takes place, notifications are sent to the
(c) fire and (b) police departments. Both of these processes operate right where data are generated,
in the edge layer, and regardless of their outcome, the information is transmitted to the upper layer.
The cloud layer, on the other hand, hosts three different processes. The first one, the (3) weather data
service consumes data from a weather forecasting service and its duty is twofold: (i) it transforms the
collected information to be better consumed by another process, and (ii) it raises alarms based on the
incoming data. The second process, the (4) weather prediction serviceis fed by the (3) weather data
service and the data collected in the edge layer. Within this process, a Bayesian model processes the
data, and elaborated predictions and higher level notifications are produced. Such predictions can
lead to the evacuation of certain areas, road closures, or event cancellations; and certain measures to
prevent this such as the building of removable dams can be done in advance. Finally, the (5) traffic
routing service collects information and notifications from the Weather Prediction Serviceand explores
different scenarios, in which certain roads are not to be used due to the danger of flooding. This
last process is utilized by rescue services (e.g., (b) fire department, (c) police department) in order to
execute the assistance in the fastest and most efficient manner. Figure 22 offers the above scenario
corresponding to the edge and fog layers in detail using the PADL language.

Sensors 2020, 20, 6712 19 of 28

@(1) (3)6

Praha Weather
Data
@(1) Service
ne @ >0 =
FogHub Weather Traffic
i Predition Routing
iver . .
Viteor &} (1) Service Service
0B 00 O
1
()@} Mayor Police Fire

Brigade

Figure 21. Flood control use case.

Sensors 2020, 20, 6712

version: "1.0"
pipeline:
waterlLevel:
model: waterLevel.pfa
type: "service"
constraints:
node:
layer: "edgeRiver"
watch:
waterLevel: 0.7 - waterLevel
notify:
mode: "email"
msg: "The water level has raised over the threshold"
queues:
input: "waterSensor"
output: "fog"

roadState:
model: road.pfa
type: "service"
constraints:
node:
layer: "edgeRoad"
watch:
roadState: roadState - 1
notify:
mode: ["'sms", "email"]
msg: "Please review road ID"
queues:
input: "roadSensor"
output: "fog"

fogNotifier:
model: fogNotifier.pfa
type: "simple"
constraints:
node:
layer: "fog"
watch:
water_fog_1: 0.7 - water_fog_1
water_fog_2: 0.8 - water_fog_2
road_fog: 10 - road_fog
notify:
mode: ["email"]
msg: "Kpi SWATCH_ID$ violated"

20 of 28

Figure 22. PADL document definition for the flood control usecase for the edge and fog computing

layers.

The waterlevel.pfa and road.pfa operate in the (1) edge devices and utilize the watch entity to monitor
and report the data coming from the sensors in case an issue is detected. fogNotifier.pfa operates in (2)
and is able to aggregate data coming from the edge devices and evaluate more complex scenarios, such
as an increase in the water flow at different points of the river. In Figure 23 the entities corresponding

to the cloud layer are defined.

Sensors 2020, 20, 6712 21 of 28

weatherProcessor:
model: weatherProcessor.pfa
constraints:
node:
layer: "cloud"

weatherForecasting:
model: weatherForecasting.pfa
constraints:
node:
layer: "cloud"
watch:
weather_kpi_1: 0 - weather_kpi_1
weather_kpi_2: 0 - weather_kpi_2
weather_kpi_3: 0 - weather_kpi_3
notify:
mode: "email"
msg: Kpi SWATCH_ID$ violated"

trafficPrediction:

model: trafficPrediction.pfa
constraints:

node:

layer: "cloud"

resources:

cpus: "32"

memory: "256G"

Figure 23. PADL document definition for the flood control usecase for the cloud computing layer.

