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Abstract: Systems composed of multiple sensors for exteroceptive perception are becoming increasingly
common, such as mobile robots or highly monitored spaces. However, to combine and fuse those sensors
to create a larger and more robust representation of the perceived scene, the sensors need to be properly
registered among them, that is, all relative geometric transformations must be known. This calibration
procedure is challenging as, traditionally, human intervention is required in variate extents. This paper
proposes a nearly automatic method where the best set of geometric transformations among any number
of sensors is obtained by processing and combining the individual pairwise transformations obtained
from an experimental method. Besides eliminating some experimental outliers with a standard criterion,
the method exploits the possibility of obtaining better geometric transformations between all pairs of
sensors by combining them within some restrictions to obtain a more precise transformation, and thus
a better calibration. Although other data sources are possible, in this approach, 3D point clouds are
obtained by each sensor, which correspond to the successive centers of a moving ball its field of view.
The method can be applied to any sensors able to detect the ball and the 3D position of its center, namely,
LIDARs, mono cameras (visual or infrared), stereo cameras, and TOF cameras. Results demonstrate that
calibration is improved when compared to methods in previous works that do not address the outliers
problem and, depending on the context, as explained in the results section, the multi-pairwise technique
can be used in two different methodologies to reduce uncertainty in the calibration process.

Keywords: calibration; multimodality; extrinsic parameters; point cloud; transformation path; Chauvenet
criterion; singular value decomposition; ATLASCAR

1. Introduction

Modern robots count on a wealth of sensors for many essential operations that need perception such
as representation, obstacle avoidance, planning, guidance, localization, and most of the tasks generically
related to navigation and safety. Sensors now cover a wide scope of principles and modalities; therefore,
it is no longer unexpected to see altogether monocular (both visual and infrared) and stereo cameras along
with structured light-based or TOF 3D cameras and LiDAR (2D and 3D) mounted on some more complex
systems like autonomous cars.

One of the first challenges before using such complex robotic systems is to calibrate all these sensors
so their data or deduced conclusions can be merged and reported to a common coordinate frame for the
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algorithms to apply on a rich set of sensor data. This redundancy is necessary to give robustness and also
to cover potential variations of data rate that may ultimately jeopardize single sensor or single modality
based perception.

Reporting all sensors to a common frame can be simply stated as having the knowledge of where
(translation and orientation) is each sensor coordinate frame relatively a common reference, normally one
associated or easily related to the external world being perceived. These parameters are known, for each
sensor, as its extrinsic parameters.

Numerous works exist to calculate the extrinsic parameters of cameras or image based or image
reducible sensors. External devices such as chessboards, charuco boards, or others are used to create
a known real-world pattern of points or geometric feature which are easily traceable on the respective
images. Using these real-world references and the knowledge of the projection mechanisms (through the
so-called intrinsic parameters of each device), it is possible to deduce the extrinsic parameters of a sensor
in relation to the target being scanned.

In theory, having such a marker (chessboard or similar) shown to all sensors at once would allow for
the computation of the extrinsic parameters for all sensors and the problem would be solved: that marker
(chessboard or similar) should only be placed in a known and interesting or convenient position to the
robot and all sensors would be easily localized relatively to a common reference frame.

The problem is that not all sensors may be able to perceive the target in ideal conditions and not all
sensors are able to detect the target with the same representation, or may not even detect the target at all.
Additionally, there are uncertainties in the process.

An illustration of a real historical setup that will serve as base for developments ahead is shown in
Figure 1 where four sensors (three LIDARS and one camera) generate a point cloud each, all obtained from
the same temporal scenario (the center of a ball in several positions) but on their own coordinate frames.
It is clear that the relative positions of the sensors must be determined in order to fuse or combine the four
point clouds.

Points in the world to be captured from the 4 sensors

Lidar LMS151-A

Figure 1. Example of four unregistered point clouds in ATLASCARI set-up (adapted from [1]).
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The main contribution of this paper is a technique to perform the extrinsic calibration of
multiple sensors by eliminating outliers in the experimental process and by combining individual
pairwise transformations. It improves a previously developed technique based on pairwise geometric
transformations obtained from different point clouds (one for each sensor) generated with the successive
center points of a moving ball.

The paper is divided in the following main sections; the related work, the proposed approach that
includes the main algorithms described in detail, results from simulated and real data experiments,
and final conclusions and future perspectives.

2. Related Work

Extrinsic calibration is a basic requirement in multi-sensor platforms where data need to be
represented in a common reference frame for data fusion and subsequent analysis. This calibration
procedure estimates the transformation between all sensors to align all datasets in the same coordinate
system. Most calibration procedures are based in calibration patterns to ensure a robust and accurate
detection of points/objects by all sensors. Some examples of calibration patterns are chessboards [2—4],
fiducial markers [3,5,6], spherical objects [1,7-9], or cylindrical objects [10].

Many calibration systems are described in the literature; however, there is no general solution
multiple sensor calibration. Pairwise calibrations between sensors are often used due to their simplicity,
as the calibration step does not require a global optimization. This pairwise approach must consider
all possible combinations between sensor modalities in the pair. These sensor combinations have been
addressed in the literature: RGB to RGB camera calibration [1,11-15], RGB to depth camera (RGB-D
cameras) calibration [9,16-20], camera to 2D LIDAR [1,4,19,21-25], 2D LIDAR to 3D LIDAR [10], camera
to 3D LIDAR [25-27], and camera to radar [28].

To adapt the pairwise approach to the case of complex robotic systems that contain many sensors
of different modalities, several pairwise calibrations must be combined in a sequential transformation
procedure based on graphs where one sensor successively calibrates with another and then relates to a
another sensor. Another approach is to define one sensor as the reference and report all the remainder to it.
In this case, the graph of transformations is a one-level pyramid with the reference sensor on top and all
other sensors below. This methodology is the one adopted in [1] to calibrate all the sensors on-board the
ATLASCAR autonomous vehicle [29] relatively to a reference sensor.

The problem of multi-sensor calibration can also be solved using simultaneous optimization,
asin Liao et al. [30] that use a joint objective function to calibrate simultaneously three RGB cameras and
a RGB-D camera with good results in the calibration accuracy. An approach to estimate simultaneously
temporal offsets and spatial transformations is presented in [31]. This approach can be used for any set of
sensors (for example, cameras and LIDAR), as its does not consider unique properties of specific sensors.
It also does not require the usage of calibration patterns for the LIDAR, as the planes present in the scene
are used for that purpose. Another relevant work occurs in [32] that proposes a calibration for the sensors
onboard a PR2 robot. The process uses the sensor uncertainty and is based on bundle adjustment.

In [33], an optimization procedure is implemented which, in addition to estimate the poses of the
sensors, also estimates the poses of the calibration patterns. This enables the definition of errors to be
formulated using sensor to calibration pattern tandems, rather than the classic sensor to sensor pairwise
combinations. As a result, the problem of the exploding number of sensor combinations is avoided,
as the number of combinations do not explode with the increase in the number of sensors, which makes it
possible to consider all available data during the optimization.

In most of the mentioned approaches, there is still the need for some sort of user interaction,
or to provide first guess estimates for optimization based algorithms, which sometimes may be slow to
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converge, despite the fact that that slowness may not be relevant for a offline process, which is the case for
many calibration procedures.

Overall, it appears pertinent to devise a solution of a nearly automatic mechanism with very little
intervention of human operation, desirably with sleek performance. One solution, already exploited by
other authors [1], is to use a simple target that must be easily detectable by all sensors, from a wide range
of viewpoints and perspectives, be it based on images, range maps, or even simple 2D range profiles.
Pereira et al. [1] used a large size ball that is easily detected by cameras and LiDARs (including TOF and
structured light devices). Those works have been later extended [8] to monochromatic and infrared-based
images using Deep Learning techniques to detect the ball in the image with greater robustness and accuracy.
These solutions, however, besides still relying on pairwise approaches, do not address the problem of
outliers, which this papers addresses by proposing an extended solution that combines the pairwise
transformation and also automatically filters out outliers generated in the acquisition process.

The work clearly follows the line of the works in [1,8], but it integrates and extends the concepts
to multi-pairwise procedures. Compared to existing works, the proposal that is going to be detailed in
the paper has the following advantages; (i) it can be applied to any sensor that is capable of detecting
the 3D position of a moving target (ball), and not only cameras; (ii) it can take all transformation paths
into account or a subset of paths; (iii) it is faster than iterative methods with deterministic duration and
computational cost; and (iv) in certain conditions (explained further), it allows to reduce calibration errors
in a straightforward algorithmic process.

