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Abstract: To satisfy the explosive growth of computation-intensive vehicular applications,
we investigated the computation offloading problem in a cognitive vehicular networks (CVN).
Specifically, in our scheme, the vehicular cloud computing (VCC)- and remote cloud computing
(RCC)-enabled computation offloading were jointly considered. So far, extensive research has been
conducted on RCC-based computation offloading, while the studies on VCC-based computation
offloading are relatively rare. In fact, due to the dynamic and uncertainty of on-board resource,
the VCC-based computation offloading is more challenging then the RCC one, especially under the
vehicular scenario with expensive inter-vehicle communication or poor communication environment.
To solve this problem, we propose to leverage the VCC’s computation resource for computation
offloading with a perception-exploitation way, which mainly comprise resource discovery and
computation offloading two stages. In resource discovery stage, upon the action-observation
history, a Long Short-Term Memory (LSTM) model is proposed to predict the on-board resource
utilizing status at next time slot. Thereafter, based on the obtained computation resource distribution,
a decentralized multi-agent Deep Reinforcement Learning (DRL) algorithm is proposed to solve the
collaborative computation offloading with VCC and RCC. Last but not least, the proposed algorithms’
effectiveness is verified with a host of numerical simulation results from different perspectives.

Keywords: vehicular cloud computing; remote cloud computing; long short term memory network;
deep reinforcement learning; computation offloading; vehicular network

1. Introduction

With the development of artificial intelligence (AI) technology, on-board sensing, and wireless
communication technologies, recent years have witnessed a great progress on the intelligent
transportation system (ITS). During the process, some resource-intensive safety related intelligent
driving technologies are emerging, such as auxiliary driving and autonomous driving [1–3]. It is
hopeful that people’s hands would be completely liberated in the near future, by which drivers and
passengers would have more time and freedom to enjoy a refined and colorful car life. As a result,
a host of novel computationally-complex entertainment related vehicular applications have sprung up
like mushrooms, e.g., augmented reality (AR), speech recognition and natural language processing,
etc. However, the huge computation resource required by the above mentioned vehicular applications
poses great challenges to each vehicle’s limited on-board computation resource. The report published
by Cisco indicates that 300 million passenger vehicles can generate more than 400 million GB of
data in wireless communications [4]. Correspondingly, it can be conceivable that a huge amount of
computing tasks could be generated during the process, which can trigger surging requests for massive
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computation resource. To solve the above challenges, computation offloading has been proposed as
a promising approach to alleviate the dilemma of computation resource shortage, which has drawn
extensive attentions and research efforts from automakers, software platform providers, and academia.
In recent years, considering its important role in future ITS [5–9], a multitude of studies have been
devoted to propose effective and efficient computation offloading schemes. Reference [10] concentrates
on the collaborations of the different edge computing anchors and puts forward a novel vehicular
edge computing framework named as CVEC. Reference [11] puts forward a fog computing- and cloud
computing-assisted computation offloading scheme in 5G mobile networks for vehicle-to-grid (V2G)
networks. The parked and moving vehicles-based fog vehicular network is proposed to implement
computation offloading aimed at the real-time traffic management in Reference [12]. The survey [13]
focuses on very recent advances on the current offloading frameworks, computation offloading
techniques, and other critical issues.

So far, among the previous computation offloading related works, most of them only focus on
remote cloud computing (RCC)-enabled computation offloading schemes, in which the computation
tasks are offloaded to the resource-rich infrastructures, such as road side unit (RSU). Although these
solutions can theoretically improve service quality, some potential problems have greatly affected
their application in vehicular networks in reality. Specifically, the serious delay resulting from
long distance transmission, the intermittent wireless communication links arising from dynamically
changeable vehicular topology, the limited service coverage due to the inadequate infrastructure
deployment, and the expensive costs caused by the investment in infrastructure can directly degrade
the performance of RCC enable computation offloading scheme. Moreover, without the utilization of
idle on-board computation resource, the RCC-enabled computation offloading scheme can not only
cause serious waste of resources, but also can cause serious system failure issues in vehicular scenarios
without the deployment of transportation infrastructures. Here, for sake of simplicity, the on-board
computation resource-based computation offloading is regarded as vehicle cloud computing (VCC),
which is also named as vehicular fog computing (VFC) [14] or mobile edge computing (MEC) [15] in
some works. To overcome the aforementioned dilemma, we adopted a comprehensive cross-layer
computation offloading framework, which jointly consider the computation offloading on VCC and
RCC together. Benefiting from the numerous studies on RCC-based computation offloading schemes,
this paper borrows their ideas and will not reinvent the wheel. In this fashion, we focus our attentions
on VCC-enabled computation offloading scheme.

In a VCC-based computation offloading scheme, a virtual resource network can be woven
with the under-utilized on-board computation resource [16] dispersed on the parked vehicles or the
vehicles running on the road, which forms a computation resources pool for computation offloading.
To efficiently conduct the collaborative VCC- and RCC-enabled computation offloading, the dynamics
and uncertainty on the resource availability of VCC brings huge challenges. In most previous studies,
the challenge is usually simplified as a clearly visible computation resource [17], which is unrealistic
to real-time exchange on-board resource utilization status in a large-scale vehicular network. In fact,
the time-varying and uncertain on-board resource availability can be caused by many factors. Firstly,
each vehicle is usually reluctant to share its idle on-board resource with others. The reason for that is
caused by the fact that, once agreeing to share resources with other vehicles, one vehicle’s idle resource
cannot be flexibly utilized by itself at any time. In addition, in many cases, the resource requirements
are not only determined by itself, but some external factors should also be taken into consideration,
such as road conditions, traffic accidents, weather conditions, etc. Furthermore, although some vehicles
are willing to share their idle computing resource with the motivations driven by some incentive
measures, they may cease to share their computation resource with others if only itself surging demand
for computation resource. In this way, the VCC-enabled computation offloading is so challenging
that an effective resource discovery paradigm is necessary. To solve it, a perception-exploitation
computation offloading scheme is proposed, in which resource discovery and computation offloading
are jointly investigated.



Sensors 2020, 20, 6820 3 of 29

As for the resource discovery scheme, it is utilized to predict the computation resource utilization
status by extracting the temporal correlation of resource utilization status sequence. Specifically,
we propose a Long Short-Term Memory (LSTM) network-based resource discovery scheme. With the
predictive resource utilization status, the computation offloading is implemented, which formulates
a concept of cognitive vehicular network (CVN). In a CVN, vehicles with available resource can be
regarded as a primary user, and vehicles with resource requests can be assumed as secondary users.
If a secondary user want to utilize the idle resource provided by the primary users, it has to collect
historical resource status information from the targeted primary users. With the proposed LSTM model,
each vehicle can learn experience from the collected historical data, and the target service vehicles’
resource utilization status can be predicted accurately. On basis of the resource discovery results,
an intelligent computation offloading management scheme is necessary to implement the computation
offloading under the dynamically changeable vehicular environment. In general, there are centralized
and decentralized two types computation offloading management schemes. However, the centralized
scheme usually requires massive information exchange among vehicles and expensive computational
overhead, which is not practical at all in a large-scale vehicular network. As a result, we adopted a
decentralized computation offloading manage scheme. Specifically, in our scheme, the computation
offloading management problem is firstly formulated as a multi-constrained knapsack problem,
which is NP-hard to be solve with the conventional optimization algorithms. Thereafter, to solve
it, the original problem is reshaped as a multi-agent decision making problem, and a novel Deep
Reinforcement Learning (DRL) algorithm with a multi-agent iterative updating mechanism is proposed.
The main contributions in this work are summarized as follows.