(8) weatherProcessor.pfa is in charge of collecting weather information from an external data
source and sending it to the (4) weatherForecasting.pfa model. In this service, these data are combined
with those generated in the edge and are able to make predictions, so in the case of hazardous
scenarios, the relevant stakeholders can be notified (e.g., (b) police department, (c) fire brigade). Finally,
trafficPrediction.pfa is able to produce alternative routes for the (b) police and (c) fire brigade, so in the
event of a catastrophe, they can operate faster and more efficiently.

5.3. Waste Management Use Case

Medvedev et al. in [52] leveraged Internet of Things components such as (i) RFIDs, (ii) sensors,
(iii) cameras, and (iv) actuators in a smart city environment and proposed an advanced Decision
Support System (DSS) for efficient waste collection. This system incorporates data generated by the
smart devices and truck drivers in real time and feeds them into a dynamic route optimization
model. This model minimizes the inefficiencies of waste collection within the smart city, by
providing alternative routes for the drivers, taking into account traffic jams, inaccessible waste bins,
and problematic areas. The final goal of the waste collection system is to improve the quality of service
for the citizens of the smart city.

The stakeholders in this scenario greatly benefit from the monitoring and notification capabilities
of PADL: the (a) city and district administrations are interested in controlling the process of waste
collection, both from a quality of service point of view (e.g., all collected cleanly and in time) and from
a legal point of view (e.g., collect evidence for solving disputes); (b) waste truck organizations and
drivers want to monitor and track the fleet and find alternative routes based on data gathered from IoT
devices; (c) recycling factories want to send notifications based on their current needs and limitations;
and the (d) police department needs to be notified if improper parking is preventing the waste bins

Sensors 2020, 20, 6712 22 of 28

from being emptied. These entities alongside the services interacting in this use case are represented in
Figure 24. Some of these entities feed information into the system. First, Entity (b), waste trucks, use
IoT devices to report their location, capacity, and fuel in real time. In addition, the drivers are able to
report problems (e.g., improper parking) while collecting waste bins. This information includes video
and audio information that the drivers are able to publish by using mobile devices. Entity (c), recycling
factories, are able to publish their capacities or needs based on their storing or recycling desires. Finally,
the ecosystem is able to process information coming from surveillance cameras and traffic and weather
services. Three services comprise the analytical engine of the ecosystem. Firstly, the (1) Tracking
and Monitoring Service is able to provide metrics and notifications to the (b) Waste Organizations so
they are provided with advanced insights about their business to make better decisions. Secondly,
the (2) Surveillance Service uses the data generated by surveillance cameras and notifies (a) the City
Administration, (b) truck drivers, and (d) police department in case a problem (e.g., traffic jam, blocked
road) is detected. Finally, the (3) Traffic Routing Service is able to provide dynamic routes to the (b)
truck driversbased on all the information being fed into the system, hence minimizing the time needed
to perform their duties. There are two entities (the (a) City and District Administrations and the (d)
Police Department) that do not feed the ecosystem with data, but only interact with it by receiving
notifications. The former wants to be up to date on the whereabouts of the waste recollection process
in the city, whereas the latter will react to the notifications being sent by the (2) Surveillance Service
and the (b) Truck Drivers in order to solve the issues being raised. Figure 25 defines the above scenario
using the PADL language.

(b)

@ (2) Surveillance

(1) Tracking & Service

Monitoring
(@<= Service ()
= i
@ (4) Traffic
- Routing
(3) Surveillance Service
Cameras

(d)

Figure 24. Waste management use case.

Sensors 2020, 20, 6712 23 of 28

version: "1.0"
pipeline:
cameras:
model: cameras.pfa
type: "service"
constraints:

node:
layer: "edgeCamera"
watch:
roadBlocked: 0.1 - roadBlocked
notify:
mode: "sms"

msg: "Road $ROADID$ may have been blocked"
dest: ["police", "council"]
queues:
input: "camera"

output: "surveillance"

trackmon:
model: trackmon.pfa
constraints:

node:
layer: "cloud"
watch:
fuel: fuel - 0.1
capacity: 0.9 - capacity
notify:
mode: "sms"

msg: "Notification $NOTID$ has been raised: MSG"
dest: ["police", "council"]
queues:
input: "trucks"
output: "traffrout”

surveillance:

model: surveillance.pfa
constraints:

node:

layer: "cloud"

queues:

input: "surveillance"

output: "surveillance_b"

routing:
model: routing.pfa
constraints:

node:
layer: "cloud"
watch:
queues:
input: ["trafrout”, "surveillance_b"]
output: "db"

Figure 25. PADL document for the waste management use case.