3. Proposed Approach

Figure 1 and its associated diagram in Figure 2 illustrate the acquisition of the same scene by four
different and arbitrarily positioned sensors (A, B, C, D), generating four point clouds corresponding to
several positions of a known object seen by all sensors at different locations in the scene like the center
of a ball, for example (P4, Pg, Pc, Pp). For the sake of clarification, these point clouds are not actually the
usual point clouds that express the geometry of a scene; they are instead a set of points that represent the
time-lapsed position of a moving object in space, in this case the successive sparsely distributed positions
of a ball center. However, theoretically, these two types of point clouds have similar formats and can be

manipulated with common available tools.

A

A
TC

Figure 2. Example of four distinct point clouds showing the transformations of B, C, and D relative to

frame A. See the set-up in Figure 1.

Simple 3D data set matching, or more sophisticated registration techniques readily available in
many libraries (Point Cloud Library (PCL) or open3D, for example), can be used to obtain the position
of sensors B, C, and D relatively to sensor A, which is assumed to be the reference of the system: this is
translated by the three geometric transformations 4T B ATC, ATD. In summary, for a set of four sensors
(four point clouds), three matching operations are performed, that is, take one sensor (A) as the reference,
and determine the position of the remainder three in relation to it.

However, there are other transformations that can be obtained among the remainder sensors
using their own point clouds besides sensor A. Figure 3 rearranges the layout and shows all possible
transformation paths to obtain 4T p; a similar reasoning can be done to obtain any of the other
transformations in diverse representations of equivalent transformation paths.
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Figure 3. Rearrangement of example from Figure 2 of four distinct point clouds, but now showing all the
paths for transformations from A to D, passing also through B and C.

We call a transformation path X Ty, from frame X to frame Y, a sequence of geometric transformations
derived from the transformation graph. An additional superscript k is used to distinguish different
transformation paths between the same coordinate frames X Tf For example, as shown in Figure 3,
there are five transformation paths (different ways) to obtain ATD, after ATB, B Te, ATC, CTD, B Tp,

-1
and €T 5, reminding, however, that T B= (B TC> :

the direct measurement of AT}, from the data matching algorithm: ATIS =11,
ATl — ATBBTD;
A _Ar C .
ATE) _ ATCB TDé
Ts = ATRBTCTp; 1
A74 _ Ap Cm B _ _ A B B
Tp="Tc Tg"Tp = TC( TC) Tp

AN e

It is certain that these geometric transformations are independent because the point clouds were
created from the point of view of different sensors. As an hypothetical situation: if, for example, the Pp
point cloud has poorer quality (due perhaps to more noisy acquisition settings) the 4T p transformation
would exhibit some larger uncertainties; so, combining this transformation with other transformations that
involve other (expectantly) more precise point clouds will improve a final version of ATD, but involving
of course the Pp point cloud. As described ahead, a better estimate of ATD can be obtained by the
combination of part or all of the five listed results (A TOATA ATR2 AT3 A TS). The 0-th transformation path
(k = 0) is the actual direct transformation from sensor A to D in the current example.

With these transformation paths it is possible to calculate a geometric transformation that is some
type of combination of all the transformation paths, expectantly with a smaller uncertainty than the single
original transformation.

To ease the interpretation of equations and algorithms, the following nomenclature convention is
adopted to describe geometric transformations from sensor i to sensor j.

o T j—The real transformation (usually unknown)
o T j—The “measured” transformation (after the common localization of a unique object)
e T j—The estimated (calculated, hopefully improved) transformation.

. iT;?—A derived transformation resulting from some transformation path i7;k .

The estimated transformation is actually calculated using some sort of mean or combination of
multiple derived transformations which are the result of their associated transformation paths. It is clear
then, that the concept of transformation path (which results in derived transformations) is useful in a
numeric approach because independent transformations can be obtained experimentally with, possibly,
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different levels of uncertainty, and their manipulation can provide an averaging or smoothing of those
uncertainties. As stated earlier, a derived transformation (as one sample k of a larger set) is represented by
nfk , which means the k-th sample of the derived transformations from sensor 1 to 7.

Each derived transformation, for example, between sensor 0 and sensor 7, can be obtained in several
ways, depending on how many steps the accumulated concatenation of transformations (transformation
path) is done, like the following example.

OT.}I OT] 1Tn
012 — 0T,
" = 01,1, )

Those derived transformations can be combined (averaged) and compared, or even merged, with the
actual measurement (°T,) to provide a result with more confidence than the actual measurement itself,
and is given in the general case by

0f — COMBINE (OTn,OT}l,(’Tﬁ,OTi,. . ,OTﬁ) , 2)

where COMBINE( ) represents the function to average, merge, weight, or otherwise combine samples of a
transformation between two sensors, although originated from distinct transformation paths; from now
on, the terms “average” and “combine” for geometric transformations will be used interchangeably.
The algorithm for this multi-pairwise approach is detailed further in Section 3.2.

In this process, translations and rotations are expected to be combined separately and outliers are to be
taken into account, as well as the confidence of each sample, should it be available or known, for example,
based on the number of points present in each point cloud: assuming that, the more the points, the better is
the estimation of the geometric transformation, which may be debatable, mainly because of poor detections
or the presence of outliers.

Resuming to the example of Figure 3, there are 6 = % direct feedforward transformations (pairwise
independent relations) that can be obtained from the four measured point clouds. These six transformations
have more information than only the three related to a single reference frame.

In summary, the idea is to define one sensor from the set of N sensors to be the reference (usually
the one easier to place or locate in the overall reference frame of the world), naming it A, whichever it
might be, and obtain the relative position of the remainder (N — 1) sensors relatively the reference. Each of
these (N — 1) transformations is now to be obtained as an “averaging” of a number of separate geometric
transformations that represent the same frame relations.

This implies that, whenever needed, matching operations have to be done both ways, like CTD

and PT; however, as PT = (CTD) 1, in principle, inverting a matrix can be performed instead of a
second point cloud matching; nonetheless, most of the times, point cloud matching algorithms, namely,
when probabilistic approaches are used, can perform differently when source and target point clouds
are swapped, and therefore the safest option is to calculate both and pick the best instead of simply
inverting matrices.

For a set of N sensors, a global overview of the operations can be summarized as follows.

e  Acquire N point clouds of a reference object in several positions, one from each sensor;
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e Perform at most N(N — 1) point cloud matching operations or, assuming that T, will not be used,
perform (N — 1) + (N — 1)(N — 2) = (N — 1)? point cloud matching operations;

- Alternatively, perform only (N — 1) + (Nfl)z(Nfz) = N(I\zlfl) cloud matching operations,
and W inversions of transformations (in reverse directions of the previous point).

In this case, less than w

made to the reference sensor.

inversions are necessary because no inverse transformations are

e  Each of the N — 1 sensors has a set of transformation paths (connecting to the reference sensor) with
different lengths (1, 2, 3, ...) where the length of some transformation path £ (X7y) is the number of
transformations that compose it, as enumerated next, where P (n, r) is the permutation (arrangements
without repetition) of n elements taken in groups of r elements:

- length1: P(N —2,0) = (N —2)!/(N —2)! =1, one path;
- length2: P(N—-2,1) = (N —2)!/(N —3)! = (N —2) paths;
- length3: P(N—-2,2) = (N—-2)!/(N—4)! = (N —2)(N —3) paths;

- lengthr: P(N —2,r — 1) paths (for r < N);
with a total number of paths Qp for each of the N — 1 sensors given by:

N-1

Qv= ) P(N-2r-1), ®)

r=1

where N is the number of sensors, r is the length of transformation path, and P means the
mathematical permutation, as stated above.
e  Perform (N — 1) averaging operations of geometric transformations to obtain all °T,,.

For the illustrated case of N = 4, for each sensor relatively to the reference sensor, there is one
transformation path with length 1, two paths with length 2, and two paths with length 3, yielding a
total number of transformation paths given by (4 — 1) x (14 2+ 2) = 15. Table 1 shows the number of
transformation paths for all the possible path lengths in a set of several sensors (from 3 to 10).

Table 1. Number of paths of the several lengths of the transformation paths for a given number of sensors
N, and the full total of transformation paths in each set of sensors. The full total in each row is obtained by
(N—1) x Y, L,(T) or similarly, (N — 1) x Qn with Qp obtained from (3).