• To conduct the computation offloading for the resource-intensive vehicular applications,
the concept of cognitive vehicle network (CVN) is proposed, in which vehicle cloud computing
(VCC) and remote cloud computing (RCC) are jointly considered.

• To overcome challenges caused by the dynamics and uncertainty of on-board resource utilization
status in a VCC, a perception-exploitation computation offloading scheme is proposed. In the
perception stage, a Long Short-Term Memory (LSTM) model-based resource discovery mechanism
is designed to predict the on-board computation resource utilization status in a VCC.

• Based on the resource discovery results, a decentralized DRL algorithm-based computational
resource allocation scheme is proposed, in which an iterative updating policy is adopted to solve
the non-stationary issue and reduce the computation complexity.

The structure of this paper is organized as follows. Section 2 summarizes the related works to
our studies. Section 3 describes the system model and formulates the optimization objective problem.
Section 4 proposes an LSTM model-based computational resource discovery algorithm. In Section 5,
a novel DRL algorithm-based computation offloading management scheme is put forward. In Section 6,
numerical simulation results are utilized to verify our algorithms’ effectiveness. Section 7 discusses
the novelty and potential problems. The conclusion is summarized in Section 8.

2. Related Works

In this section, we report some related works to the relevant concepts and the key technologies
mentioned in this paper.

2.1. Related Works on Cognitive Vehicular Network

The concept of cognitive vehicular network was proposed some years ago, but, until now,
there has been no unified definition. The previous works mainly focus on communication technologies.
In Reference [18], a channel access management framework is designed to provide quality of service
(QoS) for data transmission in cognitive vehicular networks. In Reference [19], spectrum sensing for
opportunistic spectrum access is conducted collaboratively among neighboring vehicles. Reference [20]
proposes a new dynamic spectrum allocation algorithm (DSAARCC) to resolve channel conflict
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problem in channel switching in vehicular network. In Reference [21], an AI approach-based optimal
data transmission scheduling scheme in cognitive vehicular networks to minimize transmission costs
while also fully utilizing various communications modes and resources. In recent years, the concept
of cognitive vehicular network shows a diversified trend. Reference [22] introduces a Cognitive
Internet of Vehicles (CIoV) concept to realize intelligent cognition, control and decision-making for
future autonomous driving scenarios, in which human-centric CIoV utilizes hierarchical cognitive
engines and conduct joint analysis in both physical and network data space. In Reference [23], with a
cloud/fog-computing pattern and the internet of things (IoT) AI service framework, a cross-domain
solution for auto-driving is proposed in Cognitive Internet of Vehicles. In order to facilitate
video streaming application in terms of peak signal-to-noise ratio (PSNR) and smooth playback,
Reference [24] proposes a semi-Markov decision process (SMDP)-based resource-allocation scheme.
Based on the cognitive engine-based conventional cognitive IoV, Reference [25] formulates the security
strategy deployment for switches on core network to meet the safe transmission rules and to obtain the
lowest transmission delay. The above work is usually proposed for specific vehicular scenarios or some
particular vehicular applications, and the proposed solutions are difficult to extend to other vehicular
scenarios and other vehicular applications. Moreover, the concept of cognition in the proposed
cognitive vehicular network is diversified, as well. In our proposed cognitive vehicular network,
the cognition mainly refers to the perception of resource utilization status, which is crucial to the
computation offloading in a VCN. Our research scenario does not limit to a vehicular scenario, and the
proposed computation offloading scheme is not aimed at a specific vehicular application. Therefore,
its scalability is stronger than other cognitive vehicular networks proposed in the above references.

2.2. Related Works on Jointly Computation Offloading Scheme in Vehicular Network

There have been a broad range of studies which are explicitly or implicitly related to our ideas
in this paper. Reference [26] proposes a hybrid architecture utilizing the benefits of cloud access
networks and edge caching. Reference [27] considers the cooperation of cloud computation and mobile
edge computation (MEC) in internet of things (IoT) under the partial computation offloading scheme.
Reference [11] puts forward a fog computing- and cloud computing-assisted V2G systems in 5G
mobile networks for vehicle-to-grid (V2G) networks. The survey [13] focuses on the recent advances
on computation offloading frameworks and the main critical issues existing in the computation
offloading techniques. Reference [28] presents an idea of Mobile Vehicular Offloading (MoVeOff),
in which data is transferred from on-board devices to mobile devices of drivers and passengers.
Reference [29] puts forward a caching strategy consisting of a small-cell cloud and a macro-cell cloud
to minimize network latency. Reference [30] comes up with a cooperative vehicular cloud-aided
edge caching scheme. Reference [12] formulates a fog IoV system with the parked and moving
vehicles for offloading the real-time traffic management. Reference [14] introduces a vehicular fog
computing (VFC) with moving and parked vehicles as fog nodes. Reference [10] concentrates on
the collaborations among different edge computing anchors and puts forward a novel collaborative
vehicular edge computing (CVEC) framework. The above studies mainly involve the collaboration
among fog computing, MEC, small-cell cloud and macro-cell cloud. Most of the existing studies
assume that all the available computation resource are visible by default, which is unrealistic in
some cases. In our model, from a more realistic perspective, only the on-board computation resource
utilizing historical information is provided and the real-time resource utilization status is unknown.
In our paper, we proposed a CVN concept-based computation offloading scheme. To implement the
computation offloading management, a perception-exploitation mechanism is adopted to discover
and leverage the computational resource for computation offloading.

2.3. Related Works on Resource Allocation for Computation Offloading

The resource allocation for computation offloading generally involve spectrum resource allocation
and computation resource allocation. A multitude of studies have devoted to minimizing the total
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network cost for energy and delay, as well as maximizing the system profit, with the conventional
optimization methods, like convex optimization, and game theory, as well as some AI-based machine
learning algorithms. Specifically, to maximize the sum offloading rate, a hybrid computation offloading
scheme jointly considering the resource allocation integrating task distribution, subchannel assignment
and power allocation is proposed in Reference [31], which are solved by subproblems decompose
and iterative solution algorithm. To minimize the weighted-sum latency of all mobile devices,
Reference [32] formulates a joint communication and computation resource allocation problem
to minimize all mobile devices’ weighted-sum latency. Reference [9] proposes a vehicle-assisted
offloading scheme for UEs to reduce the computation offloading delay, in which a semi-Markov
process is formulated and solve by Q-learning and DRL algorithm. Reference [33] investigates the
joint communication and computing resources allocation problems for computation offloading in
a vehicular edge computing system. To reduce the long-term expected costs of power and time,
Reference [16] discusses the VCC resource allocation problem. In the above works, diverse metrics,
such as transmitting rate, delay, energy efficiency, etc., have been considered. In our work, due to
the relatively sufficient energy supply in vehicular network, we believe that energy is not the key
factor restricting the computation offloading’s performance in a VCN [34]. In addition, considering the
requirements for quality of service (QoS) in vehicular network, our optimization objective is defined as
maximizing utility function, in view of the powerful data processing ability in complex circumstance
and high-effective learning capability from the environment. In this paper, a Deep Q-learning Network
algorithm (DQN) is utilized to solve the optimization problems for resource allocation.

