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Abstract: Background: A popular outcome in rehabilitation studies is the activity intensity count,
which is typically measured from commercially available accelerometers. However, the algorithms
are not openly available, which impairs long-term follow-ups and restricts the potential to adapt the
algorithms for pathological populations. The objectives of this research are to design and validate
open-source algorithms for activity intensity quantification and classification. Methods: Two versions
of a quantification algorithm are proposed (fixed [FB] and modifiable bandwidth [MB]) along with
two versions of a classification algorithm (discrete [DM] vs. continuous methods [CM]). The results of
these algorithms were compared to those of a commercial activity intensity count solution (ActiLife)
with datasets from four activities (n = 24 participants). Results: The FB and MB algorithms gave
similar results as ActiLife (r > 0.96). The DM algorithm is similar to a ActiLife (r ≥ 0.99). The CM
algorithm differs (r ≥ 0.89) but is more precise. Conclusion: The combination of the FB algorithm with
the DM results is a solution close to that of ActiLife. However, the MB version remains valid while
being more adaptable, and the CM is more precise. This paper proposes an open-source alternative for
rehabilitation that is compatible with several wearable devices and not dependent on manufacturer
commercial decisions.

Keywords: wearable sensors; activity level quantification; activity level classification; rehabilitation
technologies; rehabilitation engineering; accelerometers; physical activity quantification

1. Introduction

The popularity of wearable devices to monitor physical activity (PA) has increased widely during
the last decades. Plenty of wearable devices, from step counters to sleep monitors, are now available to
provide a broad spectrum of physiological measurements and feedbacks (e.g., step count [1], level of
activity [2], upper limb activity count [3], distance traveled [4], heart rate history [5]). These devices have
been widely adopted for everyday monitoring of PA, such as personal training (by providing to the user
a real-time feedback of their performance [6]), but are yet to be implemented in clinical physical therapy.
From a clinical perspective, healthcare services could benefit from wearable monitoring devices. Indeed,
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there is a vast diversity of available miniature sensors (inertial measurement units, electromyography,
heart rate sensors, dermatological sensors [sweating], etc.) and physical outcomes that can be extracted
from such sensors. Combined with the possibility to automatically save data on a secure cloud service
(as with most commercial wearable sensors), it would be possible to give direct feedback to patients or
to give better insight to clinicians about their patients’ everyday activity evolution, allowing them to
provide feedback and enabling more personalized interventions. For example, stroke survivors and their
rehabilitation professionals could benefit from a more comprehensive and quantitative assessment of the
real use of the affected arm after returning home by receiving daily feedback [7]. Children with cerebral
palsy would also benefit from a closer monitoring and feedback on their capacities before beginning
school to maximize functional gains [3]. Injured workers could benefit from a more realistic and
quantitative assessment [8] of environmental risk factors, which would help them return to work more
quickly and safely. Wearable sensors have the potential to improve clinical rehabilitation monitoring and
efficiency by allowing an objective, non-invasive and inexpensive way to evaluate physical functions [9].

However, wearable sensors are not commonly used in clinical practice as of now. The challenge
does not simply reside in the development of sensors and data processing algorithms, but also in
the transformation from raw sensor data to a feedback that is clinically meaningful to end-users.
Such a transformation crucially requires interdisciplinary collaboration. Furthermore, a major issue of
available commercial wearable devices is that the underlying algorithms are often protected either by
intellectual property or trade secrets [10]. This leads to two problems: (1) the algorithms are not openly
available which impairs data reproducibility and long-terms follow-ups if the technology becomes
discontinued; and (2) the algorithms might be based on data from young and healthy subjects, thus
reducing the variability of movement patterns and restricting their readiness to be used in pathological
population (e.g., children living with cerebral palsy or older stroke survivors). Reduction in movement
speed (e.g., multiple sclerosis) [11], impossibility to maintain or perform a calibration position (e.g.,
spasticity secondary to an upper motoneuron injury) [12], tremors (e.g., Parkinson disease) [13] or muscle
spasms (e.g., spinal cord injury) [14] are common problems that are encountered and that must be
considered when using portable devices for rehabilitation or medical purposes requiring algorithm
optimization. This uncertainty about the sustainability of commercial devices over time and the lack of
flexibility to adapt the algorithms to different clinical populations are major concerns for researchers
and clinicians.

A popular outcome that has been used in many rehabilitation studies [15–18] is the activity intensity
count to provide an insight of the physical condition/participation of their patient to the clinician.
This variable is extracted from accelerometers and consists of a scaled quantity of activity performed
during a certain amount of time. However, as is generally the case, algorithms from commercial activity
intensity count wearable devices are not publicly available (or open source) since they are protected
by trade secret. The development of an open-source activity intensity count algorithm is necessary
to ensure the sustainability of data processing and to enable researchers to optimize the algorithm to
given clinical populations. To this end, BrØnd & al. [10] have developed an open-source algorithm
statistically comparable to commercial activity intensity count solutions (e.g., ActiGraph GT9X, ActiLife).
Interestingly, the algorithm can be used with other accelerometer sensors or inertial measurement units
(IMU) (which comprise accelerometers), as they are based on raw data acceleration (in the case where
the commercial technology would be discontinued), assuming that the accelerometers’ specifications
are similar (raw data between accelerometers is typically similar but the accelerometer range must also
be similar).

However, the proposed algorithm in BrØnd & al. [14] has two main issues for clinical applications.
First, from its design, the algorithm obligatorily requires one to downsample the acceleration signal
sampling rate to 30 Hz, which can be too low for applications such as running (where a sampling rate
of at least 250 Hz is recommended [19]). Indeed, high movement speeds require a higher sampling
rate to ensure high data quality acquisitions and reduce the risk of missing data [20]. Sports medicine
in general (e.g., swimming, throwing a ball) and working environments (e.g., industrial factory work)
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with high biomechanical requirements are other examples of applications requiring high sampling
rates [21]. Secondly, the band-pass filter parameters of the proposed algorithm in BrØnd & al. [10]
cannot be modified because of the numerical optimization process used to find the parameters (the
filter parameters are complicated and they cannot be changed to accommodate another band-pass
frequency, for instance). Thus, the filter cannot be modified to adapt to various pathological conditions
and this could lead to underestimated or overestimated activity quantification depending on the
clinical population assessed. For instance, adapting the filter parameters (band-pass cut-off frequency,
notch filter) could help reduce the impact of tremors on the quantification of activity intensity count
data (e.g., tremors in Parkinson’s patients do not count as activity count), or involuntary movements
(e.g., spasms within children living with cerebral palsy) or very slow movements.

The objectives of the current study are to design and validate two activity quantification algorithms
and an activity intensity classifier: (1) a fixed bandwidth algorithm, which replicates commercial
activity intensity counts as closely as possible, allowing acceleration signal processing regardless
of sampling rates; (2) a modifiable bandwidth algorithm that allows us to easily adapt the filter
parameters, regardless of sampling rates; and (3) an activity intensity classification algorithm that
allows the modification of cut-off values according to the studied population, thereby reducing potential
saturation effects.

The paper is structured as follows: the descriptions of the two activity quantification algorithms are
first presented, followed by the description of the activity intensity classification algorithm. Thereafter,
the protocols used to validate the proposed algorithms are compared to commercial solutions. Then,
the results are presented, followed by a discussion and conclusion.

The proposed open-source software is available at https://github.com/ingreadaptulaval/activitycounts
and provides the quantification algorithms along with cut-points.

2. Materials and Methods

In this section, the proposed activity quantification algorithms (fixed and modifiable bandwidths)
and the activity intensity classification scale are presented, along with the protocol used to validate
them against commercial solutions.

2.1. Activity Quantification Algorithm

Two algorithms are proposed: a fixed bandwidth algorithm and a modifiable bandwidth algorithm
(which offers more flexibility).

Both algorithms have the same basic structure, which is first detailed here (see eight steps below)
and summarized in Figure 1.

(1) The 3D linear acceleration signals (ax, ay and az) are first sampled at a fixed frequency (e.g., 30 Hz
or 100 Hz).

(2) Each of the three signals is filtered with a passband filter (specific to each algorithm and
described below).

(3) A saturation (maximum threshold) limit of 20.874 m/s2 (2.13 g with g = 9.81 m/s2) [10] is applied
to each signal.

(4) A deadband (minimum threshold) of 0.6664 m/s2 (i.e., 0.068 g) [10] is applied to each signal.
(5) A scaling is then applied to convert the acceleration signal into a metric referred to as activity

counts. The scaling is 1 count = 0.001664 g = 0.0163072 m/s2 [22]. This scaling could be omitted but is
applied to match with the “count” definition from ActiGraph which was defined as such for historical
reasons [23].

(6) The counts are then multiplied by a factor (0.93 for the fixed bandwidth filter and 0.96 for the
modifiable bandwidth filter), as in BrØnd & al. [10], to better match the commercial activity counts
results. These values (0.93 and 0.96) were optimized with the least squares method to best match
ActiLife results.

https://github.com/ingreadaptulaval/activitycounts
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(7) Each of the three resulting signals from steps 1 to 5 are converted into 1-s epochs. This consists
of the sum of the counts acquired over 1 s divided by the sampling frequency to obtain the mean
activity count/sec, defined as sxi , syi and szi , where i is the epoch number.

(8) For each epoch, the total tri-axial vector magnitude (VM3) count is obtained with a Euclidian norm:

VM3 Counti =
√

sxi
2 + syi

2 + szi
2 (1)Sensors 2020, 20, x FOR PEER REVIEW 4 of 38 
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Figure 1. Activity quantification algorithm scheme.