The cameras.pfa model operates in the edge devices and is able to notify about blocked roads to the
(d) Police Department. In addition, it serves as an input for the (2) Surveillance Service, which performs
a wider aggregation of the data generated by the cameras and is able to provide high level notifications
such as traffic jams. The (1) trackmon.pfa model operates in the cloud and is able to get the information
produced by track drivers. Finally, the (3) routing.pfa provides alternative routes based on all the data
and insights generated by the ecosystem.

Sensors 2020, 20, 6712 24 of 28

5.4. Use Case Discussion

This section presents the main results of the process to validate the proposed language by means
of both use cases: flood control and waste management. In order to trust in the feasibility of the
PADL language to represent analytic pipelines and to operate them in production environments, it
is relevant to compare the definition file provided in each use case against the criteria in Table 2.
In addition, a seventh criterion is analyzed regarding the complexity of the use case measured through
its characterization through the three V’s of Big Data: volume, variety, and velocity. This analysis can
be seen in the following table, where the use cases are presented as the rows and the evaluation criteria
form the columns.

Table 2. PADL functionalities following the criteria of Table 1 validated against the use cases.

Deployment Analytics Technology Text Based Small Technological Multilayer Big Data
Awareness Oriented Agnostic Footprint Awareness Dimensions
Flood control y y y y y y Volume and
Velocity
Waste Management y y - y y y Volume and
Variety

y, validated; n, not validated.

Based on our observations of these use cases’ PADL implementations, we were are encouraged by
the results, showing that:

1. Criterion (1): We provide domain specific annotations for the appropriate deployment of each
step in the pipeline, such as the measurement of the water level in the river in the first use case
and being able to detect blocked roads with the cameras in the second one.

2. Criterion (2): Monitorization, notification, and actuation are handled separately for each model.
For example, in the second use case, the language enables the chance of monitoring and reporting
a low fuel level for the waste truck.

3. Criterion (3): We utilize technologies and smart devices already present in the use cases, like the
ones used for reporting the river level in the water flood use case.

4. Criterion (4): All the definitions of the use case analytic pipelines are covered in the PADL snippets
in Sections 5.2 and 5.3.

5. Criterion (5): We do not require additional technologies other than the ones already in use by
the city. For example, in the case of waste management, cameras are the smart devices that are
mainly used.

6. Criterion (6): The different steps of the pipeline are deployed across the existing infrastructure
and can be operationalized independently. For example, in the waste management use case,
analytic processing is distributed over the heterogeneous infrastructure: waste trucks, cameras,
cloud servers.

7. Criterion (7): The main dimensions of Big Data, volume, velocity, and variety, are highly
represented in the use case. In the flood control use case, the most stringent restriction is the
speed of data collection and analysis for the flooding alerts in real time. In the waste management
use case, on the other hand, the volume and heterogeneity of the data sources are the greatest
challenges, due to the need to cross-reference information to draw valuable conclusions that help
optimize waste management.

In conclusion, PADL is an appropriate solution for the smart city domain, advancing over
existing tools for similar purposes as per the evaluation criteria in Table 1. The previous analysis
shows that PADL excels in defining complex analytical pipeline flows, with multiple considerations
(heterogeneous data sources, multiple devices to consider, or different types of processing) and various
phases (e.g., monitorization, notification, actuation).