2.4. Related Works on Computation Resource Utilizing Status Prediction in a VCC Network

In a VCC network, due to the time-varying computation resource availability, it is difficult to
know the real-time resource utilization status. Thereby, an effective resource utilizing status prediction
scheme can definitely facilitate load balancing and proactive task scheduling in a VCC network.
However, to the best of our knowledge, there are few works directly related to resource utilization
status prediction, especially the on-board ones. The reasons mainly come from many aspects. Firstly,
there is not a completely unified industrial standard for computational resource utilizing in vehicular
network. Secondly, the computational resource consumption for some novel vehicular applications,
like autonomous driving, security-related and user-oriented vehicular tasks are difficult to accurately
and uniformly quantize. Last but not least, the complex road conditions and traffic density, as well
as weather variability, are all closely related to computation loads, which is so complicated that till
now there are little related studies. In a VCC network, it is very challenging to acquire the knowledge
of resource utilization status statistical distribution in advance. Fortunately, some previous research
on the prediction of primary users’ behavior in cognitive radio networks (CRN) can give us some
important reference and inspiration. Machine learning [35–37] has been proven to be a powerful tool
for the behavior prediction in CRN, by which a priori knowledge of the distributions is not required.
In this work, based on the historical resource utilizing state statistic information, we adopteded a deep
learning-enabled LSTM network [38–40] to predict the resource availability in a VCC network.

3. System Model and Problem Formulation

3.1. System Description

Our system model is shown in Figure 1. Here, a typical vehicular scenario embraces an
unidirectional road with U unidirectional lanes is considered. The system mainly embraces three
participants: RSU, service vehicles, and task vehicles; their definitions are separately introduced in
the following.
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• RSU: As a common transportation infrastructure in the vehicular network, it is usually equipped
with functions, such as wireless access and vehicular tasks computation. In addition, it is assumed
that the RSU is wire-connected with cloud computing center. In this way, we can think that its
computing resources are sufficient to meet the needs of offloading computing tasks in the vehicular
network. However, because it is usually constructed and maintained by a third-party company,
its service price is relative high.

• Service Vehicles: The vehicles with resource availability are defined as service vehicles [41],
which can share their limited idle computing resources to other vehicles with resource requests.
Since the resource shared by service vehicles are idle, it is reasonable that the service price is lower
than RSU.

• Task Vehicles: The vehicles with resource requests are defined as task vehicles [41], which send
resource-demanding requests to the neighboring service vehicles or resource-rich RSUs for
additional computational resource. They need to pay for the received computation offloading
service from RSUs or service vehicles.

Idle Computing Resource

Computing Tasks

RSU

Task vehicle

Service vehicle

Task offloading

Backhaul  offloading

Cloud Center

Agent

Action Reward

Environment

State1State2

Reinforcement 

Learning

LSTM

LSTM

Network1

Output

Input

LSTM

NetworkN

Figure 1. System model for cooperative mobile edge computing and cloud computing.

It is worth mentioning that the roles of service vehicles and task vehicles are interchangeable in
some cases, such as the changing traffic environment and the time-varying vehicular applications.
In other words, due to the variability of resource utilization status, service vehicles can be switched to
task vehicles, and vice versa. Moreover, the arrivals and departures of service vehicles and task vehicles
follow Poisson distribution with parameters λt and λs, respectively. Furthermore, the homogeneity
of on-board resource distribution is taken into consideration. Here, for notational simplicity, we just
assume that each vehicle is equipped with resource requests or availability of one or two resource units
(RUs). Since one parked vehicle is stationary, which can be regarded as an RSU node with shrinking
resource availability. In addition, there is no parked vehicle in some vehicular scenarios, such as the
highway scenario. As a result, in our model we only consider the VCC consisting of the running
vehicles on the road.

3.2. Communication Model

For computation offloading, both the uploading of computing tasks and the feedback of
computing results are closely related to channel quality. As for channel quality, we mainly
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consider large-scale fading arising form path loss and small-scale fading caused by relative velocity.
The large-scale fading GL can be defined as follows.

GL = G0

(
d
d0

)−γ

, G0 = GrxGtx

(
λ

4πd0

)2
, (1)

where d is the distance and γ is the path loss exponent, respectively, G0 is the baseline attenuation
at the reference distance d0, Grx, Gtx denote the antenna gains, and λ = c

fc
is the wavelength of

carrier frequency fc and light speed c. Considering the relative speed in system model, the doppler
effect-based small scale fading is not negligible. In (2), it is demonstrated by rayleigh channel model
with parameters z and σ.

f (z) =
z

σ2 exp
(
− z2

2σ2

)
. (2)

In order to perform computation offloading, the Device-to-Device (D2D)-based vehicle-to-vehicle
(V2V) links, Non-orthogonal multiple access (NOMA)-based vehicle-to-multiple-vehicles (V2mV)
links, and vehicle-to-infrastructure (V2I) links are considered in our model. In addition, each link
utilize the spectrum resource in orthogonal frequency division multiple access (OFDMA) mode. In this
way, there is no interference caused by spectrum resource sharing. Above all, the aforementioned
communication links are detailed as follows.

• V2V links: Their capacity can be defined with (3). Without the participation of central control unit
and reliance on the assistance of transport infrastructure, V2V links is utilized for free.

Ci,j = B

(
log2

(
1 +

Pi,j
∣∣hi,j

∣∣2
N0

))
. (3)

• V2I links: Here, one task vehicle offloads its computing task to clouding computing empowered
transport infrastructure, like RSUs., and its capacity is the same as V2V links in (3). V2I links need
to pay for the assistance of transport infrastructure.

• V2mV links: To satisfy the requirements of multi-terminal access, the concept of V2mV link has
been proposed in our previous work. Here, considering the delay and complexity caused by
successive interference cancellation (SIC) technology-enabled decoding technology, it is assumed
that each task vehicle can offload its computational tasks to at most two destinations. The power
allocation scheme is shown in (4). Under the constraint of transmitting power Pi, when channel
gain hi,k between vehicle i and k is inferior to hi,k′ between vehicle i and k′ in (4), power Pi,k′

allocated to vehicle k′ is more than power Pi,k allocated to k. Thereafter, the capacity of V2mV is
presented in (5)–(7).

hi,k < hi,k′ → Pi,k < Pi,k′ , where Pi,k + Pi,k′ ≤ Pi, (4)

Ci,k = B

(
log2

(
1 +

Pi,k
∣∣hi,k

∣∣2
I Intra
i,k + N0

))
, (5)

Ci,k′ = B

(
log2

(
1 +

Pi,k′
∣∣hi,k′

∣∣2
N0

))
, (6)

Ci = Ci,k + Ci,k′ . (7)
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3.3. Computation Model

In our model, we mainly consider the resource availability on service vehicles and RSUs. It is
assumed that the available resource provided by RSUs are stable and known in advance. However,
service vehicles’ resource utilization status are full of uncertainty for the following reasons.