2.1.1. Fixed Bandwidth Algorithm

The fixed bandwidth algorithm exactly follows the general sequence presented in the previous section.
The focus in this subsection is on the bandpass filter applied at step 2 of the algorithm. In BØnd & al. [10],
the commercial bandpass filter characteristics were identified by generating discrete sinewave signals
and successively sending them to the software. A discrete bandpass transfer function (at 30 Hz) of order
20 was optimized to represent the commercial activity counts filter. However, being defined only at
30 Hz precludes the algorithm use at other sampling frequencies, which is vital for other applications
(e.g., running, requiring sampling rates of 100 Hz to 500 Hz). Furthermore, it was found that the high
order of the filter also prevented the conversion of the discrete transfer function to other sampling
frequencies due to numerical instability. In the framework of this paper, a continuous 8th-order bandpass
transfer function has thus been used to mimic the commercial activity count bandpass frequency response.
Using MATLAB, a genetic optimization algorithm was used, starting from random continuous filter
parameters, and discretized to a 30 Hz discrete bandpass filter at each optimization step to match the filter
from BØnd & al. [10]. As the optimization result is the continuous filter parameter, it is then possible to
discretize the filter to any sampling frequency (e.g., 100 Hz). Figure 2A compares the proposed filter to
that of BØnd & al. [10].
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2.1.2. Modifiable Bandwidth Algorithm

This section proposes a modifiable bandpass filter version of the fixed bandwidth algorithm.
The advantage of the fixed bandwidth algorithm presented in the previous section is that the resulting
activity intensity counts are closer to commercial activity count solutions than to the modifiable bandwidth
algorithm. This might be an advantage because commercial activity count solutions have been validated
in the literature, and the results can be compared to those of previous studies that used commercial
solutions. Indeed, the commercial solutions’ passband filters were designed for healthy subjects and
might not be optimal for other clinical populations. However, because the fixed passband 8th-order filter
was obtained through an optimization process to best represent the commercial solution, changing its
bandwidth is not an obvious procedure. A simpler 4th-order passband Butterworth filter is thus proposed.
It was designed using MATLAB with the “butter” function and then discretized to the required sampling
frequency (e.g., 30 Hz or 100 Hz). The default filter parameters (i.e., high and low cutoff frequencies) were
obtained to be as close as possible to the BrØnd & al. [10] filter using a least square optimization approach
and are 0.305 Hz and 1.615 Hz, respectively. Figure 2B presents the proposed modifiable filter compared to
BrØnd & al. [10]. With this filter, the bandwidth can now be easily modified (by changing the high and low
cutoff frequencies) to adapt to the needs of different activities/clinical populations. One should note that
other algorithm parameters (deadband and threshold) can be adapted as well, as for the fixed bandwidth
algorithm. However, in exchange for such modularity, the modifiable bandwidth leads to larger deviations
from commercial activity counts as more approximations are required.
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2.2. Activity Intensity Classification

Based on the activity intensity counts, two activity intensity classification algorithms are proposed.
The goal of these algorithms is to determine the proportion of time spent in different categories of
activity intensity during an activity such as “light, moderate, vigorous, very vigorous”. The number of
categories and the threshold for each class (referred to as cutpoints) can vary depending on the activity.
Therefore, in order to compare the proposed algorithm to commercial activity intensity count solutions,
the Freedson Adult VM3 scale [24] was used. It is divided into four activity intensities (light, moderate,
vigorous and very vigorous) corresponding to the different ranges of activity counts per minute that
are shown in Table 1. The number of categories and cutpoint levels can easily be changed to any other
value as needed.

Table 1. Freedson 3 VM3 count cutpoints [24].

Activity Intensity Vm3 Counts per Min

Light <2960
Moderate 2960–6166
Vigorous 6167–9642

Very vigorous >9642

Two versions of the activity intensity classification algorithms are proposed: one referred to as the
discrete classification method and the other one as the continuous classification method.

2.2.1. Discrete Classification Method

The discrete classification method consists of summing counts (which, based on the quantification
algorithm are in 1-s epochs) into 1-min-epochs. A 3-min test therefore has three epochs: the sum of the
activity level counts from 0 to 60 s, from 60 to 120 s and from 120 to 180 s. Then, each epoch is associated
with an activity intensity category based on the threshold values presented in Table 1 (e.g., light). Finally,
the algorithm outputs the number of 1-min epochs for each category along with the representation percentage
in each activity intensity class. This discrete classification method is the one used in commercial solutions
such as ActiLife.

2.2.2. Continuous Classification Method

One potential problem with the discrete classification method is that the results may greatly vary
depending on how the activity levels fall within the 1-min epochs.

Figure 3 presents a fictive example demonstrating this limitation. Figure 3A shows an activity
level curve that lasts three minutes. Figure 3B displays the resulting 1-min epoch categories, assuming
that the activity started at the same time as data acquisition. Figure 3C shows the resulting 1-min
epoch categories assuming that the activity started 30 s after the onset of data acquisition. As seen
when comparing Figure 3B,C, the end result is quite different (the percentage in each class is different).

In order to alleviate this drawback, a new continuous classification algorithm is proposed, based on
a sliding window approach. Rather than using back-to-back one minute-epochs, continuous one
minute-epochs are used: at each second, a one minute-epoch is created by taking the 30 preceding
and 30 following seconds. This means that for a 3-min test, 180 overlapping one minute-epochs are
used and categorized. The aim of this algorithm is to be more precise in the cutpoint evaluation by
alleviating the drawback of the discrete classification method where the one minute-epoch level results
depend on when the movement starts with respect to data acquisition onset. Finally, the algorithm
outputs the number of epochs for each category together with the representation percentage in each
activity intensity class.
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2.3. Experimental Procedure

Data were gathered from four different projects involving accelerometry measures. These projects
were: (1) Activity of daily living (24-h data collection); (2) Bilateral manipulation in daily living tasks;
(3) Manual wheelchair propulsion; and (4) Real-world working environment—Nordic expedition
project on the Amundsen Research Ice breaker. In this section, the participants involved in each
experiment and the experimental setup of each project are described.

2.3.1. Participants and Experimental Setup

• Activities of daily living—24-h data collection (project 1):

Four participants (25 ± 0.82 years old, two men, four right-handed) wore two watches (one on
each wrist, sampling rate = 100 Hz, ±8G, ActiGraph GT9X-BT, ActiGraph, LLC) for 24 h. Activities
included but were not limited to running, walking, driving a car, dressing or working at a computer
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(see Annex 1, Table 1 for more details). Participants were instructed to fill in a custom-designed activity
logbook reporting the activities they performed each hour, and to remove the device only for activities
requiring water immersion (e.g., swimming, taking a shower). See Appendix A Table A1 for a synthesis
of the activities reported. Recruitment criteria were (1) being aged 18 years or older, and (2) having no
musculoskeletal, neurological disorders or pain. Every participant gave written informed consent prior to
participation and the project was approved by the local ethics committee (CIUSSS-CN; project #2018-609).

• Bilateral manipulation in daily living tasks (project 2):

Ten participants (27.9 ± 7 years old, three men, nine right-handed) wore two watches (on each wrist
[dominant and non-dominant hand], sampling rate = 100 Hz, ±8G, Actigraph GT9X-BT, ActiGraph, LLC)
during eight specific activities of daily living. Activities: (1) washing a table, (2) making coffee, (3) setting
the table, (4) serving a glass of water, (5) cutting therapeutic putty, (6) folding towels, (7) putting toothpaste
on a toothbrush, (8) walking, performed in a standardized kitchen of a rehabilitation center. Tasks were
selected to require the use of both upper limbs. Each task took between 1.5 and 2 min, for a total of
approximately 15 min. Recruitment criteria were (1) being 18 years or older, (2) having no musculoskeletal,
neurological disorder or pain that could interfere with the task. Participants were recruited using the
research center and Laval University’s mailing lists. Each participant gave written informed consent prior
to participation. The project was approved by the local ethics committee (CIUSSS-CN; project #2018-609).

• Manual wheelchair propulsion (project 3):

Seven manual wheelchair users (45.8 ± 17.2 years old, six women and one man wore a watch
(sampling rate = 30 Hz, ±8G, Actigraph, GT3X-BT, ActiGraph, LLC) on their dominant wrist during
two days at two different data collection times: before (T1) and after (T2) following a wheelchair
training program. Participants had different diagnoses (multiple sclerosis [n = 1], spina bifida [n = 2],
spinal cord injury [n = 1], cerebral palsy [n = 1], Friedreich ataxia [n = 1] and post-poliomyelitis
syndrome [n = 1]) and they used their manual wheelchair for more than 5 h per day. All participants
gave their informed written consent prior to participation and the project was approved by the local
ethics committee (CIUSSS-CN; project #2016-493). Subject 2-T2 was excluded due to technical problems
with data collection.

• Real-world working environment—Nordic expedition project on the Amundsen (project 4):

Two healthy workers (37 and 40 years old, two women, both right-handed) were recruited from
a Nordic expedition project aboard an icebreaker (NGCC Amundsen, Canadian Coast Guard) (total data
collection of six weeks). They were instructed to wear two watches (24/7) (sampling rate = 30 Hz, ±8G,
Actigraph GT3X-BT, ActiGraph, LLC), one on the middle of the thigh and one fixed in a customized
pair of shorts at thigh and L1-L5 levels (trunk and leg). They also filled a task logbook at the end of each
workday. Recruitment criteria were (1) being 18 years or older, (2) being assigned to a >=6-week work
shift on the icebreaker, (3) having no musculoskeletal, neurological disorders or pain that would limit
their work capacity. Each participant gave written informed consent prior to the experiment and the
project was approved by the local ethics committee (CIUSSS-CN; project #2017-539).

2.3.2. Statistical Analysis

Activity Quantification Algorithm

Descriptive analyses (sum, mean and standard deviation [SD]) were used to describe the recording
sessions (e.g., time and activity count) and participants (e.g., age). Pearson correlation coefficients were
calculated between the data processed by ActiLife 6 (ActiGraph, LLC) and by both (fixed and modifiable)
bandwidth algorithms. A Bland–Altman plot for each subject, time of measure (when applicable) and
algorithm was used to investigate the validity under free living (outcomes: mean difference, number of
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data outside of 1.96SD, upper and lower limits of agreement). The level of significance for all analyses
was set at p < 0.05. A linear regression was used to evaluate any association between error size of
the difference between the proposed algorithm compared to the commercial solution and intensity
of activity.

Activity Intensity Classification

Descriptive analyses (mean and SD) were used to describe the proportion of time spent at each
activity level. Agreement between the classification of the five intensity categories was assessed
using a correlation coefficient analysis (considering as very low [0.0 to 0.3], low [0.3 to 0.5], moderate
[between 0.5 and 0.7], high [between 0.7 and 0.9] or very high correlation [>0.9] [25]). All statistical
analyses and data processing were performed with a customized MATLAB program (R2018b, 64bit).
A Spearman correlation coefficient was calculated for both algorithms comparing the commercially
available one to the discrete and the continuous methods separately (significance level = p < 0.05).
A NparLD analysis was performed to compare the commercial algorithm to the discrete and continuous
methods (2 factors; algorithm tested and level of physical activity). NparLD is a robust method that
does not require a normal distribution and homoscedasticity while allowing us to assess datasets with
repeated measures [26]. Post-hoc analyzes compared commercial to discrete methods and commercial
to continuous methods for each level of PA. Statistical significance was set at p < 0.05 for the main and
interaction effects and at p < 0.00625 for the post-hoc analyses (Bonferroni correction).

3. Results

3.1. Activity Quantification Algorithm—Fixed bandwidth algorithm

Table 2 presents the outcomes of the fixed bandwidth algorithm for each project. For each dataset,
the total activity count was averaged to counts per minutes and ranged from 90.2 to 7912.1 counts with
a grand average of 54.7± 67.4 counts. The relative differences between the commercial activity and fixed
bandwidth counts were ≤2.1% for all projects (smallest for project 3 with a mean of 0.3%). The average
Pearson correlation coefficient was 0.99 ± 0.001 (all p < 0.001). Figure 4 shows a representative subject
for each project at an epoch time of 1 s comparing activity counts for both algorithms showing a high
level of similarity between the commercial solutions and the fixed bandwidth algorithms.