Lengths of Transformation Paths £(7") for Each Sensor in the Set

Full Total
1 2 3 4 5 6 7 8
3 1 1 4
4 1 2 2 15
5 1 3 6 6 64
6 1 4 12 24 24 325
7 1 5 20 60 120 120 1956
8 1 6 30 120 360 720 720 13,699
9 1 7 42 210 840 2520 5040 5040 109,600
10 1 8 56 336 1680 6720 20,160 40,320 40,320 986,409

The number of paths grows exponentially with the number of sensors. As an indication, 11 sensors
imply a total of nearly a million transformation paths, and 20 sensors would generate more than
10'° paths. For those cases where many transformation paths exist, a solution can be to limit the number of
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transformation paths and not use all of them, as the principle applies independently of the number of the
transformation paths to be “averaged”. More transformation paths should reduce the uncertainty but it is
expected that after a certain number, that reduction may become negligible, and therefore no longer useful.
This statement is a generalization of the concept of uncertainty propagation in an averaging process of N
samples of some variable; if N is large, using N + 1 samples is not expected to reduce much further the
uncertainty of the averaged result.

Possible strategies to limit the number of transformation paths to combine, for each sensor, include
the following.

1. Use minimum path lengths, but ensuring all combinations of that path length—this require path
lengths of 2, but all of them are necessary to involve all sensors in the estimations of each °T,,.
This would require (N — 2) transformation paths to be combined with °T,, for each sensor.

2. Use a maximum path length which ensures that all sensors are involved as well, but no more than one
path would be needed to cover all sensors. For each sensor, the estimation (averaging) would be done
only with °T,, and 0F% where k; is the index that corresponds to one of the maximum path lengths.

3. Use a minimum number of transformation paths, but at least as large as the number of sensors in the
set and, again, ensuring that all sensors are involved. Resorting to Table 1, this would require a path
length of 3 (or just 2 for three sensors). The number of paths of length 3 to average for each sensor
would be N, from all the possible available in the 4-th column of Table 1.

These possibilities are presented as heuristic alternatives to the usage of all transformation paths that,
besides not being sure to be needed, would be impractical to apply for large values of N. However, values
of N up to 6 are absolutely reasonable to use all transformation paths and keep the fast performance.
There is no formal demonstration of which is the choice that produces best results, and a compromise
solution with a large applicability would be to use all the transformation paths of length up to 3. Even large
number of sensors would require only some hundreds of transformation paths. In this approach, it is
assumed that it is always possible to establish transformation path between any pair of sensor with any
viable path lengths. In case that turns out impossible (not all sensors share enough overlap of the field of
view), a smaller number of paths has to be used.

3.1. Pairwise Matching Algorithm for Arrays of Points

To calculate the pairwise best fit transformation [R|t] between two sets of points A and B, the classical
technique based on the work in [34] is used. These sets of points are sorted and there is a one-to-one
correspondence between the points, but the expression “point cloud” will be used instinctively as “set
of points”. The point clouds are first relocated around the origin (by subtracting them their respective
centroids), and Singular Value Decomposition (SVD) is applied to the 3 x 3 covariance matrix of the
coordinates of points (in the format 3 x 1), as expressed with Equations (4) and (5):

Ac = A —centroidy and B¢ = B — centroidg; 4)

H=Ac Bl and {U x V}:SVD(H). 6)

The rotation matrix and the translation vector between the point clouds are consequently calculated
using the expressions in (6):

R=V-UT and t= centroidg — R - centroid,4. (6)
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3.2. The Multi Pairwise Algorithm

For the sake of simplicity, it is considered from now on that the sensors and their point clouds are
numbered starting on zero (Sp with Py, S; with Py, etc.), and that the reference sensor is sensor zero,
as illustrated in Figure 4, where, as an example, what is sought is the position of sensor 3 (S3) relatively to
sensor 0 (Sp), that is, to obtain 0T3. In the figure, reverse transformations to Sp are not shown because they
are not to be used in practice when calculating the derived transformations, that is, " T, will not be part of
any transformation path.

Figure 4. Example of five distinct sensors and their point clouds where all transformation paths from Sy to
S3, passing also through Sq, Sy, and Sy, can be established. In the figure, transformations from Sy to the
other sensors are actually the ones who require improved estimates based on the several transformation
paths and associated derived transformations, that is, calculate 9T, using the several / T, present in the
diagram and obtained experimentally. Both iT]- and / T, may be obtained using the same registration

technique or, to save time, just by performing algebraic inversion: ‘T = (J Ti)*l.

The major steps of the algorithm were given earlier, but they can be detailed more specifically
as follows.

Define one sensor as the reference, Sy, to which all other sensors will be reported /located.

The actual calibration procedure is to obtain the list of N — 1 geometric transformations °T, for
ne{l1,2,---,N-1}.

Acquire experimentally N point clouds P, from the N sensors.

As the reference sensor is not to be part of any transformation path because it is never the
destination of any transformation, perform (N —1)+ (N —1)(N —2) = (N —1)? point cloud
matching operations, that is, obtain all pairs of geometric transformations "T,, between sensor
n and sensor m, where n,m € {0,1,--- ,N —1} and m ¢ {0,n}. There is a partial alternative to this
step described earlier but it is omitted here to keep the procedure shorter.

e  Define which strategy is adopted to establish the set of transformation paths to use in the average
calculation. As an example, variant 1 from the list presented earlier is chosen, meaning to pick all
transformation paths with length 2, which is the minimum length, as proposed.

e  For each sensor, perform the COMBINE calculation of the results obtained in the previous step.
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In terms of pseudocode, the main procedure could be presented as shown in Algorithm 1.

Algorithm 1: Multi-pairwise sensor calibration
// Nomenclature: tT[n][m] <> "T,,, hT[n][m] < "T,,, Tp[0][m][k] <> OTk, < OTk
Input :Sensors S[n], withn € {0,1,--- ,N —1}
Output: Estimated geometric transformations hT[0][m], withm € {1,--- ,N — 1}
// Obtain the point clouds from the N sensors
1 for n=0to N—1do
2 ‘ P[n] < AcquirePointCloud (S[n]) // Function that returns a point cloud of ball centers
3 end

// Compute the geometric matching between all pairs of point clouds
4 for n=0to N—1do
5 for m=1to N —1do

6 if 1 == m then
1 0 0 0

7 tT[n][m] < |3 o 1 o // Identity transformation
0 0 0 1

8 else

// If the reverse has already been matched, no need to repeat: just invert!

// However, a new match could be done if different results are expected.

9 if tT[m][n] already exists then

10 ‘ tT[n][m] < invert (tT[m][n]) // Invert geometric transformation
11 else

12 ‘ tT[n][m] < MatchPointClouds (S[n],S[m]) // PCL-based or other similar functions
13 end

14 end

15 end

16 end

// For each sensor, create the derived transformations and calculate the mean transformation
17 for m=1to N-1 do

s | Tplo]m)[0] < ¢T(0)fm

19 for k=1to N —2 // The limit (N —2) covers all paths with length 2 (see Table 1)
20 do

21 ‘ Tp[0][m][k] < DerivedTransformation ({T,0,m,k,2, N)

22 end

23 hT[0][m] < MeanTransformation (Tp[0][m][]) // For all k
214 end

When ranging the transformation path number from k = 0 to some limit k = kj, an order is expected,
where k = 0 corresponds to a path with a single transformation ("7,0 = "T,,) and the following values
of k correspond to an increasing amount of accumulated transformations. For example, when N = 5,
for each of the four sensors relatively to the reference sensor, the following number of path lengths
correspond to the indicated values of k:

Path lengths for N =5 — ‘ 1 2 3 4
Number of paths — 1 3 6 6
Values of index k — 0 1,23 456,789 10,11,12,13,14,15
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Two of the most relevant functions from Algorithm 1 are DerivedTransformations() and
MeanTransformation(). The latter can have several formulations as described further (with the SVD
approach being the most straightforward to implement), but the first needs a little more explanation.
The function requires the indices of the transformations from 7 to m of length L for path k, and use those
indices to compose (post-multiply) the respective transformations ¢tT[i][j]. The function and associate
parameters are stated as follows.

Function T = DerivedTransformation(tT,n,m,k,L, N)

T  The return value: the derived transformation path Tp[0][m][0]
tT  Array of transformation matrices for all pairs of sensors

n  Starting sensor (usually 0, but could be extended to be any)

m  Ending sensor (any, except sensor 0, but could be extended)

k  Number of the transformation path

L  Length of the transformation paths to use

N Total number of sensors in the problem

According to what was stated earlier, for this call, the parameters k and L are redundant,
but the function can be prepared for both approaches in the calling: if k is valid (k > 0) it has priority
over L (which is then ignored or potentially used to confirm that there is no discrepancy between the
desired k and the corresponding L); on the other hand (k < 0, which is an invalid index), the first path of
length L could be used and the appropriate value of k is assumed to perform the operation. For example,
in the previous case, for N = 5, the following call T=DerivedTransformation(tT,0,4,7,2,5) could trigger
an alert because the value used for k (=7) corresponds to a path length of L = 3 and not 2 as stated in the call.
Still, as the path length of 3 remains compatible with the indicated number of sensors (=5), the calculation
could be done, and the proper transformation for k = 7, L = 3, and N = 5 would be returned.