• Due to selfishness and privacy, service vehicles are reluctant to share their idle computing resource
with other vehicles. As a result, the task vehicles cannot efficiently obtain the service vehicles’
real-time resource utilization status.

• After receiving the resource requests from their neighboring task vehicles, the service vehicles can
decide to refuse or accept these requests with their willingness.

• Even if these requests are accepted, the ongoing offloading service have to be ceased once the
service vehicle itself resource demanding is abruptly surging.

Based on the above analysis, resource discovery is crucial to the computation offloading in
a VCC network, in which the computation resource is dynamic and uncertain. With the help of
resource discovery, Network Function Virtualization (NFV) technology is utilized to collect the
dispersed computational resource and generate a virtual cloud computing resource pool. Moreover,
with software-defined networking (SDN) technology, communication and computation resource can
be efficiently managed to enhance the performance of CVN [42]. As for the computation offloading
management, we firstly assume that computation tasks can be divided into several subtasks with
unit computational complexity, and the partial offloading and parallel computing can be supported
by a two-tier offloading framework [43]. The computational resource scheduling and control can
be conducted by a centralized or distributed approach. Due to the self-organized characteristic in
computation offloading, we adopted the distributed computation offloading scheme in this paper.

3.4. Problem Formulation

In this section, the computation offloading in a CVN can be formulated as a multi-variable
multi-constraint combinatorial optimization problem as (8).

max Rtotal (L, l, P) , (8)

s.t.



C1 : ∑
1≤j≤Ks

∑
1≤i≤Kt

Lj
iC

j
i ≤ ∑

0≤j≤Ks

Ccomp
j ,

C2 : ∑
0≤j≤Ks

Lj
iC

j
i ≤ Ccomp

i ,

C3 : ∑
1≤i≤Kt

Lj
iC

j
i ≤ Ccomp

j ,

C4 : ∑
0≤i≤Kt

Lj
i ≤ N1,

C5 : ∑
0≤j≤Ks

Lj
i ≤ N2,

C6 : ∑
0≤j≤Ks

l j
i ≤ 1,

C7 : ∑
0≤j≤Kt

Lj
i P

j
i ≤ Pi,

wherein L denotes the computation offloading decision, l is the spectrum allocation results, and P
is the power allocation results. Cj

i is the offloading tasks from task vehicle i, 1 ≤ i ≤ Kt to service
vehicle j, 1 ≤ j ≤ Ks or RSU j = 0. As for the constraints, C1 denotes that the overall allocated
computation tasks should not exceed the overall resource availability ∑

0≤j≤Ks

Ccomp
j . C2 states that

the allocated resource for each task vehicle i, 1 ≤ i ≤ Kt should not surpass it requesting resource.
C3 means that the allocated resource provided by each service vehicle j, 1 ≤ j ≤ Ks should not
surpass its resource availability. C4 defines N1 as the maximal amount of task vehicles served by
each service vehicle j. C5 defines N2 as the maximal service vehicles amount allocated to each
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task vehicle. C6 means that each link should be allocated to at most one spectrum resource block.
C7 is the task vehicle’s power allocation constraints. As aforementioned, the power is relatively
sufficient in a VCN, and each link access the spectrum resource with the OFDMA mode. In this way,
the optimization can reduce from {L, l, P} to L, and the jointly computing resource and communication
resource allocation will be investigated in the future work.. To solve the objective function (8),
the resource discovery and computation offloading management are, respectively, investigated in
our model. In (8), maximizing the overall utility value Rtotal is defined as the optimization objective,
which mainly embraces computation utility Rcomp and communication utility Rcomm with the weight
λ1 and λ2, respectively.

Rtotal = λ1Rcomm + λ2Rcomp, Rcomm = ∑
1≤i≤Kt

Rcomm
i , Rcomp = ∑

1≤i≤Kt

Rcomp
i . (9)

4. LSTM-Based Resource Discovery in a VCN

As mentioned before, resource discovery is an effective approach to alleviate the dynamics
and uncertainty of resource availability in a CVN. In this section, we utilize the collected historical
information of resource utilization status to predict the available resource in the future. Till now,
the related works on resource utilization status prediction is few so far. Due to the aforementioned
similarity between CVN and the conventional cognitive radio network (CRN), the spectrum utilization
status prediction in a CRN can provide important reference to our research. Specifically, in a CRN,
there mainly exist two participants: primary users (licensed users) and secondary users (unlicensed
users). Primary users can occupy the licensed spectrum with a higher priority than secondary users.
At each time slot, the spectrum utilizing status (busy or idle) on a specific channel is determined by the
appearance of primary users or not. In the channel utilization status prediction mechanism, secondary
users firstly predict the primary users’ behaviors and, based on the channel status, to opportunistically
access the idle spectrum.

In our model, similar to the idea that channel status prediction mechanism, service vehicles can
be regarded as primary users and the task vehicles correspond to secondary users in CRN. In addition,
we assume that each vehicle’s historical on-board resources utilization status information can be
collected by other vehicles with the transmission on the idle channels. Based on the collected historical
information, the coming resource utilizing status at next time slots can be predicted, which paves
the way for the subsequent computation offloading management. In the following, we will firstly
overview some preliminary knowledge in a CRN, and progressively transfer from CRN to CVN by the
comparisons between CVN and CRN. Generally speaking, although the concepts of CRN and CVN
are similar in many respects, there are still many differences between them. Due to the environmental
complexity in a CVN, the resource utilization status prediction in a CVN is more challenging than the
channel status prediction in a CRN. The main differences are summarized as follows:

• Firstly, different from channel utilization status prediction in a CRN, so far there is no effective
approached to track the dynamic variability of on-board computation resources. In addition,
there is not a central control unit or an unified coordination mechanism among vehicles.

• Secondly, the resource sharing policy in a CVN is fundamentally different from spectrum sharing
principle in a CRN. Unlike the spectrum sharing with a predefined tolerable interference threshold
in a CRN, the available resource is limited and it can only be shared with restricted amount of
vehicular tasks.

• Last but not least, the CRN environments for channel status prediction are usually relatively static,
whereas the CVN environment for resource utilization status prediction is highly dynamic. As a
result, the resource discovery in a CVN is more challenging than the channel status prediction in
a CRN.

Based on the above reasons, the conventional algorithms for primary users’ behaviors prediction
in a CRN cannot be straightforwardly utilized to perform resource utilization status prediction
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in a CVN, such as Linear Prediction, Hidden Markov Decision Model (HMM), Support Vector
Machine (SVM), etc. [44]. With the progress of AI technologies, we adopted the deep learning-based
Long Short-Term Memory (LSTM) network to implement the resource discovery in a CVN. Owing
to the difficulty in collecting the real data set, the self-similarity traffic simulator is adapted
to simulate the resource utilization status in a CVN. In the following, the self-similarity traffic
model-based computational resource status simulator is firstly presented. After that, the specification
of LSTM-enabled resource availability prediction scheme is presented.