The Bland–Altman analysis of the proposed fixed algorithm is presented in Figure 5, per project,
for epochs of 1, 10, and 60 s for a representative subject. The absolute number of data points out of the
limits of agreement ranged from 21 to 19,170 for epochs of 1 s, from 1 to 5037 for epochs of 10 s and from
0 to 1357 for epochs of 60 s. This represents a relative error of 3.1% ± 0.9% for project 1, 4.4% ± 2.3%
for project 2, 1.3% ± 0.8% for project 3 and 2.5% ± 1.3% for project 4, showing smaller error ranges for
longer recording times (project 3 and 4) while still presenting high concurrent validity for shorter ones.
The relative mean errors were 2.3% ± 1.6% for 1 s, 3.2% ± 1.8% for 30 s and 3.8% ± 3% for 60 s. The mean
differences, limits of agreement (±1.96SD) and regression coefficients are presented in Appendix A
Tables 2 and A2. The regression coefficients ranged from 0.47 to 0.88, representing a moderate to high
relationship between PA and absolute error (highest coefficients for 60 s epochs and longer recording
times [project 3 and 4, mobility projects in manual wheelchair users and working context]).
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Table 2. Synthesis of data collection characteristics and comparison parameters between the fixed bandwidth algorithm and the commercial solution. “Min.” stands
for minute; “dom” stands for dominant; “non-dom” stands for “non-dominant”.

Participant
ID Project Subject Length (Min.) Total Activity Counts

Average Counts
per Minute with

ActiLife
(Counts/Min.)

Average Counts
per Minute with
Fixed Bandwidth

Algo (Counts/Min.)

Absolute
Difference

(Counts/Min.)

Relative
Difference

(%)
Correlation (r) p-Value

1

Activities of daily living—
24-h data collection

S1 1440.0 5,393,214 3745.3 3672.3 −73.0 −1.95 0.995 <0.001

2 S2 1440.0 4,429,576 3076.1 3027.0 −49.1 −1.60 0.996 <0.001

3 S3 1440.0 1,731,214 1202.2 1176.0 −26.3 −2.18 0.994 <0.001

4 S4 1440.0 4,852,562 3369.8 3294.7 −75.2 −2.23 0.998 <0.001

Mean (SD) 1440.0 (0.0) 4,101,641 (1,628,753) 2848.4 (1131.1) 2792.5 (1109.7) −55.9 (23.0) −2.0 (0.3) 0.996 (0.002)

5

Bilateral manipulation
in daily living tasks

S1 (dom) 12.7 77,511 6095.2 5992.2 −103.0 −1.69 0.994 <0.001

6 S1 (non-dom) 11.3 67,930 6029.3 5888.0 −141.3 −2.34 0.993 <0.001

7 S 2 (dom) 12.0 57,727 4810.6 4732.0 −78.5 −1.63 0.996 <0.001

8 S 2 (non-dom) 11.5 67,304 5869.6 5742.0 −127.6 −2.17 0.995 <0.001

9 S3 (dom) 67.0 176,932 2640.8 2591.4 −49.4 −1.87 0.995 <0.001

10 S3 (non-dom) 67.0 186,388 2781.9 2743.7 −38.2 −1.37 0.995 <0.001

11 S4 (dom) 74.7 148,068 1981.3 1965.1 −16.1 −0.81 0.996 <0.001

12 S4 (non-dom) 74.3 161,167 2169.6 2140.7 −28.9 −1.33 0.996 <0.001

13 S5 (dom) 63.5 234,319 3691.0 3612.2 −78.8 −2.14 0.995 <0.001

14 S5 (non-dom) 62.8 239,083 3805.0 3728.3 −76.7 −2.02 0.996 <0.001

15 S6 (dom) 10.3 84,440 8184.8 7912.1 −272.7 −3.33 0.994 <0.001

16 S6 (non-dom) 9.9 73,246 7423.6 7233.8 −189.8 −2.56 0.996 <0.001

17 S7 (dom) 11.0 68,910 6264.6 6114.8 −149.8 −2.39 0.995 <0.001

18 S7 (non-dom) 10.5 62,272 5921.3 5782.9 −138.4 −2.34 0.993 <0.001

19 S8 (dom) 14.1 106,057 7548.6 7333.3 −215.2 −2.85 0.994 <0.001

20 S8 (non-dom) 14.6 102,027 7012.2 6843.6 −168.6 −2.40 0.995 <0.001

21 S9 (dom) 63.0 152,663 2423.2 2415.1 −8.1 −0.33 0.996 <0.001

22 S9 (non-dom) 63.0 142,499 2261.9 2249.4 −12.5 −0.55 0.996 <0.001

23 S10 (dom) 64.6 178,064 2758.5 2714.7 −43.9 −1.59 0.995 <0.001

24 S10 (non-dom) 65.3 145,858 2234.2 2206.4 −27.8 −1.25 0.995 <0.001

25 S11 (dom) 64.1 217,897 3399.3 3318.7 −80.6 −2.37 0.996 <0.001

26 S11 (non-dom) 63.5 242,062 3812.0 3733.6 −78.4 −2.06 0.997 <0.001

Mean (SD) 41.4 (27.9) 136,019 (62,835) 4505.4 (2049.5) 4408.8 (1980.9) −96.6 (71.5) −1.9 (0.47) 0.995 (0.001)
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Table 2. Cont.

Participant
ID Project Subject Length (Min.) Total Activity Counts

Average Counts
per Minute with

ActiLife
(Counts/Min.)

Average Counts
per Minute with
Fixed Bandwidth

Algo (Counts/Min.)

Absolute
Difference

(Counts/Min.)

Relative
Difference

(%)
Correlation (r) p-Value

27

Manual wheelchair
propulsion

S1 (day 1) 18,751.2 7,343,724 391.6 393.5 1.9 0.49 0.992 <0.001

28 S1 (day 2) 41,371.6 5,119,126 123.7 124.2 0.4 0.36 0.993 <0.001

29 S2 (day 1) 17,408.7 4,030,397 231.5 231.7 0.2 0.10 0.994 <0.001

30 S2 (day 2) Missing data

31 S3 (day 1) 12,712.8 4,587,229 360.8 361.6 0.8 0.21 0.993 <0.001

32 S3 (day 2) 17,618.3 7,359,802 417.7 416.8 −0.9 −0.22 0.993 <0.001

33 S4 (day 1) 15,836.5 7,818,844 493.7 496.4 2.7 0.55 0.994 <0.001

34 S4 (day 2) 40,495.5 11,001,481 271.7 273.1 1.5 0.54 0.994 <0.001

35 S5 (day 1) 13,756.9 6,218,452 452.0 453.3 1.3 0.29 0.992 <0.001

36 S5 (day 2) 22,635.8 9,809,569 433.4 433.6 0.2 0.05 0.993 <0.001

37 S6 (day 1) 34,020.7 3,070,352 90.2 90.1 −0.1 −0.15 0.992 <0.001

38 S6 (day 2) 17,185.5 3,340,505 194.4 194.6 0.2 0.10 0.992 <0.001

39 S7 (day 1) 17,280.0 6,578,440 380.7 381.3 0.6 0.15 0.991 <0.001

40 S7 (day 2) 9916.3 3,359,621 338.8 339.2 0.4 0.12 0.991 <0.001

Mean (SD) 21,460.8 (10,380.1) 6,125,964 (2,515,702.0) 321.6 (128.5) 322.3 (128.9) 0.7 (0.9) 0.2 (0.2) 0.993 (0.001)

41
Real-world working

environment—Nordic
expedition project
on the Amundsen

S1 (leg) 32,025.6 2,128,9876 664.8 678.8 14.0 2.10 0.995 <0.001

42 S1 (trunk) 33,529.6 17,771,319 530.0 543.0 12.9 2.44 0.995 <0.001

43 S2 (leg) 34,883.1 20,414,335 585.2 595.8 10.6 1.81 0.995 <0.001

44 S2 (trunk) 30,109.1 16,771,642 557.0 567.8 10.8 1.93 0.995 <0.001

Mean (SD) 32,636.8 (2049.9) 19,061,792 (2,137,275.3) 584.3 (58.2) 596.3 (59.0) 12.1 (1.7) 2.1 (0.3) 0.996 (0.0018)
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3.2. Activity Quantification Algorithm—Modifiable Bandwidth Algorithm

Table 3 presents the outcomes of the modifiable bandwidth algorithm for each project. For each
dataset, the total activity count was averaged to counts per minutes and ranged from 88.2 to 8271.7.
The absolute difference between this algorithm output and the commercial solution ranged from
−5.7 (project 3—subject 7) to 358.5 (project 2—subject 8), with a grand average of 71.7 ± 94.5 counts.
The average relative differences between the commercial activity counts and fixed bandwidth counts
were ≤4.1% for all projects (smallest for project 3 with a mean of 1.7%). Figure 4 shows a representative
subject for each project with an epoch time of 1 s, showing a high level of similarity between the
commercial solutions and the proposed algorithm.

The Bland–Altman analysis of the proposed modifiable algorithm is presented in Figure 6, per project,
for epochs of 1, 10 and 60 s for a representative subject. The absolute number of data points out of the
limits of agreement ranged from 22 to 25,718 for epochs of 1 s, from 3 to 5241 for epochs of 10 s and from
0 to 1333 for epochs of 60 s. This represents a relative error of 3.3% ± 0.9% for project 1, 4.1% ± 2.3%
for project 2, 1.3% ± 0.8% for project 3 and 1.5% ± 1.0% for project 4, showing smaller error ranges for
longer recording times (project 3 and 4), while still presenting high concurrent validity for shorter ones.
The relative mean errors were 2.5% ± 1.6% for 1 s, 3.8% ± 2.4% for 30 s and 2.4% ± 2.1% for 60 s. The mean
differences, limits of agreement (±1.96SD) and regression coefficients are presented in Appendix A Tables 3
and A2. The regression coefficients ranged from 0.31 to 0.90, representing a moderate to high relationship
between PA and absolute error (highest coefficients of 60 s epochs and longer recording times [project 3
and 4, mobility projects in manual wheelchair users and working context]).

3.3. Activity Intensity Classification

An overview of the activity intensity classification algorithm results is presented in Figure 7,
Table 4 and in Appendix A Table A3 for the commercial device, the discrete and the continuous methods.
The Spearman correlation coefficients were high (r > 0.89, p < 0.05) for both algorithms and was highest
for the discrete method (r > 0.99) compared to the continuous method (r > 0.89). NparLD analysis
showed two significant main effects for algorithm (p = 3.67 × 10−15) and intensity (p = 1.09 × 10−10),
as well as an interaction effect for algorithm × intensity of PA (p = 1.32 × 10−3). The relative effects
(shown on Figure 7B) and post-hoc results show that the differences observed were principally for the
continuous method at high levels of PA (Vigorous and Very vigorous). The continuous method differs
slightly from the commercially available classification method but allows us to quantify the level of
activity more precisely (quantification calculated sample-by-sample vs. second-by-second).
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Table 3. Summary of data collection characteristics and comparison parameters between the modifiable bandwidth algorithm and the commercial solution.