Sensors 2020, 20, 6712 25 of 28

6. Conclusions and Future Work

In this research, we propose a domain specific language for the definition of distributed analytical
pipelines, which alleviates the burden of deploying data science projects in production environments.
On one hand, it abstracts data scientists from the underlying technologies, networking challenges,
and deployment specific constraints, hence letting them focus on the functionalities. On the other
hand, the team in charge of the operationalization obtains a detailed description of the process for
deploying the given pipeline in the production environment. Overall, PADL aims at raising the success
rate of data science projects, by mitigating the challenges of deploying such projects in real-world
scenarios. The use of modern mechanisms to provide these pipelines with monitorization, notification,
and actuation capabilities promote the utilization of this language in the emerging IoT paradigm.
In order to do so, we provide tools that cover the operationalization of ML (Machine Learning) and
Al (Artificial Intelligence) projects over its different stages and lighten the burden of deploying these
projects in edge, fog, and cloud environments successfully. As part of this effort, we analyze two use
cases from independent research papers in a smart city context and elucidate how PADL can be used
to implement the analytical needs that complement them in order to provide an integrated solution.
Both use cases demonstrate the benefits that PADL offers in the smart city domain, and unlike the rest
of the alternatives under study, it has been shown to comply with all the criteria defined in Table 1. The
source code with the language specification and the developed tools are provided by Diaz-de-Arcaya
etal. in [38].

As for the future work, we consider two research directions: firstly, to promote PADL as the
standard for the definition of analytical pipelines leading to the development or evolution of other tools
or utilities; secondly, to increase the expressiveness of PADL with new functionalities and characteristics
spanning a broader range of the analytical life cycle. In the first line of study, our idea is to utilize PADL
alongside the definition of a given infrastructure to implement the orchestrator appearing in Figure 1;
in this way obtaining the best possible deployment for a given analytical pipeline. Furthermore,
the emergence of public cloud providers in conjunction with infrastructure-as-code technologies gives
us the possibility of generating the necessary infrastructure on demand.

Author Contributions: Conceptualization, J.D.-d.-A.; Investigation, J.D.-d.-A. and R.M.; Methodology,
AIT.-B. and A.A,; Implementation, J.D.-d.-A. and R.M.; Supervision,].D.S. and A.A.; Validation, J.D.-d.-A.;
Writing—original draft,].D.-d.-A.; Writing—review and editing,].D.-d.-A., RM., AILT.-B,,].D.S. and A.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the SPRI-Basque Government through their ELKARTEK program
(8KIA project, ref. KK-2020/00049). Aitor Almeida’s participation was supported by the FuturAAL-Ego project
(RTI2018-101045-A-C22) granted by the Spanish Ministry of Science, Innovation and Universities. Javier Del Ser
also acknowledges funding support from the Consolidated Research Group MATHMODE (1T1294-19), granted by
the Department of Education of the Basque Government.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi,]. Applications of big data to smart cities. |. Internet
Serv. Appl. 2015, 6, 25. [CrossRef]

2. Lim, C.; Kim, K.J.; Maglio, PP. Smart cities with big data: Reference models, challenges, and considerations.
Cities 2018, 82, 86-99. [CrossRef]

3. Khan, Z; Anjum, A,; Kiani, S.L. Cloud based big data analytics for smart future cities. In Proceedings
of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, Dresden, Germany,
9-12 December 2013; pp. 381-386.

4. Patrono, L.; Atzori, L.; Soli¢, P; Mongiello, M.; Almeida, A. Challenges to be addressed to realize Internet of
Things solutions for smart environments. Future Gener. Comput. Syst. 2019, 111, 873-878. [CrossRef]

http://dx.doi.org/10.1186/s13174-015-0041-5
http://dx.doi.org/10.1016/j.cities.2018.04.011
http://dx.doi.org/10.1016/j.future.2019.09.033

Sensors 2020, 20, 6712 26 of 28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Navidi, A.; Khatami, FA.S. Energy management and planning in smart cities. CIRED-Open Access Proc.].
2017, 2017, 2723-2725. [CrossRef]

Sobnath, D.; Rehman, I.U.; Nasralla, M.M. Smart cities to improve mobility and quality of life of the visually
impaired. In Technological Trends in Improved Mobility of the Visually Impaired; Springer: Cham, Switzerland,
2020; pp- 3-28.