4.1. Self-Similar Traffic Simulator

As mentioned before, due to the constraints on hardware level and heterogeneous on-board
resource configuration, it is challenging and unrealistic to obtain the real data set for resource utilization
status prediction in a VCN. Considering the similarity between network traffic and the arrival of
vehicular tasks, we adopted a self-similar process-based network traffic model to generate the required
simulation data set. Specifically, as for network traffic model, it is one of key issues for network
performance management, QoS management, and admission control. So far, there mainly exists three
types of traffic models, namely Poisson traffic, Interrupted Poisson (IP) traffic, and Self-similar (SS)
traffic, which can characterize the "self-similarity" statistics property of the network traffic. Since the
coming computation tasks in a CVN usually obey a potentially complex distribution, which is similar
to the traffic of network requests. Among the several network traffic models mentioned above,
Poisson traffic can only generate a relative simple time series with short similarity, and which cannot
characterize the complex vehicular tasks. Due to the limitations of model framework, IP can simulate
more complex vehicular scenario than Poisson traffic model. However, it is incapable of presenting the
burst and self-similarity property in real network traffic. SS traffic model is more powerful than both
Poisson traffic model and IP traffic model, which has been widely utilized to present the stochastic
processes with self-similarity characteristics. Specifically, SS is a well-known characteristic in the
domain of internet traffic, and whose main traits is long range dependence of traffic, burstiness and
correlation over varying time scales. In self-similar network model, SS is employed to generate the
self-similar traffic with Pareto distribution, and its PDF is defined as (10). As a result, we adopted SS
traffic to simulate the computation resource utilization status in our model.

f (x) = β
αβ

xβ+1 , x ≥ α, (10)

where β > 0 denotes the shape, and α > 0 signifies the distribution’s scale which is the minimum value
of variable x. Its mean is given in (10) when the shape parameter β > 1. In addition, its variance for
variable x is infinite when β ≤ 2. The hurst is short for H and given in (11), which can quantify
SS traffic and reflect self-similarity when H ∈ (0.5, 1). On condition that H = 0.5, the Pareto
distribution is simplified to a Poisson distribution, and the burstiness in the traffic with the increase of
H. Pareto distribution is the simplest heavy tailed distribution, and βon and βo f f are parameters about
the heavy tailed property of “O” state and “OFF” state, respectively. (11) is the ideal result for burst H,
whereas the usual value of β is between βon and βo f f in reality.

H =
3− β

2
, β = min

(
βon, βo f f

)
, (11)

Next, referring to the above model, we utilize ON/OFF model to generate the expected data
set with Pareto distribution. To achieve that, we will firstly make the following assumptions: (a) for
each type vehicular computing task, its arrival and departure is usually assumed to obey Poisson
distribution, and (b) multiple vehicular tasks are independent processes with their own distributions,
respectively. Then, Taqqu et al.’s research results have theoretically proved that the superposition of
an infinite number of independent update-return processes with heavy-tailed distributions converges
weakly to the typical self-similar process fractal Brownian motion (FBM) [45]. Here, the update and
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return process refers to the ON/OFF process in the Packet-Train model, which has strictly alternating
ON and OFF states with their, respectively, own heavy-tailed characteristics. In view of the above
concepts, we can explain it from both macro and micro perspectives. From a macro-perspective,
the status ON represents the available on-board resource can support the coming computation tasks,
while the status OFF indicates the opposite of the status ON. From a micro-perspective, the status
ON represents that vehicular tasks are continuously generated at a constant rate, while the status ON
indicates that there is no new generating vehicular tasks. In Figure 2, the relationship between the
macro model and the micro model is clearly demonstrated. In fact, the macro version can be regarded
as an accumulated version of the micro version.

Task 1

Task n

Task N

Task 1

Task n

Task N

The Overall Tasks

Micro ON-OFF Simulator Macro ON-OFF Simulator

Figure 2. The ON/OFF Simulator Model.

To superimpose multiple independent ON/OFF service sources to generate computation tasks
with self-similar characteristics. The heavy-tailed distribution of the ON/OFF service source is
represented by a Pareto distribution given in (12).

x =
α

u1/β
, (12)

where u is an real number which obeys the Uniform distribution between 0 and 1, and α is short
for αon or αo f f which represent the minimal value of Ton or To f f , respectively. β is the heavy-tailed
property parameter. Here, the period for both ON state and OFF state can be achieved by continuously
generating random number and feed into (13). On condition that β > 1, the mathematical expectation
of x is defined in the following formula:

T̄ = E (x) =
βα

β− 1
. (13)

The minimum value αon of ON state is the consuming time for completing a computing task,
while the minimum value αo f f of OFF state can be determined by the time span ratio Tratio in (14),
and αo f f is assumed to be identical for different types of computing tasks. Based on the above analysis,
the whole process about generating the vehicular computing tasks sequence is given in Algorithm 1.

Tratio =
mean (Ton)

mean (Ton) + mean
(

To f f

) =

βonαon
βon−1

βonαon
βon−1 +

βo f f αo f f
βo f f−1

=
αon
Ton

αon
Ton

+
αo f f
To f f

. (14)
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Algorithm 1 The Computation Resource Tasks Sequence with Self-similar Traffic Model

Input: Define the computing task types [1, · · · , N], system parameters β, Ton, To f f , αon, αo f f
Output: The cumulative computing tasks sequence

1: for all n ∈ (1, · · · , N) do

2: Initialization βn, Tn
on, Tn

o f f , αn
on, αn

o f f
3: for all time ∈ (1, · · · , Times) do

4: Generate random number u with Uniform distribution between 0 and 1
5: if f lag = 0 then

6: Achieve the period Tn
on with (13)

7: Generate the computation tasks continuously within Ton
8: Set f lag = 1
9: else

10: Achieve the period Tn
o f f with (13)

11: Keep sleep within Tn
o f f

12: Set f lag = 0
13: end if
14: end for
15: end for
16: return The cumulative computing tasks sequence

4.2. LSTM-Based Resource Utilization Status Prediction in a VCN

With the aforementioned SS Traffic simulator, the generated simulation data set can be divided into
the training data set and testing data set for the resource discovery algorithm proposed in this section.
The prediction accuracy poses a significant influence on the performance of computation offloading in
a CVN. Thereafter, an efficient prediction paradigm should be put forward to conduct the resource
discovery for each vehicle. The resource discovery issue in a CVN is a typical Time Series Forecasting
(TSF) problem [46]. There have been a lot of conventional schemes implementing the time series
analysis prediction, such as support vector machine (SVM) [47,48], probabilistic graphical models,
HMM [47,49,50], Bayesian Network [51] and random forest classifiers [52], etc. Due to the powerful
data processing ability, machine learning has been widespread used in recent years. In particular,
with the significant advances of artificial neural networks (ANNs), some deep learning-based models,
like recurrent neural network (RNN) [53,54], have been proposed for prediction and gradually become
a trend. However, for the prediction of long-range time series, the backpropagation process of RNN
suffers from the vanishing [55] or exploding gradient issues. As a result, we adopted LSTM network
to conduct the prediction of resource utilization status in a CVN.