Participant
ID Project Subject Length (Min.) Total Activity Counts

Average Counts
per Minute with

Actilife
(Counts/Min.)

Average Counts
per Minute with

Modifiable
bandwith algo
(Counts/Min.)

Absolute
Difference

(Counts/Min.)

Relative
Difference

(%)
Correlation (r) p-Value

1

Activities of daily living—
24-h data collection

S1 1440.0 5,393,214 3745.3 3842.3 97.1 2.59 0.987 <0.001

2 S2 1440.0 4,429,576 3076.1 3130.6 54.5 1.77 0.989 <0.001

3 S3 1440.0 1,731,214 1202.2 1229.9 27.7 2.30 0.981 <0.001

4 S4 1440.0 4,852,562 3369.8 3392.2 22.4 0.67 0.995 <0.001

Mean (SD) 1440.0 (0.0) 4,101,641 (1,628,753) 2848.4 (1131.1) 2898.8 (1150.7) 50.4 (34.1) 1.8 (0.8) 0.988 (0.006)

5

Bilateral manipulation
in daily living tasks

S1 (dom) 12.7 77,511 6095.2 6380.2 285.0 4.68 0.983 <0.001

6 S1 (non-dom) 11.3 67,930 6029.3 6324.5 295.2 4.90 0.982 <0.001

7 S2 (dom) 12.0 57,727 4810.6 4890.6 80.0 1.66 0.986 <0.001

8 S2 (non-dom) 11.5 67,304 5869.6 6048.7 179.2 3.05 0.983 <0.001

9 S3 (dom) 67.0 176,932 2640.8 2693.3 52.5 1.99 0.986 <0.001

10 S3 (non-dom) 67.0 186,388 2781.9 2876.1 94.2 3.39 0.988 <0.001

11 S4 (dom) 74.7 148,068 1981.3 2045.0 63.7 3.21 0.990 <0.001

12 S4 (non-dom) 74.3 161,167 2169.6 2226.7 57.1 2.63 0.991 <0.001

13 S5 (dom) 63.5 234,319 3691.0 3743.2 52.2 1.41 0.985 <0.001

14 S5 (non-dom) 62.8 239,083 3805.0 3917.3 112.3 2.95 0.987 <0.001

15 S6 (dom) 10.3 84,440 8184.8 8271.7 86.9 1.06 0.989 <0.001

16 S6 (non-dom) 9.9 73,246 7423.6 7537.9 114.3 1.54 0.990 <0.001

17 S7 (dom) 11.0 68,910 6264.6 6391.0 126.4 2.02 0.982 <0.001

18 S7 (non-dom) 10.5 62,272 5921.3 6094.8 173.5 2.93 0.979 <0.001

19 S8 (dom) 14.1 106,057 7548.6 7906.1 357.5 4.74 0.986 <0.001

20 S8 (non-dom) 14.6 102,027 7012.2 7370.7 358.5 5.11 0.989 <0.001

21 S9 (dom) 63.0 152,663 2423.2 2548.5 125.3 5.17 0.990 <0.001

22 S9 (non-dom) 63.0 142,499 2261.9 2368.2 106.4 4.70 0.990 <0.001

23 S10 (dom) 64.6 178,064 2758.5 2766.6 8.1 0.29 0.987 <0.001

24 S10 (non-dom) 65.3 145,858 2234.2 2242.0 7.7 0.35 0.988 <0.001

25 S11 (dom) 64.1 217,897 3399.3 3400.8 1.5 0.04 0.993 <0.001

26 S11 (non-dom) 63.5 242,062 3812.0 3857.9 45.9 1.20 0.994 <0.001

Mean (SD) 41.4 (27.9) 136,019 (62,835) 4505.4 (2049.5) 4631.9 (2121.7) 126.5 (107.2) 2.7 (1.7) 0.987 (0.004)
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Table 3. Cont.

Participant
ID Project Subject Length (Min.) Total Activity Counts

Average Counts
per Minute with

Actilife
(Counts/Min.)

Average Counts
per Minute with

Modifiable
bandwith algo
(Counts/Min.)

Absolute
Difference

(Counts/Min.)

Relative
Difference

(%)
Correlation (r) p-Value

27

Manual wheelchair
propulsion

S1 (day 1) 18,751.2 7,343,724 391.6 389.3 −2.3 −0.59 0.966 <0.001

28 S1 (day 2) 41,371.6 5,119,126 123.7 123.9 0.2 0.13 0.972 <0.001

29 S2 (day 1) 17,408.7 4,030,397 231.5 241.9 10.4 4.48 0.983 <0.001

30 S2 (day 2) Missing data

31 S3 (day 1) 12,712.8 4,587,229 360.8 366.3 5.5 1.52 0.972 <0.001

32 S3 (day 2) 17,618.3 7,359,802 417.7 424.7 6.9 1.66 0.972 <0.001

33 S4 (day 1) 15,836.5 7,818,844 493.7 506.3 12.6 2.55 0.979 <0.001

34 S4 (day 2) 40,495.5 11,001,481 271.7 278.7 7.1 2.60 0.980 <0.001

35 S5 (day 1) 13,756.9 6,218,452 452.0 448.3 −3.7 −0.83 0.965 <0.001

36 S5 (day 2) 22,635.8 9,809,569 433.4 432.5 −0.9 −0.21 0.969 <0.001

37 S6 (day 1) 34,020.7 3,070,352 90.2 88.2 −2.1 −2.27 0.965 <0.001

38 S6 (day 2) 17,185.5 3,340,505 194.4 189.3 −5.1 −2.61 0.964 <0.001

39 S7 (day 1) 17,280.0 6,578,440 380.7 374.9 −5.8 −1.51 0.960 <0.001

40 S7 (day 2) 9916.3 3,359,621 338.8 336.1 −2.7 −0.81 0.965 <0.001

Mean (SD) 21,460.8 (10,380.1) 6,125,964 (2,515,701) 321.6 (128.5) 323.1 (129.7 1.5 (6.2) 0.3 (2.1) 0.97 (0.007)

41
Real-world working

environment—Nordic
expedition project
on the Amundsen

S1 (leg) 32,025.6 2,128,9876 664.8 693.4 28.6 4.31 0.988 <0.001

42 S1 (trunk) 33,529.6 17,771,319 530.0 543.9 13.9 2.62 0.981 <0.001

43 S2 (leg) 34,883.1 20,414,335 585.2 615.2 30.0 5.12 0.988 <0.001

44 S2 (trunk) 30,109.1 16,771,642 557.0 580.8 23.8 4.27 0.982 <0.001

Mean (SD) 32,636.8 (2049.9) 19,061,792 (2,137,275) 584.3 (58.2) 608.3 (63.8) 24.1 (7.3) 4.1 (1.0) 0.985 (0.004)
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Table 4. Post-hoc results for the activity intensity classification compared to the classification of the
commercial solution (p-value, statistically significant results are in bold).

Algorithm Level of Physical Activity

Light Moderate Vigorous Very vigorous

Discrete 0.032 0.254 0.010 0.052

Continuous 0.580 0.249 1.78 × 10−5 9.9 × 10−8

Legend: Statically significant results are identified in bold (p < 0.00625 with Bonferroni corrections).

4. Discussion

This study presents two different versions of an open-source algorithm (https://github.com/

ingreadaptulaval/activitycounts) to compute activity counts (i.e., fixed and modifiable bandwidth
algorithms) and two different versions of an activity classification algorithm (i.e., discrete and continuous)
and compares them to a popular, commercially available, closed-source activity count algorithm (ActilifeTM).
The fixed and modifiable bandwidth algorithms have been shown to be valid when compared to commercial
algorithms (all r > 0.96, p < 0.0001) for quantifying activity during different tasks (e.g., activities of dailyliving,
wheelchair propulsion), for a variety of recording durations (i.e., several minutes to several days), in non-
disabled participants and manual wheelchair users. The fixed algorithm results are closer to those of
the commercial solution than those of the modifiable algorithm (average relative difference of 1.4% and
2.5%, respectively). However, the modifiable algorithm still shows an excellent performance and presents
the advantage of being adaptable to pathological populations (e.g., modifying the filter characteristics to
minimize the effects of tremors or spasms). In addition, the number of data points out of the limits of
agreement was higher for shorter recording durations (project 2: 5%) compared to longer ones (projects 1
and 4: 3.9%; project 3: 2%). This could be explained by the smaller amount of data for project 2, especially
when an epoch of 60 s is selected, giving more weight to each error (i.e., one data point outside for 60 s in
project 2 represents 10% of the total dataset, while it only represents 0.01% in project 1). The algorithm
proposed in the pioneering work of BrØnd & al. [14] showed a similar behavior: these authors reported an
average relative difference of 2.2% ± 1.7% and a Cohen’s kappa of 0.945 (meaning an almost perfect level
of agreement as stated by [27], but using a more complex algorithm that allowed less adaptability capacity
than both algorithms presented in the current study. Indeed, our proposed fixed bandwidth algorithm is
simpler (8th- vs. 20th-order filter) than that of BrØnd & al. [10], thereby allowing adaptability to various
data sampling rates, and the modifiable bandwidth version allows us to modify the frequency bandwidth
to best match the movement profile of clinical populations, environments and tasks.

Adding to these results, the two proposed activity classification methods also showed excellent
performance. Indeed, the discrete algorithm reproduced the commercial activity classifier results in
an accurate manner, while the continuous method differed from the commercial solution but still reported
high concurrent validity (r > 0.89, p < 0.05). In fact, the continuous method should be considered more
precise to classify levels of physical activity as it operated sample-by-sample (e.g., 100 computations at
each second for a sampling rate of 100 Hz) as opposed to the discrete method, which calculates values
second-by-second. As they are both valid methods to classify levels of activity, we suggest that the discrete
method should be used when comparing results with other studies using commercial solutions, and the
continuous method should be used otherwise.

4.1. Clinical Implications

Wearable sensors, including accelerometers, are already used with various clinical populations to
measure PA in the rehabilitation setting [28]. However, as is generally the case, commercial activity count
algorithms are not publicly available (or open-source) as they are protected by trade secret. The development
of an open-source activity intensity count algorithm is important to ensure sustainability of data processing
as commercially available devices change over time, and to enable researchers to adapt the algorithm

https://github.com/ingreadaptulaval/activitycounts
https://github.com/ingreadaptulaval/activitycounts


Sensors 2020, 20, 6767 19 of 28

to the clinical population under study. Rehabilitation programs and clinical research will benefit from
the proposed open-source algorithms as they are more adaptable to the real-world context and therefore
become more precise than commercially available solutions when used to assess physical activity in the
presence of movement disorders (e.g., spasticity, tremors, slowness of movement).