To enable all this checking, the function must be able to assess the entire set of values for k for a
given number of sensors N and for each path length L. That is given generically as shown next, where the
number of path lengths ranges from 1 to N — 1 and k is indeed function of N and L:

L1 2 3 N-1
1 (N-2)+1 Ll—[_l(N—r)—i-l
r=2
2 (N—-2)+2 Lﬁl(N—r)—i-Z
k(N,L) | 0 ' ' ' r=2
L-1 L
(N-2) (N-2)+(N-2)(N—-3) --- Ijz(N—r)+Ijz(N—r)

In a more compact form, the previous statements can be summarized as
L-1 L-1 L
k(N,L) € {Kin, - Kmax} =S [T(N=1)+1,--- , JT(IN=1)+ [ (N=7) ¢, @)
r=2 r=2 r=2

knowing, of course, that these expressions are applicable for N > 3 and L < N, as is also verifiable in
Table 1. Curiously, and it is simple to demonstrate, the following also holds,

Kinax = (Kypin —1)(N — L +1). 8
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To perform the computation of the k-th derived transformation (result of its correspondent
transformation path), the function DerivedTransformation() needs the list of all permutations
(arrangements) of (N — 2) sensors taken in groups of L, but only those that end in the target sensor.

For example, five sensors taken in groups of 2, because path lengths of 2 are required, and excluding
sensor 0—the reference, yield the following ordered permutations, (1 2), (13), (14),(21),(23),(24), (31),
(32),(34),(41),(42), (4 3), however, when the target sensor to calibrate relatively sensor 0 is defined
(and using the example of sensor 3), only the sequences that end in 3 are desired for further calculation:
(13),(23), (4 3), that is, all the permutations of sensors {1,2,4} in groupsof 1 (1 =2—1 = L —1) are
needed. Therefore, the numbers of sensors in sequence whose transformations are to be obtained and
further combined are 0 > Perm({1,2,4},1) t> 3, where the symbol > denotes a transformation between
the associated pair of sensors or, more explicitly

) k:1:>{50>S1>SB}:>OT:15:OT11T3
o k=2={S>S, >S5} = 012 = 0T 2T,
k=3= {So > Sy S3} = 013 = OT,*T,

As another example, if N = 6 and L = 3 starting in Sp and ending on 54 would result in the following
12 sensor sequences to use 0 > Perm({1,2,3,5},(3 —1)) > 4 or, in expanded form (12 4), (134), (154),
(214),(234),(254),(314),(324),(354),(514),(524),(534), still assuming, of course, that sensor 0
starts all sequences.

In conclusion, when function DerivedTransformation(tT,n,m,k, L, N) is called, for the sake and
application in this paper, it expects the following integers and limits,

n=0 N>2 0<L<N, 0<m<N )

and tT is an array with all pairs of geometric transformations previously calculated in Algorithm 1.
The relevant code of the function is described in Algorithm 2.

However, if the length of the transformation paths is to be restricted to L = 2 (as proposed earlier for
the chosen solution to limit the number of operations), the procedures are simpler and Algorithm 2 can be
simplified and proposed as in Algorithm 3.

Hence, the function GetPathPairSequences (N ,m) from Algorithm 3 is much simpler than its general
variant GetSensorPathSequences(N,L,m) from Algorithm 2 and provides the following sequences,
being m >1and N > 2:

O>1>m
O>--->m
O>m—1>m
O>m+1>m
0> --->m
O>N-1>m

As mentioned earlier, the reference sensor is named zero and it is always the start of the transformation
paths for any given target sensor. Should the reference sensor be another, a renaming of the sensors would
be done to establish the new reference sensor, that is, the new sensor zero. Despite that possibility,
the methodology remains unchanged, only the sensor numbering is affected.
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Algorithm 2: Function to perform the computation of derived transformations

B W N =

10
11
12
13

14

15
16
17
18

Input :array of transformation pairs tT, starting sensor , target sensor m, number of the
transformation path k, length of transformation path L, number of sensors N
Output: Derived geometric transformation: Tp

Function DerivedTransformation (tT,n,m,k,L,N)
if n # 0 then
‘ return error // Was expecting the starting sensor to be 0
end
L-1
Koin < H (N=r)+1 // From Equation (7)
s L
Kmax < [J(N=7) + [ (N =7) = (Kpin — 1)(N =L+ 1) // From Equations (7) and (8)
r=2 r=2
if k > K,,;;, and k < K, then
‘ seqs < GetSensorPathSequences(N,L,m) // Get all paths for these parameters
else
‘ return error // Arguments not consistent
end
idx < k — K1 // Normalise index to start in 0
seqk « seqs[idx] // Pick the idx-th sequence
1 0 0 0
T« [g oo g] // Initialise with identity transformation
0 0 0 1
fort =0toL —1do
‘ T < T x tT[ seqk[t] I[ seqk[t + 1] ] // Accumulate transformations by post-multiplication
end
Tp <+ T
return Tp

Algorithm 3: Simplified function to compute derived transformations with L = 2

® N Uk WN =

o

Input :array of transformation pairs tT, target sensor m, number of the transformation path k,
number of sensors N

Output: Derived geometric transformation: Tp

Function DerivedTransformationSimple (¢tT,mk,N)

if k>1andk < (N —2) then
‘ seqs<— GetPathPairSequences(N,m)
else
‘ return error // Arguments not consistent
end
seqgk + seqs[k — 1] // Pick the (k — 1)-th sequence
Tp < tT[ seqk[0] ][ seqk[1] ] x T seqk[1] ][ seqk[2] ]
return Tp

3.3. Combination of Geometric Transformations

rotation angles. Therefore, for a set of K transformation matrices given by T, = {R-

Combining or averaging a set of transformations can be considered as averaging translations and

1

tl} , the average
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transformation matrix has a translation vector which is given by t = %ZIK t; and a rotation matrix R
obtained by an operation of “averaging” the various R;. A few approaches can be considered for this
operation of merging the various R;: quaternions, Euler angles, and single value decomposition (SVD)
are the most likely candidates. Quaternions and Euler angle-based approaches both require a conversion
between representations, but SVD does not. On the other hand, the Euler angles technique allows a true
mean value calculation and also a weighted mean (in case it is necessary), making that approach very
versatile in this context. Adopting the RPY version of Euler angles (but actually any triple of Euler angles
would do), that formulates like this

M = RPY(¢,0, 1) = rotz(¢) x roty(6) x rotx(¢)

CpCO CopSypSe —CySp S¢Sy + CpCyp SO 1 2 "3 (10)
= |COSp CpCyp+SpSypSH CypSpSO —CopSyp| = |11 122 1231,
—S6 CoSy CyCo r31 Tt 133

and being 6 € |—71/2,+7/2|, then, the correspondent Euler angles can be expressed as

¢ arctan (771, 711)
0| =E&M) = |arctan (*1’31/ /15 + 1’%3) . (11)
(4 arctan (r3p, 33)

If0 = £m/2 (r11 = ro1 = 132 = r33 = 0), ¢ or ¢ can be arbitrary (gimbal lock). In that case, we can
adopt the convention ¢ = 0 and ¢ = arctan (—r1p,722).
Formally, the “mean rotation” is obtained using all K samples of ¢;, 6;, i; in the following manner,
X 1& 1&) 1 &
R=RPY{ g L9 LOw g LY (12)

i

If individual transformations have some normalized degree of confidence y;, where YX u; = 1,
then rotation and translation “averages” can be obtained in the classic way:

. 1 & 1 & 1 & . 1 &
R =RPY <K ;WPhE;%@i,R;%% and t= R;P‘iti (13)

An even more compact and straightforward approach, even though with slightly different results
(due to the least square fit technique associated), is to use SVD. First, we calculate the decomposition using
traditional tools:

{U T V} = SVD (Z Ri> (14)
i
and then obtain the “average rotation” R using
R =VUT. (15)

In case different degrees of confidence in the geometric transformations are available, we can weight
the various transformations R; using the following,

[U z V] — SVD (2 yiRi>, (16)
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assuming that YN y; = 1, but not necessarily. Indeed, if a given R; has a larger confidence (for example
the double of the remainder) it would be added twice in expression (16). In all cases, the final “average”

transformation is given, of course, by T = [ﬁ ‘ f] .

4. Propagation of Uncertainty with a Simulated Experiment

To test the properties and potential advantages of the approach, we perform a simulation considering
a set up based on the ATLASCAR? prototype [35]. Figure 5 shows the car with four sensors placed on
their own coordinate frames (Fy, F, F», F3). The geometric transformations between all pairs (T4, °T,, 0T,
1Ty, 1T3, 2T3) are measured experimentally, most likely with some errors both in translation and rotation.