Compared with the conventional RNN framework, LSTM is more effective to extract the temporal
correlation existing in the temporal sequence, which mainly benefits from the loop framework to
remember the time-correlated sequence. Specifically, the standard LSTM module compromises four
gate framework-based LSTM cell, by which LSTM is emdowed with the long-term memory. Specifically,
the gate framework are a arrange of memory units spanning from previous slots St−1 to the current
slot St cascaded through a cell state, which has been shown in Figure 3. Specifically, the number of
units is related to length of time sequences to be studied. For each LSTM cell, which usually embraces
three gate activation functions σ1, σ2 and σ3, paired with two output activation functions φ1 and φ2.
The framework for neural network is related to the complexity of the specific problem, which can be
experienced determined with repeat tests.

ft = σ
(

W f . [Ht−1, Xt]
)
+ b f ), (15)

it = σ (Wi. [Ht−1, Xt]) + bi), (16)
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C̃t = tanh (WC. [Ht−1, Xt] + bC) , (17)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (18)

Ot = σ (Wo. [Ht−1, Xt] + bo) , (19)

Ht = Ot ∗ tanh (Ct) . (20)

It is obvious that (15)–(17) and (19) usually have the same input vector Ht−1, Xt, which are the hidden
state and the temporal sequence input. (15) denotes the forget gate, which can directly decide the
remaining portion of the previous cell state Ct, wherein W f is the weight of neural network. (16) is
the input gate which is related to the portion of the current cell state C̃t, wherein Wi is the weight of
neural network. (20) can generate the current state which is independent to the previous cell state.
Based on (15)–(17), the combination of the previous cell state and the current cell state can be obtained
with (18). (19) is the output gate which can output the result of the cell unit. (20) can generate the
hidden state ht in the current time. It is noteworthy that the current cell unit state C̃t and the present
hidden state ht will transmit to the next cell unit as its previous states. Like standard back propagation,
the LSTM network is trained with backpropagation through time (BPTT), which comprises a repeated
application of the chain rule. In our paper, the proposed LSTM model is designed as a two-layer deep
learning framework with 64 units on each layer. Correspondingly, the input time sequences are vectors
with the dimension 1× 64. The output result is the prediction value for the next time slot, and there
is no need for activation in output layer. In the training stage, time back propagation transmitting is
utilized to iteratively update the weight value of multi-layer neural networks.

Input

LSTM

Cell 12

LSTM

Cell 1N

LSTM

Cell 11

Output

LSTM

Cell M2

LSTM

Cell MN

LSTM

Cell M1

LSTM Cell

 +

 
tanh  
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tX

tY

t-1C

t-1H

tC

tH

titf tC
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Figure 3. The framework of Long Short-Term Memory (LSTM) network.
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5. Multi-Agent Double Deep Q Network (DDQN) Algorithm for Computation Offloading
in a CVN

5.1. The Multi-Agent DRL Framework

In this section, based on the resource discovery results in a VCN, an efficient offloading policies
is necessary and the conventional algorithms cannot be competent for the tricky problems or the
computational complexity is unacceptable. Fortunately, machine learning has been envisioned as
a promising paradigm for addressing such challenges and competent for resource scheduling in
complex environments [56]. By virtue of intelligent environmental interaction and self-decision ability,
it can facilitate in-depth feature discovery and conduct a flexible and adaptive resource management.
In this paper, the DRL-based Double Deep Q Network (DDQN) is adopted. Generally speaking,
to implement the computation offloading in a VCN, the centralized and the distributed paradigms
have been investigated. In most cases, the centralized scheduling scheme highly relies on the global
information, which can cause a heavy communication burden. As a result, we adopted the distributed
resource allocation scheme in this paper, which is practically feasible and computationally efficient.

To perform the computation offloading in a CVN, each task vehicle is defined as an agent.
Due to the multiple vehicles’ participation, a multi-agent environment is formulated, in which each
agent makes a decision based on its local environmental observation. The simultaneous behaviors
conducted by all the agents can cause a non-stationary computation offloading environment. As a
result, it is hard or even impossible to reach a Nash equilibrium for all the agents. To solve it,
we innovatively decompose the multi-agent simultaneously update to sequentially update. In other
words, the environment will change from all agents update together to iteratively change one by one.
Different from the conventional DDQN algorithm, the iteration sequence of the agent is a problem
worthy of in-depth studies in the future. In this paper, to verify the effectiveness of our proposed idea,
diverse participation sequence schemes have been taken into consideration.

In addition, another highlight in our paper is the concept of local state space and action space,
which can reduce the action space by removing those action sets with a very low probability,
thereby reducing the computational complexity significantly. Here, we take the action space as
an example to illustrate the reason for why we choose local space instead of global space. In particular,
the action space represents the candidate task vehicles set to be chosen for computation offloading.
Account for the virtualized computing resources, it can break through the limitations brought by
hardware architecture and implement the computing tasks separately. In this way, the role of
computational resource in different service vehicles are almost the same for one task vehicle. Then,
the computation offloading performance is mainly depends on the communication stage. If the service
vehicle is far from the task vehicle, the transmission rate will be inevitably deteriorated due to the long
distance path loss. As a result, in order to maximize its own profit, each vehicle will have extremely
low probability of choosing a service vehicle in a distance and the service vehicle in proximity are
contained in the state space and action space is sufficient for achieving a acceptable offloading scheme.
Additionally, it is worth mentioning that the amount of concerned neighboring vehicles is the same for
each agent for notational simplicity,

Due to the Markov property, the resource allocation strategy can only be determined by the current
state. As a result, the original problem can be simplified as a Partially Observed Markov Decision
Process (POMDP) problem, which can be defined as a tuple (S, A, R, T, γ) with the presentation of
state space, discrete action space, state transition probability and discount factor along with reward.
In the following, we will define these components in our framework, respectively.

State Space: The state space Si for task vehicle i is given in (24), which can be regarded as a
features vector extracted from the vehicular environment. In Si, Bi and Vi are vehicle i’s position
and velocity, Λi represents its neighbor vehicles set for task vehicle i. Ti and Fi are the required
computational resource and the demanding spectrum resource, respectively.
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Si = {Bi, Vi, Λi, Ti, Fi} , Si ∈ S (21)

Action Space: The action space is composed of the candidate computation offloading targets,
such as service vehicles and RSUs. Moreover, in order to reduce the dimensionality of the action space,
a shrinking action space consisting only of the neighbor service vehicles. The intuition behind our
idea is that, due to the advantage of short distance in transmission performance, each task vehicle
usually chooses the service vehicles in the proximity as its offloading destinations. Moreover, with the
proposed neighbor agents mechanism with a uniform size, the scalability can be enhanced to adopt
the vehicular network with a dynamically changeable vehicles.

Ai = {Li} , Li =
{

L0
i , L1

i , · · · , LKt

i

}
. (22)

Reward Function: Reward function is the driving force of approaching the optimization objective
in (9). Here, Rtotal is defined as the overall reward in our model, which mainly embraces the reward
arising from communication stage Rcomm and computation stage Rcomp. Specifically, Rcomm can be
jointly determined by the benefits and costs of communication stage as (23). In (23), bene f itcomm is the
total transmission rate consisting of three types of links: V2V, V2I, and V2mV. costcomm is the cost paid
by the V2I links, while α is the unit price for the transmitting rate of V2I links.