The proposed algorithms have been validated with different tasks and on different data collection
duration time scales, from minutes to weeks. The modifiable bandwidth algorithm can be used with
people living with incapacities. For example, in persons with Parkinson’s disease, the band-pass
frequency can be adjusted to remove tremors from the signals. For persons having slowness of
movements (e.g., stroke survivors), the threshold can be reduced, and on the contrary, in persons living
with spasms or hyperkinesia (e.g., cerebral palsy), the threshold can be increased. The continuous
method to classify levels of PA is also an interesting tool for clinicians and rehabilitation researchers
as it helps to identify the level of PA performed over a given amount of time more precisely. Indeed,
people living with disabilities often have to deal with a greater amount of fatigue, which means small
periods of time with high levels of intensity. This could lead the commercial algorithm to underestimate
their overall physical activity level.

4.2. Limitations

First, the proposed algorithms have been tested mainly on healthy subjects; only one population
living with a disability (i.e., manual wheelchair users) was evaluated. It will be interesting to test the
validity of the different methods proposed on other populations such as stroke survivors and people
living with Parkinson’s disease or cerebral palsy, to see the effects of spasticity, tremors or slowness of
movements on PA level assessment. Second, it would have been interesting to evaluate the validity of the
four proposed algorithms with different brands of accelerometers as in [14] (i.e., they used two different
brands: ActiGraph and Axivity). Indeed, in this paper, the proposed algorithm activity counts using the
Actigraph raw data were compared to the Actigraph Actilife software activity count. This decision was to
make sure that the difference between activity counts came from the algorithm design and not from the fact
that two or more sensors would not be exactly located at the same location on the arm or that they could
move relative to another. As mentioned in [14], the algorithm can be used with other accelerometer sensors
or inertial measurement units (IMU) (which comprise accelerometers), as they are based on raw data
acceleration, which is typically very similar between devices. Two main accelerometer characteristics that
could lead to differences between raw sensor data are the sensor’s precision (minimum increment between
two values, for instance, 0.001 g) and the accelerometer range (for instance, ±8 g). The precision should
not be a major issue since the deadband and the bandpass filter in the algorithm will tend to minimize
this difference. The range (ex. ±8 g for Actigraph GT9x used in this study) is more problematic. Indeed,
if the range is different between sensors (ex. ±2 g vs. ±8 g), the activity count results could differ since
one sensor would saturate. The effect of this should be limited since an accelerometer sensor range is
typically minimal at ±2 g and the proposed algorithm saturates the signal either way at 2.13 g. In order to
minimize discrepancies with the proposed algorithm, one should aim to set the range to ±8 g. Third,
as accelerometers detect linear accelerations, they may detect false levels of activity by considering as valid
any “false positive” activity counts such as acceleration when driving a car or going up in an elevator.
This should be further investigated. Fourth, as accelerometer signals are highly dependent on the limb on
which the accelerometer is placed, clinicians will have to carefully choose the placement of their sensors
depending on the type of physical activity mostly performed by their patients (e.g., putting sensors on the
leg if the patient mostly does cycling). Otherwise, activities might not be considered in the level of physical
activity, which could underestimate the extent of physical activity in some patients. Finally, the open-source
algorithms made available with this study (https://github.com/ingreadaptulaval/activitycounts) are adapted
for research purposes (available in MATLAB format with a user interface that requires a certain level of
knowledge in computer science), but are not yet adapted for use in clinical practice. Indeed, as clinicians
must perform their assessment in a limited amount of time, they may need an easier-to-use interface, which
would require further development.

https://github.com/ingreadaptulaval/activitycounts
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5. Conclusions

This study presents the design and validation of open-source algorithms for activity intensity
quantification and classification. They are valid and can be used to assess the PA of manual wheelchair
users and healthy participants at different joints (wrist, leg and trunk), during various recording durations
(several minutes to days) and for a variety of physical activities. The development of an open- source
activity intensity count algorithm is important to ensure sustainability of data processing as wearable
devices evolve, and to enable researchers to adapt the data processing algorithm to the needs of various
clinical populations. Two versions of the activity intensity quantification are proposed: fixed and modifiable
bandwidths. Two versions of the classification algorithm are also proposed: discrete and continuous.
The combination of the fixed bandwidth with the discrete method results in a solution close to what is
commercially available. On the other hand, the modifiable bandwidth version remains valid while being
more adaptable, and the continuous classifying method generates more precise results. Future work will
consist of adapting the algorithms to various clinical populations.
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Appendix A

Table A1. A synthesis of the activities performed by subjects of the 24-h project (project 1).

Activities Number of Reporting Participants/4

Desk work 4

Leisure time 4

Spikeball 1

Walking 3

Activities of daily living (cooking, cleaning up, etc.) 4

Playing guitar 1

Playing with the dog 2

Driving 4

Getting dressed 4

Sleeping 4

Watching television 2

Brushing teeth 4

Taking the bus 2

Running 1
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Table A2. Number of data points outside of the limits of agreement, regression coefficient, mean difference, upper and lower limits of agreement for the fixed and the
modifiable algorithm for epochs of 1 s, 10 s, 60 s. “s” stands for seconds.

Participant-
ID Project Participant Epoch n Total

n Outside—
Fixed

(Absolute
Value)

n Outside—
Modifiable
(Absolute

Value)

n
Outside—
Fixed (%)

n Outside-
Modifiable

(%)

Regression
Coefficient—

Fixed

Regression
Coefficient—
Modifiable

Mean of
Difference

(Bias)—
Fixed

LoA— Fixed UpLoA—
Fixed

DownLoA—
Fixed

Mean of
Difference

(Bias)-
Modifiable

LoA-
Modifiable

UpLoA-
Modifiable

DownLoA-
Modifiable

1

Activities of
daily living—

24-h data
collection

Subject 1
1 s 86 400 2252 2800 2.6 3.2 0.66 0.58 −1.22 29.69 28.48 −30.91 1.62 48.55 50.16 −46.93

10 s 8640 300 316 3.5 3.7 0.73 0.77 −11.30 76.87 65.57 −88.17 16.23 112.80 129.03 −96.57

60 s 1440 61 66 4.2 4.6 0.84 0.81 −63.99 267.91 203.92 −331.90 94.77 372.19 466.96 −277.41

2 Subject 2
1 s 86 400 2117 2286 2.5 2.6 0.66 0.51 −0.82 25.14 24.32 −25.96 0.91 43.03 43.94 −42.12

10 s 8640 258 293 3.0 3.4 0.73 0.61 −7.65 67.33 59.68 −74.98 9.52 97.93 107.46 −88.41

60 s 1440 42 62 2.9 4.3 0.84 0.64 −43.42 233.69 190.27 −277.11 55.18 278.64 333.82 −223.47

3 Subject 3
1 s 86,400 1424 1549 1.6 1.8 0.63 0.51 −0.44 22.39 21.95 −22.83 0.46 39.90 40.36 −39.44

10 s 8640 252 279 2.9 3.2 0.69 0.61 −4.17 48.75 44.58 −52.93 4.61 78.65 83.26 −74.03

60 s 1440 57 65 4.0 4.5 0.75 0.64 −23.79 118.17 94.38 −141.96 26.28 188.43 214.70 −162.15

4 Subject 4
1 s 86,400 1753 1890 2.0 2.2 0.63 0.42 −1.25 23.76 22.51 −25.02 0.37 39.25 39.63 −38.88

10 s 8640 259 232 3.0 2.7 0.69 0.41 −12.13 83.24 71.11 −95.37 3.95 88.78 92.72 −84.83

60 s 1440 66 46 4.6 3.2 0.75 0.41 −71.14 369.01 297.87 −440.15 22.03 232.05 254.08 −210.02

Mean (SD) 1 s 1886.5 (373.5) 2131.3 (538.0) 2.2 (0.4) 2.5 (0.6) 0.6 (0.02) 0.5 (0.07) −0.9 (0.4) 25.2 (3.2) 24.3 (3.0) −26.2 (3.4) 0.8 (0.6) 42.7 (4.2) 43.5 (4.8) −41.8 (3.7)

10 s 367.3 (22.1) 280.0 (35.4) 3.1 (0.3) 3.2 (0.4) 0.7 (0.02) 0.6 (0.15) −8.8 (3.7) 69.0 (15.0) 60.2 (11.4) −77.9 (18.6) 8.6 (5.7) 94.5 (14.5) 103.1 (19.9) −86.0 (9.3)

60 s 56.5 (10.3) 59.8 (9.3) 3.9 (0.7) 4.1 (0.6) 0.8 (0.05) 0.6 (0.16) −50.6 (21.4) 247.2 (103.4) 196.6 (83.3) −297.8 (124.0) 49.6 (33.5) 267.8 (78.7) 317.4 (111.3) −218.3 (47.4)

5

Bilateral
manipulation

in daily
living tasks

Subject 1 (dom)
1 s 763 39 39 5.1 5.1 0.49 0.37 −1.72 27.47 25.75 −29.18 4.75 46.46 51.21 −41.71

10 s 76 4 6 5.3 7.9 0.65 0.78 −17.30 68.37 51.06 −85.67 50.74 130.50 181.25 −79.76

60 s 12 0 0 0.0 0.0 0.69 0.76 −102.82 157.86 55.04 −260.68 303.62 397.02 700.64 −93.39

6
Subject 1

(non-dom)

1 s 676 41 30 6.1 4.4 0.50 0.32 −2.36 28.32 25.97 −30.68 4.92 48.15 53.07 −43.23

10 s 67 4 3 6.0 4.5 0.53 0.74 −22.86 67.89 45.03 −90.75 52.68 170.42 223.10 −117.73

60 s 11 0 0 0.0 0.0 0.67 0.48 −128.84 156.63 27.79 −285.48 320.92 320.34 641.26 0.57

7 Subject 2 (dom)
1 s 720 21 22 2.9 3.1 0.56 0.46 −1.31 27.56 26.26 −28.87 1.33 49.25 50.58 −47.91

10 s 72 4 3 5.6 4.2 0.58 0.56 −13.16 53.20 40.04 −66.35 13.84 95.86 109.70 −82.02

60 s 12 1 0 8.3 0.0 0.47 0.76 −78.28 127.29 49.01 −205.57 78.85 236.89 315.74 −158.05

8
Subject 2

(non-dom)

1 s 688 26 23 3.8 3.3 0.50 0.41 −2.13 31.12 29.00 −33.25 2.99 56.99 59.98 −54.01

10 s 68 2 3 2.9 4.4 0.55 0.46 −20.30 73.02 52.72 −93.32 32.29 100.94 133.23 −68.65

60 s 11 0 0 0.0 0.0 0.65 0.74 −114.73 181.98 67.25 −296.71 185.52 196.68 382.20 −11.17

9 Subject 3 (dom)
1 s 4020 131 132 3.3 3.3 0.66 0.57 −0.82 24.79 23.97 −25.61 0.88 41.18 42.05 −40.30

10 s 402 23 21 5.7 5.2 0.73 0.69 −7.96 60.37 52.41 −68.32 8.80 83.57 92.38 −74.77