Figure 5. Example of four sensors in ATLASCAR?2 vehicle.

This section will demonstrate with numerical examples and a systematic analysis that using
combinations of multiple pairwise transformations, within certain conditions, decreases the error that
occurs in each simple transformation between pairs of sensors in the car.

For this experiment, we use the real relative postures in terms of position (x, y, z), in meters, and Euler
angles (¢, 0, 9), in degrees, of the remainder three sensors, respectively, to the reference sensor (F), using
the notation {x,y,z,¢,0, }, are defined as follows.

OF, — {-0.05,-1,0.25,35,0,0},°T, — {-0.05,1,0.25,-35,0,0},°T; — {-0.02,0,0.50,0,0,0}. (17)

The approximate numerical values of the transformation matrices are then given by

0.8192 —0.5736 0 —0.05 0.8192 05736 0 —0.05 10 0 —0.02

N 05736 08192 0 -1 - —0.5736 08192 0 1 . 010 0

0 _ 0 _ 0 _

T = 0 0 1 025 |’ T = 0 0 1 025 T = 0 0 1 005 (18)
0 0 0 1 0 0o o0 1 000 1

We propose to determine °T; by applying the algorithms described in the previous sections. As we
have four sensors in the setup (N = 4) we have five (see Table 1) possible transformation paths (19):

OT({ = OTI
T} = 01T,

Oﬁ = OT22T33T1
T =TT,
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For the purpose of this experiment, we do not use any point clouds and we assume that the
transformations are already available (for example, after using the matching technique mentioned earlier).
To continue the experiment, we need all the multiple pairs of transformations 2T, 3T,, 2T, etc., which

are calculated by simple algebraic manipulation: for example, 2T, = (°T,) - 0T, and so on. As it is
expected, with these “perfect” geometric transformations, all the procedures presented earlier, namely,
the average transformation given by expression (15) and related, produce the perfect result. In other words,
the following operations,

[U £ V] =svD("R)+ R} + R} + OR} + °R}) with OR; = UVT, 20)

confirm that Oﬁl = Of{1, and the same for the translation part, which is easier to calculate (a simple
arithmetic mean). However, the important issue here is to study the effect of errors in the transformations
and how they propagate through the operations, and the calculation of the average transformation to
reduce the error in the final °T,. For this purpose, a systematic test of uncertainty propagation was carried
out using a Monte Carlo Simulation (MCS) to study the propagation of errors when multiplying the
geometric transformations given in (19), and their subsequent combination.

The uncertainty in the transformation matrices may have origin in any of the the six variables:
¢,0,9,tx,ty, t;. Therefore, to apply the MCS method to study uncertainty propagation, an explicit
expression for theses variables was derived for all matrix multiplications in (19) using expression (11) for
the angles, and the three lines of the fourth column of the resulting matrix for the translation.

To perform this operation, the nominal values presented in (17) are used with an additional term
that represents the uncertainty in each variable for each of the three base matrices, yielding a total of six
sources of uncertainty for each matrix involved. In (21), the authors present an example of one of those
transformation matrices with the six uncertainty values:

1 0 0 tx1+Axl

. 01 0 t,+A

0fa ! Y1

T = RPY Ay, 01 + A6y, Adr).

P70 0 1 £ 4 Az | < REYO1 A9 0+ AL g+ Ag) 21)
000 1

For the the purpose of MCS, a new notation is introduced to identify a matrix that includes the
uncertainty terms to study the uncertainty propagation: °T5.

However, to fully simulate uncertainty propagation in the expressions of (19), intermediate matrices,
such as ZTl, 3"1"1, 2"1"3, etc., are also needed, but they are not available because in this simulation there
are no point clouds to extract the matrices from them. Therefore, these matrices have to be derived from
combinations of the others, but with their own terms of uncertainty and not the terms from the others
that originate them by multiplication or inversion. This is necessary to have an unbiased experience and,
of course, the consequence is to add more degrees of freedom for the MCS.

For example, 2T% can be obtained after (°T5)~! x T and if it were to be studied on its own
(the propagation of uncertainty that reached it), no further manipulations would be required to study this
uncertainty propagation. The issue is that 2T§ is to be used in other expressions and for simulation
purposes there should not exist unrelated terms of uncertainty with the same name. Therefore,
for this example and all the others in a similar situation, the terms of uncertainty were renamed to allow
true independence during the MCS tests. The procedure was to replace the [A¢py, AB,, A, Aty,, Aty,, Aty ]
in T4 by new terms, namely, in this specific case by [Apusz, Az, ApuzaBty, s, Aty o, Atz o]
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For each of the matrix operations from (19), the MCS method was applied to the intricate analytic
expressions resulting from the application of (11), where the variables depend on many sources of
uncertainty: for example, matrix T1* depends on 30 sources of error from the accumulated operations in
this simulation. This is actually a worst case scenario not usually occurring with experimental data.

Both uniform and Gaussian probability density functions (PDF) were used, and several uncertainty
values (standard deviation) were tested for the angles and for the translation components. To ease the
implementation of the process, in each trial, the same value in radians for angles and in meters for
translations was used for all parameters. This option was taken for simple simulation convenience;
therefore, an input uncertainty of 0.1 results in 0.1 rad, which is about 5.7°, and 0.1 m for the translation
parts. The parameters of the full experiment are as follows.

Number of samples for the MCS: 10° for each transformation path;

Standard deviations of input uncertainties:
—  for translations (in meter): {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5};
- forangles: {0.6°,1.1°,29°,5.7°,8.6°,11.5°, 14.3°,17.2°, 20.1°, 22.9°, 25.8°, 28.6°};

e  PDF for the samples: Gaussian and uniform distributions;

The final results are of the same nature for all six functions for the four transformation paths (five
with the direct °T%). This means that the PDF of the uncertainties is preserved to the final output, namely,
for the Gaussian PDF (Figure 6). Curiously, uniform PDF in the input maps also as uniform PDF for the
variables in matrix °T{ (shown in the third histogram of Figure 6), but maps to Gaussian PDF for all the
other (OT%A, OT%A, etc.).

> 4000 |- 4000 |- -1 4000 |- .
c
3
g
= 2000 - - 2000 - 2000 |- .
3
o
% H
< (e = 0 - 0 .
T T T T T T T T T T T T T T T
10 20 30 40 50 60 -14 —-12 -1 -0.8 —-0.6 32 34 36 38
Values of ¢ in (°) Values of t, in (m) ¢ in a uniform PDF

Figure 6. Histogram of variables ¢ and t,,, with mean value marked, and, respectively, 0, = 4.8° and
ot = 0.08 m when the original Gaussian uncertainty is 5.7° and 0.1 m. The third histogram on the right
shows the final PDF of ¢ when the uncertainty is uniform, but now with oy = 1.36°.

The wealth of data generated by the MCS allows the analysis of the properties of this technique that
is necessary for the multi-pairwise-based calibration. Two main issues must be observed: how the mean
value of each variable is preserved among the several magnitudes of uncertainty, and how uncertainty (the
standard deviation around the mean) is propagated on each transformation path. Finally, and following
the central purpose of this multi-pairwise technique, what are the gains in terms or error propagation
when combining (averaging) the results of all the transformation paths involved.

Table 2 shows the mean values of the six variables (orientations and translations) at the end of the
five transformation paths, along with their mean values, including also the real ground truth values for
easier comparison. This case was for an input uncertainty of 0.1 from a Gaussian PDF.
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Table 2. Mean values of the six variables for the transformation paths using a Gaussian distribution of
errors on all variables with an initial uncertainty of 5.7° for angles and 0.1 m for translations.

Real Value 0"1"1 OT% OT% OTi OT‘{ Overall Mean
¢ (©) 35 35.02 34.96 35.03 34.99 35.03 35.01
9 (°) 0 0.01 0.03 0.04 —-0.08 —0.03 —0.01
P (°) 0 —0.02 0.05 —-0.03 —-0.02 0.04 0.00
fr (m) —0.05 -0.05 -005 -0.05 —-0.056 —0.05 —0.05
fy (m) -1 —-1.00 —-096 —098 —-094 —094 —0.96
£, (m) 0.25 0.25 0.25 0.24 0.25 0.25 0.25

It can be seen that practically all transformation paths originate mean values very close to the real
value in spite of all the uncertainties of the operations. Nonetheless, this performance degrades for higher
values of uncertainty as detailed ahead.