Rcomm = bene f itcomm − costcomm, bene f itcomm = CV2V + CV2I + CV2mV , costcomm = αCV2I . (23)

As for computation stage, it is assumed that service vehicles voluntarily shares their underutilized
resource to task vehicles without charging the payments. As a comparison, the computation resource
equipped on RCC needs the task vehicles’ additional payment. Here, Rcomp is defined with (24),
which is jointly determined by the benefit bene f itcomp and cost costcomp, as well.

Rcomp = bene f itcomp − costcomp, bene f itcomp = ∑
1≤i≤Kt

∑
0≤j≤Ks

Lj
iC

j
i , costcomp = β ∑

1≤i≤Kt

L0
i C0

i , (24)

wherein β is the unit price for computation resource provided in RC, Lj
i = 1 indicates the task vehicle i

offload its computation tasks to service vehicle j, 1 ≤ j ≤ Ks or infrastructure j = 0, and, otherwise,
Lj

i = 0, Cj
i is the task vehicle i obtained computation resource from service vehicle j, 1 ≤ j ≤ Ks or

infrastructure j = 0.
As for the previous studies on computation offloading management issues in vehicular networks,

only some objective factors are taken into consideration, like vehicles’ positions, speeds, channel state
information (CSI), and computation resource requirements. Here, in addition to the objective factors,
some subjective factors are taken into account, as well. In our model, the subjective factors mainly refer
to the selfish level of service vehicles for resource sharing with others. φ =

{
φ0, φ1, · · · , φj, · · · , φKs

}
.

φ0 = 1 represents that RSU has the same attitude towards all task vehicles. For service vehicle j, 1 ≤ j ≤
Ks, its attitude towards task vehicles are defined as φj =

{
φj,1, · · · , φj,i, · · · , φj,Ks

}
, wherein φj,i ∈ [0, 1].

Above all, Rtotal can be obtained as follows.

Rtotal = ∑
0≤j≤Ks

∑
1≤i≤Kt

φj,i

(
λ1Rcomm

i,j + λ2Rcomp
i,j

)
. (25)

Asynchronous Iteration Sequence: As mentioned before, the iteration sequence is one of
characteristics of our proposed algorithm, which can be determined by a swarm of predefined
principles. In fact, the principles can be adaptively adjusted based on environmental perception, or be
customized according to the vehicular scenario’s requirements. In order to reflect the effectiveness of
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asynchronous iteration sequence, in our model, we only propose a few representative schemes, such as
location-based iteration order- and value-based iteration order, etc.

5.2. Multi-Agent DDQN-Based Computation Offloading Management Scheme

In a CVN with a large amount of vehicles, the extraordinary computation complexity brings huge
challenges to the delay-sensitive vehicular network. As a result, the optimization algorithm should
be elaborately designated to manage computation offloading. With the progress of reinforcement
learning (RL), several versions of RL algorithms have been proposed, such as Q-learning, Deterministic
Policy Gradient (DPG), and their variants. Generally speaking, from the perspective of designed
principles, the above RL algorithms can be divided into two types: value iteration or policy iteration.
Q-learning is a tabular-based value iteration algorithm, in which a Q-table should be maintained
and updated during the learning process. Due to the expensive memory required by the Q-table,
Q-learning can only be utilize to solve the small scale problems. DPG is a policy iteration-based
RL algorithm, which is endowed with a powerful learning ability to solve the complex problem
with a high-dimensional action space. However, due to the extraordinarily huge solution space,
DPG algorithm usually has extraordinary computation complexity. In this way, a deep Q-learning
network (DQN)-based RL algorithm has been proposed in recent years, which combines the benefits
of Q-learning and Deep learning.

As for the DQN algorithm, a value approximation function enabled by deep learning to replace
the Q value stored in the Q-table. Nevertheless, a fact that cannot be ignored is that DQN still
cannot overcome the overestimation issue of target value existing in Q-learning algorithm. To solve it,
a DQN-based double deep Q-learning algorithm is adopted to implement the computation offloading
management in a VCN. As an advanced version of DQN algorithm, DDQN algorithm utilize experience
replay and separate target network framework to solve the overestimation issues. Specifically, with the
separate target network framework, the target network’s parameters is unchangeable within a
per-defined times span. As a result, the chosen action by the target network can endow a more
conservative target value, and the overestimation issue can be alleviated to a certain degree. In the
training stage, the training instability can seriously affect system performance, especially in the
multi-agent environment. For each agent, its training environment is unstable due to the simultaneous
updating process of multiple agents. Fortunately, the dilemma can be effectively solved with
the proposed asynchronous iteration sequence mechanism. Next, the flow chart of the proposed
multi-agent DDQN algorithm is summarized in Figure 4, and more detail is given as follows.

Initialization:At the beginning, the primary network Q (s, a; θ)’s parameters θ0 and the
target network Q (s, a; θ−)’s parameters θ0

− are initialized with a predefined uniform distribution.
The samples are repeatedly generated by the primary network, which usually is designed with
a fixed format (st, at, rt, st+1) representing a set of current state, selected action, reward, and next
state, respectively. A replay buffer with a predefined size is introduced in our model to store the
training samples. During the process, these samples are stored into the replay memory with a first-in
first-out sequence.

Training: Once the replay memory is filled with the training samples, at each subsequent iteration,
a mini-bunch of training samples are uniformly drawn from the replay memory for the model training.
During the process, the newly generated tuples are continuously stored into the replay memory to
provide up to date samples. Based on the next state st+1 in the tuple, the primary network greedily
choose the optimal action at+1 for the next time slot. Thereafter, we can obtain the target Q-value
with st+1 and at+1 as (26), which can be regraded as the accumulative reward value in one episode.
The loss function (27) is utilized to update the primary network’s parameters, by which the network
parameter θ are updated along with the negative gradient direction to minimize the loss function
as (28). For each T′(T′ < T) times, the primary network’s parameters are copied to the target network.
In fact, the parameters update of the target network is always slower than the pace of the primary
network, which can endow a relative stable network training environment. In addition, to reduce the
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computation complexity caused by the extraordinary huge solution space, the asynchronous updating
mechanism can enhance the training stability significantly.

Initiallization

Generate State based on 

Environment

Generate State based on 

Environment

Generate Action based on 

Primary Network

Compute State-Action 

Value

Obtain the Reward

Computed Targeted State-

Action Value

Generate Next Action 

Obtain State at Next Step

Compute the Loss Function

Parameter Upadating

Optimal 

Solution

Whether to 
converge

NO

YES

Figure 4. The flow chart of Deep Reinforcement Learning (DRL)-based Double Deep Q Network
(DDQN) Algorithm.