60 s 67 5 3 7.5 4.5 0.69 0.83 −45.64 182.24 136.60 −227.88 52.02 251.52 303.54 −199.49

10
Subject 3

(non-dom)

1 s 4020 118 120 2.9 3.0 0.69 0.55 −0.64 25.01 24.38 −25.65 1.57 39.65 41.22 −38.08

10 s 402 25 21 6.2 5.2 0.76 0.73 −6.51 56.11 49.60 −62.62 15.86 89.14 105.00 −73.29

60 s 67 6 5 9.0 7.5 0.75 0.84 −34.77 146.30 111.53 −181.07 91.77 272.18 363.95 −180.40

11 Subject 4 (dom)
1 s 4484 100 100 2.2 2.2 0.65 0.57 −0.27 22.59 22.32 −22.86 1.06 33.28 34.34 −32.22

10 s 448 18 16 4.0 3.6 0.72 0.69 −2.77 51.08 48.31 −53.86 10.21 69.29 79.51 −59.08

60 s 74 3 2 4.1 2.7 0.72 0.71 −16.55 135.99 119.44 −152.54 56.91 189.30 246.21 −132.40

12
Subject 4

(non-dom)

1 s 4457 103 114 2.3 2.6 0.65 0.53 −0.48 24.33 23.85 −24.82 0.95 34.22 35.17 −33.27

10 s 445 15 21 3.4 4.7 0.72 0.70 −4.90 59.42 54.53 −64.32 8.98 76.27 85.25 −67.28

60 s 74 3 3 4.1 4.1 0.72 0.72 −27.42 140.47 113.05 −167.89 52.51 235.90 288.42 −183.39
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Table A2. Cont.

Participant-
ID Project Participant Epoch n Total

n Outside—
Fixed

(Absolute
Value)

n Outside—
Modifiable
(Absolute

Value)

n
Outside—
Fixed (%)

n Outside-
Modifiable

(%)

Regression
Coefficient—

Fixed

Regression
Coefficient—
Modifiable

Mean of
Difference

(Bias)—
Fixed

LoA— Fixed UpLoA—
Fixed

DownLoA—
Fixed

Mean of
Difference

(Bias)-
Modifiable

LoA-
Modifiable

UpLoA-
Modifiable

DownLoA-
Modifiable

13 Subject 5 (dom)
1 s 3809 122 160 3.2 4.2 0.63 0.53 −1.31 26.09 24.78 −27.41 0.87 45.47 46.34 −44.60

10 s 380 19 31 5.0 8.2 0.74 0.70 −12.53 76.88 64.34 −89.41 9.75 142.70 152.45 −132.94

60 s 63 3 2 4.8 3.2 0.83 0.72 −74.78 267.77 192.99 −342.56 51.58 500.24 551.82 −448.66

14
Subject 5

(non-dom)

1 s 3770 143 146 3.8 3.9 0.63 0.56 −1.28 25.53 24.25 −26.80 1.87 44.93 46.80 −43.06

10 s 377 20 25 5.3 6.6 0.74 0.77 −11.87 71.00 59.13 −82.86 19.89 145.03 164.92 −125.15

60 s 62 3 2 4.8 3.2 0.83 0.79 −67.94 235.51 167.58 −303.45 110.93 561.66 672.59 −450.73

15 Subject 6 (dom)
1 s 619 25 29 4.0 4.7 0.49 0.56 −4.55 37.87 33.32 −42.41 1.45 50.73 52.18 −49.28

10 s 61 3 5 4.9 8.2 0.49 0.77 −42.65 89.98 47.33 −132.63 15.59 106.10 121.69 −90.51

60 s 10 0 0 0.0 0.0 0.57 0.79 −251.43 270.71 19.29 −522.14 98.72 288.69 387.41 −189.96

16
Subject 6

(non-dom)

1 s 592 35 30 5.9 5.1 0.49 0.44 −3.16 33.22 30.06 −36.38 1.90 49.08 50.99 −47.18

10 s 59 2 6 3.4 10.2 0.49 0.31 −27.20 76.06 48.87 −103.26 23.89 97.50 121.38 −73.61

60 s 9 1 0 11.1 0.0 0.57 0.46 −152.90 132.53 −20.37 −285.43 152.08 216.44 368.52 −64.36

17
Subject 7 (dom) 1 s 660 25 32 3.8 4.8 0.47 0.44 −2.50 26.14 23.65 −28.64 2.11 52.05 54.16 −49.95

10 s 66 1 3 1.5 4.5 0.68 0.31 −23.83 75.22 51.39 −99.05 25.49 117.64 143.14 −92.15

60 s 11 1 0 9.1 0.0 0.81 0.46 −124.88 197.00 72.12 −321.88 144.73 210.82 355.56 −66.09

18
Subject 7

(non-dom)

1 s 631 27 31 4.3 4.9 0.47 0.36 −2.31 28.05 25.75 −30.36 2.89 52.26 55.15 −49.37

10 s 63 4 5 6.3 7.9 0.68 0.64 −23.15 71.47 48.31 −94.62 33.19 109.59 142.78 −76.39

60 s 10 0 0 0.0 0.0 0.81 0.90 −121.93 211.99 90.06 −333.91 199.77 209.77 409.54 −10.00

19 Subject 8 (dom)
1 s 843 37 48 4.4 5.7 0.55 0.36 −3.59 34.99 31.40 −38.58 5.96 54.97 60.92 −49.01

10 s 84 4 5 4.8 6.0 0.55 0.64 −34.13 79.72 45.60 −113.85 60.91 160.28 221.20 −99.37

60 s 14 0 0 0.0 0.0 0.56 0.90 −200.15 157.23 −42.92 −357.38 339.18 322.57 661.76 16.61

20
Subject 8

(non-dom)

1 s 873 41 48 4.7 5.5 0.55 0.47 −2.81 35.64 32.83 −38.45 5.97 54.13 60.11 −48.16

10 s 87 3 4 3.4 4.6 0.55 0.71 −27.53 79.79 52.26 −107.33 60.51 165.10 225.60 −104.59

60 s 14 1 0 7.1 0.0 0.56 0.75 −153.51 167.61 14.09 −321.12 359.27 340.18 699.45 19.08

21 Subject 9 (dom)
1 s 3780 105 115 2.8 3.0 0.63 0.47 −0.14 19.28 19.14 −19.41 2.09 29.70 31.78 −27.61

10 s 378 17 20 4.5 5.3 0.68 0.71 −1.99 51.84 49.84 −53.83 21.09 81.03 102.12 −59.94

60 s 63 6 3 9.5 4.8 0.73 0.75 −9.26 139.64 130.38 −148.89 120.88 323.49 444.38 −202.61

22
Subject 9

(non-dom)

1 s 3 780 116 120 3.1 3.2 0.63 0.61 −0.21 18.53 18.32 −18.74 1.77 30.01 31.78 −28.24

10 s 378 18 17 4.8 4.5 0.68 0.83 −2.14 48.71 46.57 −50.86 17.65 79.68 97.33 −62.02

60 s 63 4 4 6.3 6.3 0.73 0.86 −11.02 150.35 139.34 −161.37 102.11 291.27 393.38 −189.15

23
Subject 10

(dom)

1 s 3 873 127 123 3.3 3.2 0.65 0.57 −0.73 21.33 20.60 −22.06 0.13 34.83 34.96 −34.69

10 s 387 20 21 5.2 5.4 0.68 0.74 −6.24 59.72 53.48 −65.96 2.11 106.98 109.08 −104.87

60 s 64 3 3 4.7 4.7 0.57 0.84 −33.45 190.63 157.18 −224.07 12.36 450.05 462.41 −437.69

24
Subject 10
(non-dom)

1 s 3917 118 130 3.0 3.3 0.65 0.61 −0.46 20.84 20.38 −21.30 0.13 31.37 31.50 −31.24

10 s 391 12 17 3.1 4.3 0.68 0.83 −3.66 57.06 53.40 −60.71 2.26 82.74 85.01 −80.48

60 s 65 5 4 7.7 6.2 0.57 0.86 −19.58 180.17 160.59 −199.75 15.23 271.48 286.71 −256.26

25
Subject 11

(dom)

1 s 3846 100 135 2.6 3.5 0.69 0.57 −1.34 29.53 28.19 −30.88 0.02 38.67 38.69 −38.64

10 s 384 21 21 5.5 5.5 0.81 0.74 −12.73 80.82 68.09 −93.55 0.20 113.04 113.24 −112.84

60 s 64 4 4 6.3 6.3 0.85 0.84 −72.27 285.53 213.27 −357.80 1.35 471.13 472.48 −469.78

26
Subject 11
(non-dom)

1 s 3 810 105 150 2.8 3.9 0.69 0.60 −1.31 29.62 28.32 −30.93 0.76 38.88 39.64 −38.11

10 s 381 20 25 5.2 6.6 0.81 0.61 −11.09 73.59 62.50 −84.69 9.23 104.37 113.60 −95.14

60 s 63 4 4 6.3 6.3 0.85 0.84 −61.68 254.06 192.38 −315.75 53.71 420.49 474.21 −366.78

Mean (SD) 1 s 77.5 (44.2) 85.3 (50.6) 3.6 (1.1) 3.9 (1.0) 0.6 (0.08) 0.5 (0.09) −1.6 (0.5) 27.2 (4.3) 25.6(3.9) −28.8 (4.8) 2.1 (0.4) 43.5 (4.9) 45.6 (5.3) −41.4 (4.5)

10 s 11.8 (8.5) 13.6 (9.2) 4.6 (1.2) 5.8 (1.7) 0.7 (0.1) 0.7 (0.1) −15.3 (5.2) 67.3 (23.5) 52.0 (18.3) −82.6 (28.6) 22.5 (4.0) 110.4 (16.9) 132.9 (20.7) −87.8 (13.3)

60 s 2.4 (2.1) 1.8 (1.8) 5.0 (3.6) 2.7 (2.8) 0.7 (0.1) 0.8 (0.1) −86.5 (30.4) 185.0 (137.2) 98.4 (107.3) −271.5 (167.3) 132.0 (23.6) 317.2 (63.7) 449.2 (86.1) −185.2 (42.6)
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Table A2. Cont.