The other important issue is the propagated uncertainty on each operation, and how is it compensated
by the combination of the multiple results. As stated earlier, the standard deviation is the central measure
and it is used to translate the uncertainty. When averaging multiple random variables, the standard
deviation of the result (cs) is given by (22) where for this case five variables, and their individual standard
deviations, are used:

JoR o+ 03 +03+ a3
oM = 5 . (22)

If op1 — the final mean propagated standard deviation — is smaller than the individual uncertainty
of the simple pairwise transformation, then the process reduces the uncertainty present in that single
geometric transformation. For the same example given in Table 2, Table 3 shows the standard deviation
(propagated uncertainty) for each transformation path, along with the mean standard deviation (o) that
results from the average of the five transformation paths.

Table 3. Standard deviations of the several posture variables for the transformation paths assuming a
Gaussian distribution of errors on all variables with an initial uncertainty of 5.7° or 0.1 m.

of,  of] 012 of3 o oM
o ) 5.723 10.031 9.985 12.978 12952 4.7718
oy (°) 5.726 9.845 9.822 12.674 12.657 4.6777
oy ) 5.734 10.002 10.006 12.968 12.939 4.7692

o, (m) 0.100 0.328 0.223 0.382 0.380 0.1353
0, (m) 0.100 0.178 0.177 0.232 0.236  0.0854
o, (m) 0.100 0.328 0.223 0.381 0.380 0.1351

As Table 3 shows, except for t, and f, whose nominal values are too small when compared to the
large input uncertainty, thus not relevant here, the combined propagated uncertainty is notoriously smaller
than the initial uncertainty, even if the individual propagated uncertainty increases in the majority of the
transformation paths. To better analyze and express the results, a concept named gain of propagated
uncertainty, or G, is created and defined as in (23),

7

Ga:mzl_@ (23)
01 4]

where o) if the average propagated uncertainty and o7 is the initial uncertainty on the variables (0.1 m for
translations or 5.7° for rotations in the previous example).
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Table 4 shows more details on the results of the process taking as example one of the angles (¢)
and one of the translations (t,). This table covers results for several input uncertainties (named oy for
angles and ¢; for translations) and, along with the mean values for the angle and the translation (¢, £,),
shows both the final deviation of the variables (A,¢ to express the relative deviation for angle ¢, and At
for the relative deviation for translation ;) and the gain in uncertainty reduction (labeled Error reduction
in the table) showing the gains for ¢ and t, (respectively, Gy, and G, ).

Table 4. Summary of uncertainty propagation when using 5 paths with Gaussian PDF for input uncertainties
in the MCS analysis. Example for two variables ¢ and t,,. The last two columns in the table show the gains
in error reduction by using the multi pairwise approach.

Input Uncertainty Results for ¢ and t,, Error Reduction
or(®)  or(m)  9(°) Mg H(m) Aty 0p(°) or,(m)  Go, Go,
0.6 0.01 3500 0.0% —1.00 0% 0.47 0.01 17.5% 16.9%
1.1 0.02 3500 0.0% —1.00 0% 0.95 0.02  17.5% 16.9%

29 0.05 35.01 0.0% —0.99 1% 2.37 004 174% 16.4%
5.7 0.1 3499 0.0% —0.96 4% 477 0.09 16.8% 14.8%

8.6 0.15 3498 01% —0.92 8% 7.24 013 15.8% 12.4%
11.5 0.2 3500 0.0% —0.86 16% 9.92 0.18 13.5% 9.5%
14.3 0.25 3493 02% —0.80 26% 12.95 0.23 9.6% 7.0%
17.2 0.3 3454 13% —-072 39% 16.39 029 47% 4.8%

From Table 4, we can conclude that the gains in uncertainty reduction can be as high as 17 % for
small uncertainties but reduce gradually when the input uncertainty reaches values beyond 10° or 0.2 m.
Furthermore, the mean values of the variables almost do not degrade, although mean values of translation
variables degrade faster than for angles for larger input errors.

Figure 7 plots the gains in uncertainty reduction for the two variables analyzed in detail, and we can
even observe the case where the gains become negative for input uncertainties after the value 0.35 (rad for
the angles), making the approach theoretically ineffective in terms of uncertainty reduction. Nonetheless,
note that the mean values of variables (at least those with nominal values much larger than the input
uncertainty) still hold close to the real value.

20 T T

X

)

Q

g 10f |
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=
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g ol i
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I

O -5 kb | | | | | | | | | —

0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5

Input uncertainty (rad or m)

Figure 7. Gains in error reduction of the multi-pairwise approach for two variables: one rotation (¢)
and one translation (t,). For input uncertainties beyond 0.35 (radians or meters) the gain become loss,
and the process is no longer advantageous, ceasing the usefulness of the technique for this setup.



Sensors 2020, 20, 6717 20 of 31

In summary, as long as mean values of variables do not deviate too much and the error reduction is
positive and meaningful (possibly around 10 % or more), the technique of multi-pairwise combinations of
geometric transformations is valid and useful.

This MCS testing methodology has shown great reliability because different repetitions yielded these
same tables of results with occasional fluctuations only in some decimal places, despite the random nature
of the MCS. Moreover, the tests were performed with other nominal values besides those presented
in expression (17) and, as would be expected due to the nature of MCS, the results and limits of the
propagated errors are similar for the same number of geometric transformations.

For complementary comparison, Table 5 shows something similar to Table 4, but only with
transformation paths up to length 2; that is, only three transformation paths to combine.

Table 5. Summary of uncertainty propagation when using 3 paths with Gaussian PDF for input
uncertainties. The last two columns in the table show the gains in error reduction by using the multi
pairwise approach. The results are poorer than those shown in Table 4.

Input Uncertainty Results for ¢ and ¢, Error Reduction
or(°) ot(m) #(°) A Ey(m) Aty 0'45(0) Ot, (m) G% Gmy

0.6 0.01 3500 0.0% —=1.00 0.0%  0.5065 0.0089 11.6% 11.2%
1.1 0.02 3500 0.0% -1.00 01% 1.0117  0.0177 11.7% 11.3%

29 0.05 3500 0.0% —1.00 05% 25270 0.0446 11.8% 10.8%
5.7 0.1 3500 0.0% —-098 20%  5.0754 0.0899 11.4% 10.1%
8.6 0.15 3497 01% —096 4.6%  7.6610 0.1366  10.9% 8.9%
11.5 0.2 3499 0.0% —092  83% 10.3880 0.1859  9.3% 7.1%
14.3 0.25 35.09 03% —0.88 13.4% 13.2510 0.2367  7.5% 5.3%
17.2 0.3 3497 01% —084 19.6% 16.4970 0.2898  4.0% 3.4%

It can be observed that the results on Table 5, where only three transformation paths are used,
and not five as earlier, are poorer, especially in the error reduction gain. From these two last tables it
can be concluded that the most interesting solution is to combine more transformation paths, but shorter
transformation paths are preferable because they propagate less uncertainty (as Table 3 confirms).

The previous observation can be used to corroborate one of the heuristic proposals made earlier on
how to pick which transformation paths to combine. Therefore, a good proposal seems to be use more
short transformation paths instead of fewer longer transformation paths. For many sensors this would
require a further study to find the best trade-off of on many transformation paths of length 3, four or more
would be useful to add to the list of all transformation paths of length 2.

To conclude this analysis, a last table (Table 6) is presented where the PDF of the input uncertainties
is taken as uniform and not Gaussian. Here, five transformation paths were used for the same values of
initial uncertainties as before. The most noticeable observation is the large gain in uncertainty reduction
(more than 75 %) for all tested uncertainties. Indeed, uniform distributions keep the error limited and
restrict the propagation. Mean values are well preserved for all variables and standard deviations kept
low (though still larger for translations) but, in the end, showing clear benefits of using the multi-pairwise
technique. The only caveat is that, most likely, the sources of error cannot be considered uniform, that is,
not strictly limited to an interval, and that is why Gaussian approaches, being more conservative, appear
thus to be safer in performing uncertainty predictions in this context.
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Table 6. Summary of uncertainty propagation when using five paths with uniform PDF for input
uncertainties in the MCS analysis. The last columns in the table show the gains in error reduction by
using the multi pairwise approach.