Tang, B.; Chen, Z.; Hefferman, G.; Pei, S.; Wei, T.; He, H.; Yang, Q. Incorporating intelligence in fog
computing for big data analysis in smart cities. IEEE Trans. Ind. Inform. 2017, 13, 2140-2150. [CrossRef]
Diaz-de-Arcaya, J.; Mifién, R.; Torre-Bastida, A.L; Del Ser, J.; Almeida, A. PADL: a Language for the
Operationalization of Distributed Analytical Pipelines over Edge/Fog Computing Environments. In
Proceedings of the 5th International Conference on Smart and Sustainable Technologies, Split, Croatia, 23-26
September 2020.

Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-Khah, M.; Siano, P. Iot-based
smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and
Electrical Engineering (EEEIC), Florence, Italy, 7-10 June 2016; pp. 2-7, [CrossRef]

Sénchez-Corcuera, R.; Nufiez-Marcos, A.; Sesma-Solance,].; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune,
G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the
future. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719853984. [CrossRef]

Khan, Z.; Anjum, A.; Soomro, K.; Tahir, M.A. Towards cloud based big data analytics for smart future cities.
J. Cloud Comput. 2015, 4, [CrossRef]

Hossain, M.K.; Meng, Q. A fine-scale spatial analytics of the assessment and mapping of buildings and
population at different risk levels of urban flood. Land Use Policy 2020, 99, 104829, [CrossRef]

Rathore, M.M.; Ahmad, A ; Paul, A.; Rho, S. Urban planning and building smart cities based on the Internet
of Things using Big Data analytics. Comput. Netw. 2016, 101, 63-80, [CrossRef]

Aguilera, U.; Pefia, O.; Belmonte, O.; Lépez-de Ipifia, D. Citizen-centric data services for smarter cities.
Future Gener. Comput. Syst. 2017, 76, 234-247. [CrossRef]

Lopez-Novoa, U.; Morgan, J.; Jones, K,; Rana, O.; Edwards, T.; Grigoletto, F. Enabling Citizen Science
in Rural Environments with IoT and Mobile Technologies. In Proceedings of the IoT ’19, Bilbao, Spain,
22-25 October 2019; pp. 50-56.

Du, J.; Zhu, Q.; Shi, Y.; Wang, Q.; Lin, Y.; Zhao, D. Cognition digital twins for personalized information
systems of smart cities: Proof of concept. |. Manag. Eng. 2020, 36, 04019052. [CrossRef]

Cerchecci, M.; Luti, F; Mecocci, A.; Parrino, S.; Peruzzi, G.; Pozzebon, A. A low power IoT sensor node
architecture for waste management within smart cities context. Sensors 2018, 18, 1282. [CrossRef] [PubMed]
Obinikpo, A.A.; Kantarci, B. Big sensed data meets deep learning for smarter health care in smart cities. J.
Sens. Actuator Netw. 2017, 6, 26. [CrossRef]

Wang, L.; Sng, D. Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A
Survey arXiv 2015, arXiv:1512.03131.