Participant-
ID Project Participant Epoch n Total

n Outside—
Fixed

(Absolute
Value)

n Outside—
Modifiable
(Absolute

Value)

n
Outside—
Fixed (%)

n Outside-
Modifiable

(%)

Regression
Coefficient—

Fixed

Regression
Coefficient—
Modifiable

Mean of
Difference

(Bias)—
Fixed

LoA— Fixed UpLoA—
Fixed

DownLoA—
Fixed

Mean of
Difference

(Bias)-
Modifiable

LoA-
Modifiable

UpLoA-
Modifiable

DownLoA-
Modifiable

27

Manual
wheelchair
propulsion

Subject 1
(day 1)

1 s 1,125,071 8490 10,351 0.8 0.9 0.61 0.42 0.03 15.41 15.45 −15.38 −0.04 31.50 31.46 −31.54

10 s 112,507 1595 1795 1.4 1.6 0.65 0.41 0.08 28.93 29.01 −28.84 −0.33 58.47 58.14 −58.79

60 s 18,751 499 489 2.7 2.6 0.67 0.41 0.55 57.77 58.32 −57.21 −2.45 129.08 126.63 −131.54

28
Subject 1
(day 2)

1 s 2,482,293 5670 6773 0.2 0.3 0.61 0.65 0.01 15.27 15.27 −15.26 0.00 30.98 30.98 −30.98

10 s 248,229 1027 1184 0.4 0.5 0.65 0.76 0.03 27.95 27.98 −27.92 0.04 61.89 61.93 −61.85

60 s 41,371 301 244 0.7 0.6 0.67 0.76 0.21 56.35 56.55 −56.14 0.09 153.76 153.85 −153.66

29
Subject 2
(day 1)

1 s 1,044,523 3828 4608 0.4 0.4 0.64 0.65 0.00 16.47 16.48 −16.47 0.17 28.22 28.39 −28.04

10 s 104,452 674 1012 0.6 1.0 0.67 0.76 0.00 31.42 31.42 −31.42 1.62 57.90 59.52 −56.27

60 s 17,408 182 258 1.0 1.5 0.76 0.76 0.15 70.27 70.42 −70.12 9.26 168.46 177.71 −159.20

30
Subject 2
(day 2)

1 s

Missing data10 s

60 s

31
Subject 3
(day 1)

1 s 762,770 5156 6222 0.7 0.8 0.64 0.62 0.01 15.71 15.72 −15.70 0.09 31.16 31.25 −31.07

10 s 76,277 941 1206 1.2 1.6 0.67 0.76 −0.05 29.60 29.55 −29.65 0.91 57.26 58.17 −56.35

60 s 12,712 284 285 2.2 2.2 0.76 0.79 −0.26 59.62 59.36 −59.87 5.02 128.20 133.21 −123.18

32
Subject 3
(day 2)

1 s 1,057,088 8287 9709 0.8 0.9 0.62 0.62 −0.02 15.75 15.74 −15.77 0.12 31.78 31.90 −31.67

10 s 105,709 1506 1815 1.4 1.7 0.64 0.76 −0.23 30.84 30.61 −31.06 1.10 59.60 60.70 −58.50

60 s 17,618 491 476 2.8 2.7 0.66 0.79 −1.25 63.89 62.64 −65.14 6.10 140.22 146.33 −134.12

33
Subject 4
(day 1)

1 s 950,190 9435 10,331 1.0 1.1 0.62 0.63 0.05 14.33 14.37 −14.28 0.21 26.62 26.83 −26.41

10 s 95,019 1507 1764 1.6 1.9 0.64 0.76 0.21 26.98 27.19 −26.77 1.94 53.25 55.19 −51.31

60 s 15,836 360 430 2.3 2.7 0.66 0.80 1.33 58.34 59.67 −57.00 11.00 135.02 146.02 −124.02

34
Subject 4
(day 2)

1 s 2,429,731 12,353 13,603 0.5 0.6 0.66 0.63 0.02 14.64 14.67 −14.62 0.12 27.08 27.20 −26.96

10 s 242,973 2026 2466 0.8 1.0 0.71 0.76 0.17 27.94 28.10 −27.77 1.09 53.90 54.99 −52.82

60 s 40,495 573 678 1.4 1.7 0.76 0.80 1.08 61.84 62.92 −60.75 6.22 134.04 140.26 −127.82

35
Subject 5
(day 1)

1 s 825,415 7487 9061 0.9 1.1 0.61 0.65 0.02 15.40 15.42 −15.38 −0.06 31.69 31.62 −31.75

10 s 82,541 1549 1693 1.9 2.1 0.66 0.76 −0.02 30.03 30.01 −30.06 −0.54 62.58 62.04 −63.12

60 s 13,756 396 282 2.9 2.1 0.70 0.74 −0.16 67.00 66.84 −67.17 −3.86 161.31 157.45 −165.17

36
Subject 5
(day 2)

1 s 1,358,148 10,654 12,879 0.8 0.9 0.61 0.65 0.00 16.01 16.01 −16.00 −0.01 33.47 33.45 −33.48

10 s 135,814 2295 2435 1.7 1.8 0.66 0.76 −0.10 30.21 30.11 −30.31 −0.05 62.44 62.39 −62.49

60 s 22,635 570 507 2.5 2.2 0.68 0.74 −0.50 66.00 65.50 −66.50 −0.71 148.57 147.86 −149.28

37
Subject 6
(day 1)

1 s 2,041,241 4378 4939 0.2 0.2 0.61 0.68 0.00 14.85 14.85 −14.85 −0.03 30.79 30.76 −30.82

10 s 204,124 784 811 0.4 0.4 0.66 0.76 −0.05 28.02 27.97 −28.08 −0.30 67.74 67.44 −68.04

60 s 34,020 237 183 0.7 0.5 0.68 0.75 −0.32 55.07 54.74 −55.39 −1.82 170.07 168.24 −171.89

38
Subject 6
(day 2)

1 s 1,031,130 4568 5172 0.4 0.5 0.63 0.68 0.00 15.49 15.49 −15.49 −0.08 31.50 31.41 −31.58

10 s 103,113 901 1090 0.9 1.1 0.71 0.76 −0.04 29.41 29.36 −29.45 −0.74 67.54 66.81 −68.28

60 s 17,185 267 263 1.6 1.5 0.76 0.75 −0.24 59.53 59.29 −59.77 −4.38 161.83 157.45 −166.21

39
Subject 7
(day 1)

1 s 1,036,800 7948 10,122 0.8 1.0 0.63 0.65 0.01 15.57 15.57 −15.56 −0.10 31.35 31.25 −31.44

10 s 103,680 1460 1664 1.4 1.6 0.71 0.75 −0.17 28.91 28.74 −29.08 −0.80 63.28 62.47 −64.08

60 s 17,280 462 356 2.7 2.1 0.76 0.77 −0.95 54.34 53.39 −55.29 −4.94 158.31 153.37 −163.26

40
Subject 7
(day 2)

1 s 594,979 4340 5238 0.7 0.9 0.61 0.65 0.01 15.07 15.07 −15.06 −0.05 29.49 29.45 −29.54

10 s 59,497 865 952 1.5 1.6 0.63 0.75 −0.11 27.56 27.45 −27.67 −0.34 63.70 63.36 −64.05

60 s 9916 230 142 2.3 1.4 0.68 0.77 −0.66 55.45 54.80 −56.11 −2.17 177.80 175.63 −179.98



Sensors 2020, 20, 6767 24 of 28

Table A2. Cont.

Participant-
ID Project Participant Epoch n Total

n Outside—
Fixed

(Absolute
Value)

n Outside—
Modifiable
(Absolute

Value)

n
Outside—
Fixed (%)

n Outside-
Modifiable

(%)

Regression
Coefficient—

Fixed

Regression
Coefficient—
Modifiable

Mean of
Difference

(Bias)—
Fixed

LoA— Fixed UpLoA—
Fixed

DownLoA—
Fixed

Mean of
Difference

(Bias)-
Modifiable

LoA-
Modifiable

UpLoA-
Modifiable

DownLoA-
Modifiable

Mean (SD) 1 s 7122.6
(2705.7)

8385.2
(3081.5) 0.6 (0.3) 0.7 (0.3) 0.6 (0.02) 0.6 (0.07) 0.0 (0.6) 15.4 (4.5) 15.4 (4.0) −15.4 (5.0) 0.0 (0.3) 30.4 (4.8) 30.5 (5.1) −30.4 (4.6)

10 s 1317.7 (498.6) 1529.8 (538.8) 1.2 (0.5) 1.4 (0.5) 0.7 (0.03) 0.7 (0.1) 0.0 (5.7) 29.1 (25.9) 29.0 (20.1) −29.1 (31.6) 0.3 (2.6) 60.7 (14.3) 61.0 (16.7) −60.5 (12.0)

60 s 373.2 (134.5) 353.3 (153.0) 2.0 (0.8) 1.8 (0.7) 0.7 (0.04) 0.7 (0.1) −0.1 (33.7) 60.4 (148.6) 60.3(1115.4) −60.5 (182.0) 1.3 (14.8) 151.3 (44.7) 152.6 (57.8) −149.9 (33.0)

41

Real-world
working

environment
—Nordic
expedition

project on the
Amundsen

Subject 1 (leg)
1 s 1,921,533 19,170 25,718 1.0 1.3 0.64 0.60 0.23 11.71 11.94 −11.48 0.48 18.28 18.76 −17.80

10 s 192,153 5037 2016 2.6 1.0 0.77 0.61 2.07 23.25 25.32 −21.18 4.42 66.02 70.44 −61.60

60 s 32,025 1308 216 4.1 0.7 0.87 0.84 12.04 70.93 82.97 −58.89 25.71 265.87 291.58 −240.15

42
Subject 1
(trunk)

1 s 2,011,773 19,077 25,168 0.9 1.3 0.64 0.66 0.22 10.79 11.00 −10.57 0.23 20.64 20.87 −20.41

10 s 201,177 4899 1359 2.4 0.7 0.77 0.82 1.83 24.83 26.65 −23.00 1.93 75.18 77.11 −73.25

60 s 33,529 1212 162 3.6 0.5 0.87 0.81 10.27 76.05 86.32 −65.77 10.31 311.43 321.74 −301.12

43 Subject 2 (leg)
1 s 2,092,986 18,918 23,081 0.9 1.1 0.64 0.58 0.18 11.78 11.96 −11.60 0.50 18.41 18.91 −17.91

10 s 209,298 4939 5241 2.4 2.5 0.79 0.76 1.60 25.09 26.69 −23.49 4.75 46.42 51.17 −41.67

60 s 34,883 1357 1333 3.9 3.8 0.89 0.85 9.41 75.58 84.99 −66.17 27.68 150.07 177.75 −122.39

44
Subject 2
(trunk)

1 s 1,806,544 17,820 21,828 1.0 1.2 0.64 0.58 0.18 11.57 11.75 −11.39 0.40 20.53 20.93 −20.13

10 s 180,654 4888 3839 2.7 2.1 0.79 0.77 1.54 27.23 28.76 −25.69 3.56 50.82 54.38 −47.25

60 s 30,109 1192 676 4.0 2.2 0.89 0.81 8.61 81.15 89.76 −72.54 19.79 161.09 180.89 −141.30

Mean (SD) 1 s 18,746.3
(626.2)

23,948.8
(1813.6) 1.0 (0.04) 1.2 (0.1) 0.6 (0.001) 0.6 (0.04) 0.2 (0.6) 11.5 (4.1) 11.7 (3.4) −11.3 (4.7) 0.4 (0.2) 19.5 (4.7) 19.9 (4.9) −19.1 (4.6)

10 s 4940.8 (67.8) 3113.8
(1764.0) 2.5 (0.2) 1.6 (0.9) 0.8 (0.008) 0.7 (0.09) 1.8 (6.1)_ 25.1 (27.0) 26.9 (20.9) −23.3 (33.0) 3.7 (1.9) 59.6 (14.8) 63.3 (16.5) −55.9 (13.1)

60 s 1267.3 (78.4) 596.8 (542.3) 3.9 (0.2) 1.8 (1.6) 0.9 (0.008) 0.8 (0.02) 10.1 (35.7) 75.9 (153.9) 86.0 (118.2) −65.8 (189.6) 20.9 (11.1) 222.1 (43.9) 243.0 (54.8) −201.2 (33.2)

Table A3. Results of activity classification for the commercial activity count, the discrete and the continuous method.