Input Uncertainty Results for ¢ and t,, Error Reduction
or(®) or(m)  $(°) A B(m) Aty 0p(°) o, (m)  Go, Go,
0.6 0.01 35.00 0.00% —1.00 0.01%  0.137 0.002 76.2% 76.1%

1.1 0.02 35.00 0.00% —-1.00 0.01%  0.273 0.005 76.2% 76.0%
29 0.05 35.00 0.00% —1.00 0.08%  0.682 0.012  76.2% 76.0%
5.7 0.1 35.00 0.00% —1.00 0.30% 1.363 0.024 76.2% 76.0%
8.6 0.15 3499 0.02% —099 0.69%  2.047 0.036  76.2% 75.9%
11.5 0.2 35.00 0.00% —099 121% 2739 0.048 76.1% 75.8%
14.3 0.25 3501 0.03% —098 1.92%  3.429 0.061 76.1% 75.7%
17.2 0.3 3498 0.07% —097 277%  4.123 0.073  76.0% 75.6%
20.1 0.35 3500 0.01% —096 3.76%  4.814 0.086 76.0% 75.5%
229 0.4 35.00 0.00% —095 4.94%  5.528 0.099  75.9% 75.3%
25.8 0.45 3499 0.03% —094 6.31% 6.230 0112  75.8% 75.2%
28.6 0.5 35.03 0.07% —093 7.89% 6.976 0125 75.7% 75.0%

In conclusion, this section demonstrated the viability and advantage of the multi-pairwise technique to
perform sensor calibration within some conditions and limits. For a set-up with four sensors, the technique
is advantageous and viable if initial angular uncertainties are less than about 15° and translation
uncertainties less than about 0.15m. If these restrictions are ensured, then, statistically, and assuming
Gaussian uncertainties, the multi-pairwise approach improves the accuracy of the calibration among
multiple sensors.

In summary, the operation of “averaging” geometric transformations can reduce the error present
in the relative position of sensors. Nonetheless, although demanding and perhaps too conservative,
the results of this theoretical approach are harder to compare with those from experiments using real data
because ground truth is usually not available or not very precise. Therefore, in real data experiments,
either there is an estimate of the ground truth of the sensor relative placements, or some alternative metric
has to be used, such as the mean square deviations of 3D points recalculated with the estimated geometric
transformations. The next section, dedicated to results, describes these issues in detail.

5. Results

The previous section presented an analysis of uncertainty propagation using a case study for more
clarity, but demonstrated that, in some conditions, the multi-pairwise approach reduces the uncertainty in
calculating the geometric transformations, by analyzing the propagated uncertainty in final orientations
and translations of the several sensors relative localization, which is the essence of extrinsic calibration.

This section provides an approach using sets of points (also named point clouds throughout this
paper) to extract the single pairwise transformations and obtain the multi-pairwise transformation and
compare performance in two perspectives.

Indeed, this procedure to obtain results hinders a subtle, but determinant, change as the geometric
transformations do not exist as before in Section 4, but are extracted after the point clouds, which will lead
to interesting results as discussed further. Experiments were done both with real data from sensors and
simulated point clouds.

The experiment used four different sensors. The principle is independent of the nature of the
sensor, as long as it can detect the center of the ball, so four different types of cameras were used: RGB,
monochromatic, infrared, and Kinect-based (for depth maps).
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An example of simple pairwise-based calibration has been previously used for the first three
cameras [8]. In the current work, we add a depth sensor to enrich the initial set-up. Indeed, depth
maps are obtained and, being 2D images, ball positions are detected with a Deep Learning trained
network used for RGB, mono, and IR images, which are all native, or converted to, simple grayscale
intensity images.

The detection of the ball center on all sensors is performed using Detectron2 deep learning
techniques [36] to detect a ball in successive frames. Figure 8 shows an example for the calibration
procedure with three point clouds: one obtained from the RGB camera (blue), another from the Mono
camera (green), and the third (red), which is the calibrated version of the green relatively to the RGB camera.
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Figure 8. Illustration of the results of calibrating a RGB and Mono camera. Through the registration
procedure, green points are transformed into red points which match closely the blue point cloud.

In the experiments carried out, the four cameras were placed in several positions ensuring a common
field of view favorable to capture the ball during its motion. In each frame, the center of the ball is detected
and saved in a point cloud of all the viewed ball centers for each of the four cameras. This center can be
calculated in the coordinate frame of the camera, in meters, using optics and lenses equations (intrinsic
matrix). By using the methods presented earlier for matching point clouds, the pairwise transformations
between the sensors are estimated, opening the way to the application of the multi pairwise method
proposed in this paper.
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Contrarily to simulation, no ground truth is available for the experimental data. Therefore, the metrics
to assess the performance of the method is based on the deviation between the point cloud from the
reference sensor and the point cloud from another sensor after the calibration process. For the metric based
on distance deviations, we use the relative deviation (in percentage) of the root mean square (RMS) of
absolute errors which are measured in mm.

Experiments have shown that outliers occur frequently in the ball detection phase. That can have
several reasons and depends on the type of sensor used. The deep learning detection algorithm shows
most of the times very high levels of confidence (98%), but sometimes they are lower. The resolution
of some cameras (namely, the infrared) is much lower than the other sensors, creating uncertainties in
obtaining the center point of the ball; for some sensors, it is harder to obtain precise intrinsic parameters
and, again, the infrared camera is the strongest example. Additionally, illumination conditions are not
always ideal and that too can affect precise detection. All these issues may occur in smaller or larger
extents and can generate errors in the ball center detection and outliers.

These outliers can be detected by evaluating the distance between the reference point cloud and the
transformed point clouds of the sensors (using the pairwise transformation). Figure 9 (left) illustrates
the situation for the case of two sensors where several samples (after sample number 40) exhibit a large
disparity when compared to the remainder. The error displayed in the plot is calculated for each point P; of
point cloud from sensor 0 (reference) to respective point Q; of point cloud from sensor m, after calibration,
in the following way.

1P ="T,0i

e (24)
l [P

Clearly, some of the points illustrated are outliers and result possibly from a poor detection of the target in
one, or both, sensors. Those original samples that do not match a given criteria have to be removed from
both point clouds to keep the correspondence for the pairwise calculation.
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Figure 9. Percentage of error between each point of one point cloud with another point cloud before (left)
and after (right) the application of Chauvenet criterion for outliers removal.

The process selected to eliminate outliers is the Chauvenet criterion, first devised by William
Chauvenet in 1863 [37], but broadly applied and documented in many sources [38]. This technique
identifies samples that fail to fit a normal distribution with a given probability based on their deviation
from the mean using also the standard deviation for the calculation. The samples that fail the test are
considered outliers, and the pairwise calculation of transformations is recomputed with the “clean” set
of samples.
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The Chauvenet test can be applied recursively until no outliers remain. However, if the distribution
is not Gaussian (or unknown), the process may exaggerate the pruning of the data set and can remove too
many samples. Therefore, in this work, two iterations of the criterion are applied to ensure that potential
residual outliers from the first iteration are removed. With the point clouds freed from the outliers (as in
the right side of Figure 9), the calculation of calibration matrices, both single- and multi-pairwise, can be
performed with more confidence.

To test and analyze the technique proposed, simple experimental set-ups with the four sensors were

used as the one illustrated in Figure 10.

Figure 10. Example of set-up to collect data with the sensors placed in variate positions and orientations.
A is the depth camera, B the IR camera, C the monochromatic camera, and D the RGB camera.

Similarly to the set-up in Figure 10, other data collections were gathered using other set-ups and
sensor arrangements. For example, the set-up shown in Figure 11 generated the point clouds illustrated on
the right, where clearly some of them are defective, compromising the proper illustration of the concepts
being proposed in this paper. This may have occurred both for the reasons described earlier and for other
unexpected factors that restricted the data acquisition procedures.

To overcome the restrictions encountered in the particular experimental data collection, as the one
shown in Figure 11, it was also decided to synthesize point clouds on a similar configuration and add
noise in all coordinates as an attempt to emulate real point clouds. Although these points and the results
thereof are not from real sensors, they hopefully follow the pattern of a real setup, and the noise emulates
some of the acquisition errors. The results were analyzed using two different metrics: one based on the
relative value of the root mean square of the distance between point clouds (from the reference sensor and
from the calibrated sensor), as given by expression (24), and a second one based on the deviation of the
calibration matrices, in a line similar to the study performed in Section 4, and deviation in translations
and Euler angles are assessed. The first metric can be applied without having any ground truth (compare
the results with single versus multi pairwise) and the second one requires a ground truth to compare the
calibration matrices from single- and multi-pairwise approaches with the correct value. This second metric
can be used in simulated data only because only there a ground truth is available.

Multiple experiments were done with simulated point clouds, both encompassing systematic and
random errors as the one shown in Figure 12 where nominal points follow a grid-like layout for easier
visual tracking, but other arrangements, even fully random, were tested.
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Figure 11. Example of another setup to collect data from sensors. On the right an actual collection of point
cloud that shows serious defects making them mostly unusable for calibration. Units are in mm.
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Figure 12. Example of synthetic point clouds with systematic and random errors in a sensor arrangement
similar to the one in ATLASCAR2. Units are in mm.