A survey towards an integration of big data analytics to big insights for value-creation. Inf. Process. Manag.
2018, 54, 758-790, [CrossRef]

Lavalle, A.; Teruel, M.A.; Maté, A ; Trujillo, J. Improving Sustainability of Smart Cities through Visualization
Techniques for Big Data from IoT Devices. Sustainability 2020, 12, 5595. [CrossRef]

Vergis, S.; Komianos, V.; Tsoumanis, G.; Tsipis, A.; Oikonomou, K. A Low-Cost Vehicular Traffic Monitoring
System Using Fog Computing. Smart Cities 2020, 3, 138-156. [CrossRef]

Tekouabou, S.C.K.; Cherif, W,; Silkan, H. Improving parking availability prediction in smart cities with IoT
and ensemble-based model. J. King Saud Univ. -Comput. Inf. Sci. 2020. [CrossRef]

Hirtan, L.A.; Dobre, C.; Gonzalez-Vélez, H. Blockchain-based reputation for intelligent transportation
systems. Sensors 2020, 20, 791. [CrossRef]

Zaharia, M.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Murching, S.; Nykodym, T.;
Ogilvie, P.; Parkhe, M.; et al. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng.
Bull. 2018, 41, 39-45.

http://dx.doi.org/10.1049/oap-cired.2017.0136
http://dx.doi.org/10.1109/TII.2017.2679740
http://dx.doi.org/10.1109/EEEIC.2016.7555867
http://dx.doi.org/10.1177/1550147719853984
http://dx.doi.org/10.1186/s13677-015-0026-8
http://dx.doi.org/10.1016/j.landusepol.2020.104829
http://dx.doi.org/10.1016/j.comnet.2015.12.023
http://dx.doi.org/10.1016/j.future.2016.10.031
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000740
http://dx.doi.org/10.3390/s18041282
http://www.ncbi.nlm.nih.gov/pubmed/29690552
http://dx.doi.org/10.3390/jsan6040026
http://dx.doi.org/10.1016/j.ipm.2018.01.010
http://dx.doi.org/10.3390/su12145595
http://dx.doi.org/10.3390/smartcities3010008
http://dx.doi.org/10.1016/j.jksuci.2020.01.008
http://dx.doi.org/10.3390/s20030791

Sensors 2020, 20, 6712 27 of 28

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

Lee, Y.; Scolari, A.; Chun, B.G.; Weimer, M.; Interlandi, M. From the Edge to the Cloud: Model Serving in
ML.NET. IEEE Data Eng. Bull. 2018, 41, 46-53.

Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management
at Google with Borg. In Proceedings of the Tenth European Conference on Computer Systems, Bordeaux,
France, 21-24 April 2015; pp. 1-17.

Foundation, C.N.C. Official Kubernetes Website. 2020. Available online: https:/ /kubernetes.io (accessed on
20 November 2020).

Hykes, S. Docker Swarm Engine. Available online: https://docs.docker.com/engine/swarm/ (accessed on
13 September 2020).

Guazzelli, A.; Zeller, M.; Lin, W.C.; Williams, G. PMML: An open standard for sharing models. R. J. 2009,
1, 60-65. [CrossRef]

Pivarski, J.; Bennett, C.; Grossman, R.L. Deploying analytics with the portable format for analytics (PFA).
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13-17 August 2016; pp. 579-588.

Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;
Franklin, M.J.; et al. Apache spark: a unified engine for big data processing. Commun. ACM 2016, 59, 56-65.
[CrossRef]

Carbone, P; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch
processing in a single engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 36.

Bhattacharjee, A.; Barve, Y.; Khare, S.; Bao, S.; Gokhale, A.; Damiano, T. Stratum: A serverless framework
for the lifecycle management of machine learning-based data analytics tasks. In Proceedings of the 2019
{USENIX} Conference on Operational Machine Learning (OpML 19), Santa Clara, CA, USA, 20 May 2019;
pp- 59-61.

Garcfa, A.L.; De Lucas,].M.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Iglesias, L.L.; Molto, G.;
Plociennik, M.; Tran, V.; et al. A Cloud-Based Framework for Machine Learning Workloads and Applications.
IEEE Access 2020, 8, 18681-18692. [CrossRef]

Zeeshan, A.A. Automating Everything as Code. In DevSecOps for. NET Core; Springer: Cham, Switzerland,
2020; pp. 109-162.

YAML. Available online: https://yaml.org/ (accessed on 5 November 2020).