Participant-ID Project Participant
Total
Time
(min)

Total Time
% in Light % in Moderate % in Vigorous % in Very Vigorous

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

1 Activities of
daily

living—24-h
data

collection

Subject 1 1440 1D 0H 0M 0S 55.97 55.97 54.59 22.92 22.92 39.00 13.06 13.06 5.13 8.06 8.06 1.28

2 Subject 2 1440 1D 0H 0M 0S 65.00 65.00 55.06 16.81 16.81 37.86 12.43 12.43 4.79 5.76 5.76 2.30

3 Subject 3 1440 1D 0H 0M 0S 86.60 86.60 94.76 11.18 11.18 5.00 2.01 2.01 0.05 0.21 0.21 0.19

4 Subject 4 1440 1D 0H 0M 0S 72.50 72.50 75.08 10.00 10.00 17.75 5.49 5.49 6.45 12.01 12.01 0.72

Mean (SD) 70.0 (13.0) 70.0 (13.0) 69.87 (19.1) 15.23 (6.0) 15.23 (6.0) 24.90 (16.5) 8.25 (5.4) 8.25 (5.4) 4.10 (2.8) 6.51 (4.9) 6.51 (4.9) 1.12 (0.9)

5

Bilateral
manipulation

in daily
living tasks

Subject 1
(dom) 12 12M 0S 16.67 16.67 17.04 25.00 25.00 63.96 58.33 58.33 19.00 0.00 0.00 0.00

6 Subject 1
(non-dom) 11 11M 0S 9.09 9.09 5.47 36.36 36.36 76.63 54.55 54.55 17.90 0.00 0.00 0.00

7 Subject 2
(dom) 12 12M 0S 25.00 25.00 32.92 41.67 41.67 62.36 33.33 33.33 4.72 0.00 0.00 0.00

8 Subject 2
(non-dom) 11 11M 0S 18.18 18.18 21.95 27.27 27.27 73.26 45.45 45.45 4.80 9.09 9.09 0.00
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Table A3. Cont.

Participant-ID Project Participant
Total
Time
(min)

Total Time
% in Light % in Moderate % in Vigorous % in Very Vigorous

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

9 Subject 3
(dom) 67 1H 7M 0S 62.69 62.69 31.17 20.90 22.39 56.62 14.93 13.43 12.21 1.49 1.49 0.00

10 Subject 3
(non-dom) 67 1H 7M 0S 59.70 59.70 29.60 22.39 22.39 54.55 16.42 16.42 15.85 1.49 1.49 0.00

11 Subject 4
(dom) 74 1H 14M 0S 68.92 68.92 68.73 22.97 22.97 29.75 8.11 8.11 1.52 0.00 0.00 0.00

12 Subject 4
(non-dom) 74 1H 14M 0S 62.16 62.16 62.26 29.73 29.73 34.17 8.11 8.11 3.57 0.00 0.00 0.00

13 Subject 5
(dom) 63 1H 3M 0S 49.21 49.21 4.07 25.40 25.40 75.14 22.22 22.22 20.79 3.17 3.17 0.00

14 Subject 5
(non-dom) 62 1H 2M 0S 48.39 48.39 3.58 20.97 20.97 63.13 29.03 29.03 33.29 1.61 1.61 0.00

15 Subject 6
(dom) 10 10M 0S 10.00 10.00 12.76 0.00 0.00 14.70 70.00 70.00 71.57 20.00 20.00 0.97

16 Subject 6
(non-dom) 9 9M 0S 0.00 0.00 3.04 33.33 33.33 25.00 55.56 55.56 71.11 11.11 11.11 0.84

17 Subject 7
(dom) 11 11M 0S 27.27 27.27 13.03 9.09 9.09 77.12 54.55 54.55 9.85 9.09 9.09 0.00

18 Subject 7
(non-dom) 10 10M 0S 10.00 10.00 4.75 50.00 50.00 81.62 30.00 30.00 13.63 10.00 10.00 0.00

19 Subject 8
(dom) 14 14M 0S 0.00 0.00 2.37 35.71 35.71 21.35 50.00 50.00 76.28 14.29 14.29 0.00

20 Subject 8
(non-dom) 14 14M 0S 0.00 0.00 6.64 42.86 42.86 41.24 50.00 50.00 52.12 7.14 7.14 0.00

21 Subject 9
(dom) 63 1H 3M 0S 61.90 61.90 33.36 26.98 26.98 63.33 11.11 11.11 3.31 0.00 0.00 0.00

22 Subject 9
(non-dom) 63 1H 3M 0S 63.49 63.49 37.25 26.98 26.98 62.30 9.52 9.52 0.45 0.00 0.00 0.00

23 Subject 10
(dom) 64 1H 4M 0S 59.38 59.38 27.52 26.56 26.56 58.12 9.38 9.38 14.36 4.69 4.69

24 Subject 10
(non-dom) 65 1H 5M 0S 66.15 66.15 43.83 24.62 24.62 46.57 7.69 7.69 9.60 1.54 1.54 0.00

25 Subject 11
(dom) 64 1H 4M 0S 57.81 57.81 3.17 20.31 20.31 69.81 10.94 10.94 25.74 10.94 10.94 1.27

26 Subject 11
(non-dom) 63 1H 3M 0S 58.73 58.73 0.79 11.11 11.11 55.38 14.29 14.29 43.83 15.87 15.87 0.00

Mean (SD) 37.9 (25.8) 37.9 (25.8) 21.2 (19.7) 26.4 (11.3) 26.4 (11.3) 54.8 (19.5) 30.2 (20.8) 30.1 (20.8) 23.9 (23.9) 5.5 (6.1) 5.5 (6.1) 0.1 (0.4)
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Table A3. Cont.

Participant-ID Project Participant
Total
Time
(min)

Total Time
% in Light % in Moderate % in Vigorous % in Very Vigorous

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

Commercial
Activity
Counts

Matlab
Discrete
Method

Matlab
Continuous

Method

27

Manual
wheelchair
propulsion

Subject 1
(day 1) 18,751 13D 0H

31M 0S 96.78 96.78 99.68 3.17 3.17 0.31 0.04 0.04 0.01 0.01 0.01 0.00

28 Subject 1
(day 2) 41,371 28D 17H

31M 0S 98.86 98.86 99.76 1.12 1.12 0.24 0.02 0.02 0.00 0.00 0.00 0.00

29 Subject 2
(day 1) 17,408 12D 2H 8M 0S 97.60 97.60 99.27 2.15 2.15 0.70 0.24 0.24 0.03 0.01 0.01 0.00

30 Subject 2
(day 2) Missing data

31 Subject 3
(day 1) 12,712 8D 19H

52M 0S 96.64 96.64 99.29 3.29 3.29 0.71 0.07 0.07 0.00 0.00 0.00 0.00

32 Subject 3
(day 2) 17,618 12D 5H

38M 0S 96.04 96.04 99.12 3.84 3.84 0.88 0.11 0.11 0.00 0.00 0.00 0.00

33 Subject 4
(day 1) 15,836 10D 23H

56M 0S 93.97 93.97 99.75 5.93 5.93 0.25 0.10 0.10 0.00 0.00 0.00 0.00

34 Subject 4
(day 2) 40,495 28D 2H

55M 0S 96.69 96.69 99.84 3.29 3.29 0.16 0.02 0.02 0.00 0.00 0.00 0.00

35 Subject 5
(day 1) 13,756 9D 13H

16M 0S 96.03 96.03 99.52 3.79 3.79 0.37 0.18 0.18 0.11 0.00 0.00 0.00

36 Subject 5
(day 2) 22,635 15D 17H

15M 0S 95.04 95.04 98.98 4.79 4.79 0.96 0.14 0.14 0.06 0.03 0.03 0.00

37 Subject 6
(day 1) 34,020 23D 15H

0M 0S 99.44 99.44 99.90 0.52 0.52 0.08 0.04 0.04 0.01 0.00 0.00 0.00

38 Subject 6
(day 2) 17,185 11D 22H

25M 0S 98.57 98.57 99.71 1.36 1.36 0.29 0.07 0.07 0.00 0.01 0.01 0.00

39 Subject 7
(day 1) 17,280 12D 0H 0M 0S 98.37 98.37 99.79 1.52 1.52 0.21 0.09 0.09 0.00 0.01 0.01 0.00

40 Subject 7
(day 2) 9916 6D 21H

16M 0S 97.90 97.90 99.76 1.97 1.97 0.24 0.13 0.13 0.00 0.00 0.00 0.00

Mean (SD) 97.1 (1.6) 97.1 (1.6) 99.6 (0.3) 2.8 (1.6) 2.8 (1.6) 0.4 (0.3) 0.1 (0.06) 0.1 (0.06) 0.02 (0.03) 0.01 (0.008) 0.0049
(0.008)

0.0002
(0.0004)

41 Real-world
working

environment
—Nordic
expedition

project
on the

Amundsen

Subject 1
(leg) 32,025 22D 5H

45M 0S 94.56 94.56 99.13 4.99 4.99 0.46 0.38 0.38 0.38 0.07 0.07 0.03

42 Subject 1
(trunk) 33,529 23D 6H

49M 0S 97.43 97.43 99.46 2.16 2.16 0.13 0.15 0.15 0.24 0.26 0.26 0.16

43 Subject 2
(leg) 34,883 24D 5H

23M 0S 94.46 94.46 99.32 5.44 5.44 0.64 0.09 0.09 0.03 0.02 0.02 0.00

44 Subject 2
(trunk) 30,109 20D 21H

49M 0S 96.33 96.33 99.40 3.56 3.56 0.50 0.08 0.08 0.07 0.04 0.04 0.03

Mean (SD) 95.7 (1.4) 95.7 (1.4) 99.3 (0.1) 4.0 (1.5) 4.0 (1.5) 0.4 (0.2)_ 0.2 (0.1) 0.2 (0.1) 0.2 (0.2) 0.1 (0.1) 0.1 (0.1_ 0.1 (0.1)
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