However, almost all results have shown little or no improvement at all of the direct application of
the multi-pairwise (MPW) matrices when compared to the single-pairwise (SPW). Figure 13 shows the
detailed point-to-point relative error for the pairs mono to depth, mono to RGB, and mono to IR for some
other simulated point clouds, and differences between methods are barely noticeable.

An explanation for what was observed in the simulated data is given next. In ideal conditions,
the SPW and MPW approaches give the same results for multisensor calibration, making it unnecessary
to use the later. Additionally, as verified, when using synthetic point clouds, the advantages of MPW
have shown to be too little to be useful. Indeed, when comparing with the study made in Section 4,
now the geometric transformations are not all truly independent since they are obtained after pairs of point
clouds; therefore, the same point cloud is used multiple times for different geometric transformations.
These effects are even stronger in simulated data, and that is why the experiments were redirected into
another point of view. The validity of transformations using MPW still stands but, as it is shown next,
it will be used in a indirect approach.

As the simulated point clouds were not as rich as real data, the experiment presented earlier from the
setup in Figure 10 was chosen and analyzed from another perspective. Both SPW and MPW approaches
were tried, as shown in Figure 14 and also in the Chauvenet polished version in Figure 15, and there
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are points in the real point clouds for which the MPW performs better than for the SPW, and vice versa.
In average, for the entire point cloud, the MPW performs similarly to the SPW, but individually in each
point it performs either better or worse, which is a hint to exploit further.
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Figure 13. Relative distance errors between every pair of points for the SPW and MPW approaches after
removing the outliers with the Chauvenet method for an input error of about 10 mm in the point clouds.
Both techniques give practically the same results, as shown by the clear overlap of plots.
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Figure 14. Root mean square (RMS) errors for SPW and MPW for the three sensors relatively to the reference
sensor (RGB camera) for the raw point clouds with 82 points obtained in the setup from Figure 10.

Figure 15 shows the individual point errors after applying the Chauvenet criterion to eliminate

outliers on the raw point clouds with the results shown in Figure 14.
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Figure 15. RMS errors for SPW and MPW for the three sensors relative to the reference sensor for the point
clouds whose results are shown in Figure 14 but where outliers have been removed by Chauvenet criterion.
Number of removed outliers varies with the combination of sensors.
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After observing the results in Figures 14 or 15, the hypothesis proposed is that poorer performance
in the MPW in some points can represent situations of points that were captured with larger errors and
compromised the point clouds and the geometric transformation generated after them. Therefore, using
the real data, a series of experiments was carried out in order to improve the quality of the point clouds
using the MPW approach. The workflow is the following for four sensors.

Obtain the three SPW transformations after the four point clouds.
Obtain the associated MPW transformations using all SPW and all the other inter-point cloud
transformations.

e  Apply the Chauvenet criterion to eliminate points by analyzing the recalculated error using the SPW
with expression (24).
Recalculate SPW and MPW matrices for the three sensors relatively to the reference sensor.
Eliminate from the point clouds all points that have a larger error when using the MPW matrix.
With the new filtered point cloud, recalculate the SPW matrix and use it as final value for the
geometric transformation w.r.t. the reference sensor.

The procedure just described was applied and produced the plots of Figure 16, and the results are
summarized in Table 7.
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Figure 16. RMS errors for the three sensors relative to the reference sensor for the point clouds whose
results are shown in Figure 15 but with additional points removed by observing the MPW versus the SPW
results. The observable conclusion when comparing to previous figures is that additional outliers have
been removed even after the application of the Chauvenet criterion.

From Table 7, it is clear that the process of removing outliers decreases the RMS error along with its
standard deviation, which is equivalent to state that the geometric transformations (calibration matrices)
are more accurate than the ones calculated with the raw point clouds. The reduction of also the standard
deviation reinforces the fact that more accurate point clouds are obtained in this process.

The Chauvenet criterion gives a first step in discarding outliers, but the analysis of the MPW for
each point allows the elimination of additional selected points, thus giving smaller mean errors. In the
end, as shown in the last column of Table 7 there is a substantial reduction of the RMS error associated to
the calibration matrix for each sensor relatively to the reference sensor. In the particular case of sensor
3, the mean error was already small because sensor 3 and the reference sensor lay attached on the same
physical structure, but even there occurs an improvement on the point cloud, and therefore a better
calibration matrix is obtained.

The results just presented demonstrate the usefulness of the MPW technique to assist the improvement
of the point clouds in order to obtain better transformation matrices for the multi sensor extrinsic
calibration process.
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Table 7. Summary of results for the RMS relative error and its associated standard deviation between each
sensor and the reference sensor upon outlier removal with Chauvenet criterion and using MPW. Errors
are in percent values as well as their respective standard deviations (stdev). The last column shows the
reduction factor (final value/initial value) of mean errors and standard deviations from original raw point
cloud to the final point cloud purged from outliers. Overall, mean errors and standard deviations for SPW
and MPW are similar so only one of them is shown.

Target Sensor Raw Point Cloud  Chauvenet Removal MPW Based Removal Reduction Factors

Total points 82 75 29

1 Mean error 7.0 54 43 61.4%
Stdev 49 3.6 2.3 46.9%
Total points 82 75 36

2 Mean error 8.5 6.5 5.8 68.2%
Stdev 6.0 4.0 3.0 50.0%
Total points 82 78 36

3 Mean error 12 1.0 0.7 58.3%
Stdev 0.8 0.6 0.5 62.5%

6. Conclusions

This paper proposes a methodology to perform semiautomatic calibration of several sensors.
The requirement is to detect, simultaneously in all the sensors, corresponding 3D points in space,
for example, by detecting the center of a moving ball in their field of view. The solution builds upon a
technique proposed in previous works [1,8], by combining multiple geometric transformations in several
transformation paths to refine or complement the computation of extrinsic parameters of all sensors w.r.t.
one sensor defined as the reference. We refer to this approach as a multi pairwise approach for sensor
extrinsic calibration, as, instead of considering only transformations between pairs of sensors (as is the
case of many previous works), this technique takes into account all sensors to establish the geometric
relation between each pair. The technique also proposes alternatives to limit the number of transformation
paths to use in order to circumvent the potential explosion in the number of paths that can originate from
a transformation graph.

The technique has some advantages and applications, although not all of them always occurring,
depending on the data and nature of sensors. Indeed, there are two different ways of using the MPW.
First, if estimations of all geometric transformations between pairs of sensors exist and are obtained
independently of each other, even if under some conditions, the MPW gives a solution with less
error than SPW as was demonstrated in Section 4. On the other hand, if point clouds are available
instead and geometric transformations are obtained using matching techniques, the MPW technique
allows a refinement of the point clouds by eliminating points that escaped traditional outlier filtering,
as demonstrated in the experimental results using the Chauvenet criterion.

More specifically, the technique was demonstrated theoretically to reduce the propagation of
uncertainty under certain conditions. For a configuration inspired on a real setup with an instrumented car,
initial uncertainty of values of up to 0.3 rad or 0.3 m on all angles and translations, are reduced by the MPW
approach, which shows its advantage, as was demonstrated with a Monte Carlo Simulation methodology.

When point clouds are available, as shown in the results section, and that is probably the most
common situation in the context of this work, the geometric transformations are not all independent
and the simple replacement of the SPW matrix by the MPW may not result in error reduction. However,
the MPW results in individual points can be used to filter out points that exhibit errors that degrade the
calculation of the SPW (and the MPW all along). The outlier removal by Chauvenet criterion produces
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interesting results, but the further elimination of points with the application of the MPW refined the point
clouds, allowing a new geometric transformation with even less error.

It was also verified that the uncertainty on the calculated calibration matrix is better for a larger
number of transformation paths, and preferably using the shortest paths. Indeed, shorter transformations
paths propagate less uncertainty and more transformation paths reduce the final uncertainty. In the cases
presented using four sensors, five transformation paths exist, one with length 1 (the direct path, the one
used for the SPW), two with length 2, and two with length 3. In the context of the approach described
in Section 4, using all five transformation paths achieves better results than using only three of them.
This effect would be stronger in set-ups with more sensors and more transformation paths. This opens
a door for future developments by analyzing the several transformations paths available and pick only
some of them that fit some criteria to be investigated.

The paper focused mainly on the advantages of the multi pairwise approach in two different
perspectives and contexts of the available data, but the overall technique using the ball can be developed
further. Indeed, the technique presented does not yet solve all the challenges of multimodal extrinsic
calibration. An opportunity remains to merge with optimization techniques discussed in the related work.
Other future developments will continue with the purpose of overcoming limitations inherited from the
earlier approach, and not yet tackled in the present work, like the ambiguity in the detection of the ball
hemisphere which occurs in some LIDAR sensors. Solutions for those challenges will possibly count with
3D dynamic tracking of the ball put in motion using more elaborate motion patterns.
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