Diaz-de Arcaya, J.; Mifion, R.; Torre-Bastida, A.L; Del Ser, J.; Almeida, A. Official PADL Repository. 2020.
Available online: https:/ /github.com/josu-arcaya/padl (accessed on 24 November 2020).

Diaz-de-Arcaya, J.; Mifion, R.; Torre-Bastida, A.I. Towards an architecture for big data analytics leveraging
edge/fog paradigms. In Proceedings of the 13th European Conference on Software Architecture-Volume 2,
Paris, France, 9-13 September 2019; pp. 173-176.

Bormann, C.; Castellani, A.P.; Shelby, Z. Coap: An application protocol for billions of tiny internet nodes.
IEEE Internet Comput. 2012, 16, 62-67. [CrossRef]

Davenport, T.H.; Bean, R. Big Data and Al Executive Survey (2019); Tech. Rep.; NewVantage Partners (NVP):
Boston, MA, USA, 2019.

Oliphant, T. NumPy. 2020. Available online: https://numpy.org (accessed on 24 November 2020).
McKinney, W. Pandas. 2020. Available online: https://pandas.pydata.org (accessed on 24 November 2020).
Cournapeau, D. SciKit-learn. 2020. Available online: https://scikit-learn.org (accessed on 24 November
2020).

Pezoa, F,; Reutter,].L.; Suarez, F.; Ugarte, M.; Vrgo¢, D. Foundations of JSON schema. In Proceedings of the
25th International Conference on World Wide Web, Montreal, QC, Canada, 11-15 May 2016; pp. 263-273.
PADL-Cli. 2020. Available online: https://hub.docker.com/repository/docker/josuarcaya/padl-cli
(accessed on 23 October 2020).

Travis-Ci. 2020. Available online: https://travis-ci.org/ (accessed on 12 November 2020).

JSONLint. 2020. Available online: https:/ /jsonlint.com/ (accessed on 25 September 2020).

YAMLLint. 2020. Available online: http:/ /www.yamllint.com/ (accessed on 25 September 2020).
PADL-Web. 2020. Available online: https://hub.docker.com/repository/docker/josuarcaya/padl-web
(accessed on 10 August 2020).

https://kubernetes.io
https://docs.docker.com/engine/swarm/
http://dx.doi.org/10.32614/RJ-2009-010
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1109/ACCESS.2020.2964386
https://yaml.org/
https://github.com/josu-arcaya/padl
http://dx.doi.org/10.1109/MIC.2012.29
https://numpy.org
https://pandas.pydata.org
https://scikit-learn.org
https://hub.docker.com/repository/docker/josuarcaya/padl-cli
https://travis-ci.org/
https://jsonlint.com/
http://www.yamllint.com/
https://hub.docker.com/repository/docker/josuarcaya/padl-web

Sensors 2020, 20, 6712 28 of 28

51. Rothkrantz, L. Flood control of the smart city Prague. In Proceedings of the 2016 Smart Cities Symposium
Prague (SCSP), Prague, Czech Republic, 26-27 May 2016; pp. 1-7.

52. Medvedev, A.; Fedchenkov, P.; Zaslavsky, A.; Anagnostopoulos, T.; Khoruzhnikov, S. Waste management as
an IoT-enabled service in smart cities. In Internet of Things, Smart Spaces, and Next Generation Networks and
Systems; Springer: Cham, Switzerland, 2015; pp. 104-115.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Deploying Data Analytics in Smart Cities
	Analytic Services for Smart Cities
	Technological Background

	PADL Specification
	Ecosystem
	Language Details and Application Preconditions
	Language Syntax

	PADL Implementation
	Tools
	PADLib
	Command Line Utility
	Web Lint

	Delivery Flow

	PADL in Cities
	Use Case Selection
	Flood Control Use Case
	Waste Management Use Case
	Use Case Discussion

	Conclusions and Future Work
	References