Iteration Stop: For one agent, once the iteration times have reached the specified maximum
number of iterations and the value of loss function converges to a small range of values, the training
process stop and the action corresponding to the optimal Q-value is chosen as the optimal action.
With the asynchronously implement among agents, the optimal computation offloading decision can
be obtained sequentially. The main steps for DDQN-based computation offloading management in a
CVN is summarized in Algorithm 2.

yt = R
(
st, at)+ γQ

(
st+1,

(
at+1

)∗
, θt
−

)
,
(

at+1
)∗

= arg max
at+1

Q
(

st+1, at+1, θt
)

, (26)

Loss =
1

2M′ ∑
1≤m≤M′

[
yt −Q

(
st, at, θt)]2, (27)

∇θt Loss = − 1
M′ ∑

1≤m≤M′

[
yt −Q

(
st, at, θt)]∇θt Q

(
st, at, θt) . (28)
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Algorithm 2 DDQN algorithm for Computation Offloading Management in a VCN

Input: One primary Q-network structure and one target Q-network and one replay memory M with

size m
Output: The optimal computation offloading management solution π∗

1: Initialize network parameters θ0 and θ0
− of primary network and target network

2: for all t ∈ (1, · · · , T) do

3: Generate the current state st based on the up to date environmental information
4: Select a action at based on ε− greedy policy
5: Obtain reward rt from the environment and transfer to the new state st+1

6: Obtain the reward and store the tuple st, at, rt, st+1 into memory M
7: if t ≥ Cmemory and the reply buffer is filled up then

8: Draw a mini-batch of tuples M′ from the reply buffer for model training
9: Compute the target Q-value by target network with the current state in M′

10: Choose the action greedily with the optimal Q-value
11: Compute the loss function value with (27) and update current Q network with (28)
12: if t = nT′, n ∈ N+ then

13: Update the network parameters of target network with θt ← θt
−

14: end if
15: end if
16: end for
17: return the final resource allocation result a∗

6. Simulation Results and Analysis

In this section, a host of simulation results are presented to evaluate the proposed algorithms’
effectiveness, which mainly embrace the simulations for LSTM-based resource discovery and the
DDQN-based computation offloading management, respectively. To conduct the simulations,
we consider a one-way road segment with three lanes. There are different requirements for safety
distances and driving speeds for each lane. RSUs are deployed every 500 m on the roadside. An RSU
is empowered with a coverage radius of 500 m. The arrival of service vehicles and task vehicles obeys
the Poisson process with parameter λs and λt, respectively. Each vehicle is equipped with resource
availability and resource requirement with the amount of 1 or 2 RUs, respectively. More details will be
given in the following, and the other detailed parameters are summarized in Table 1.

Table 1. System simulation parameters.

Parameter Value

Cellular transmission power 0.2 W
Baseline power for V2mV link 0.1 W

Noise power −174 dBm/Hz
Pathloss index 2

Number of Lanes 3
Velocity of Each Lane [120 km/h,90 km/h,60 km/h]

Safety Distance of Each lane [120 m, 90 m, 60 m]
Lane width 4 m

Bandwidth of Each Vehicle 20 MHz
Power allocation index 0.8, 0.2

Learning rate α 0.8

6.1. LSTM-Enabled Resource Discovery Algorithm

In this section, the effectiveness of LSTM-based resource discovery scheme is verified, and the
training and testing stages are, respectively, discussed in the following. At the beginning, we firstly
generate a number of samples with the proposed self-similar traffic simulator, and then the whole
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data set is divided into training data set and testing data set two parts. In our proposed LSTM model,
we formulate a four-layer network with two hidden layer. The dimension of the input layer and
the output layer are 1× 64 and 1× 1, respectively. For the two hidden layers, there are 64 cell units
stacked in each layer. The training process is implemented for 3000 iterations, and the testing process
is performed for 1000 iterations.

Here, an accumulative version of 100 self-similar processes generated by the ON-OFF simulator,
is utilized to approximate the variability of one vehicle’s on-board resource utilization status. In this
case, Figure 5 represents the training stage’s performance. Specifically, the blue line is the original
data generated by the SS simulator, while the red line denotes the predictive results by the proposed
LSTM algorithm. It is obvious that the predictive results can perfectly trace the tendency of original
data. In Figure 5, the contour of the original data is an approximately irregular wavy line shape,
our prediction results can almost replicated its trend very well. Although there are some bursts,
the entire data steam’s tendency is not chaotic at all. In fact, the above performance is determined
by the fact that the bursts are usually caused by one or a small number of computational processes,
which only accounts for a relative small part of the entire data flow. As a result, the bursts caused
by a small part of the computational processes cannot dominate the overall computation load trend.
As shown in the simulation results, the entire data flow shows potential stability as a whole.
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Figure 5. The training stage for LSTM-based resource availability prediction.

Figure 6 evaluates the LSTM-based resource discovery scheme’s performance on testing stage. It is
clear that the LSTM algorithm can almost reproduce the entire vehicular tasks flow’s tendency. In order
to get a more visual display, we define a criterion y = 0 as the baseline of judging the resource utilization
status on each service vehicle. Specifically, if one service vehicle’s prediction result is above the baseline,
it is considered that the resource utilizing state is idle at next time slot; otherwise, the resource utilizing
state is busy. Furthermore, the physical meaning of resource availability prediction curve is depends
on the system model. The predictive curve can be discretized with different quantitative steps, and the
baseline can be flexibly adjusted to represent more detailed resource utilization status. In this way,
the scalability of the proposed LSTM algorithm can be significantly enhanced.
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Figure 6. The test stage for LSTM-based resource availability prediction.

6.2. DDQN-Based Computing Offloading Algorithm

In this section, we verify the effectiveness of the proposed computation offloading management
algorithm from different perspectives. During the process, a multi-agent DDQN algorithm with
the centralized training and decentralized execution framework in Reference [57] is introduced
as a comparative approach, which is named as Synchronous Multi-agent DDQN. In Figure 5,
the convergency performance of proposed algorithm is presented with the tendency of loss value.
Specifically, the convergence performance can be guaranteed within 4000 iterations. The simulation
results have been presented in Figure 7, in which the convergence speed of the proposed algorithm
is faster than the synchronous one. The reason is mainly from two aspects, one is the benefits from
the designed asynchronous iteration sequence, and the other is the action space consisting of the
neighboring service vehicles. Specifically, the asynchronous iteration sequence mechanism endows
each agent a relative stable training environment, which can accelerate the convergence speed to the
optimal solution. In terms of the reshaped action space, it can provide an action space with a smaller
size. A smaller size solution space can definitely cause a faster convergence speed.
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Figure 7. The convergency process of multi-agent DDQN algorithm.



Sensors 2020, 20, 6820 21 of 29

In Figure 8, to evaluate the performance of the average overall reward, in addition to
the Synchronous Multi-agent DDQN algorithm, we also compare our proposed algorithm with
Asynchronous Multi-agent Q-learning, greedy algorithm (Greedy), random algorithm (RANDOM).
It is apparent that, except the Synchronous Multi-agent DDQN algorithm, the proposed algorithm’s
performance is better than the designed comparative schemes. In fact, owing to the global solution
space consisting of all service vehicles, the Synchronous Multi-agent DDQN can obtain a better
solution than our proposed algorithm. However, this very limited performance advantage is at the
expense of expensive computational complexity, which will be analyzed in detail at the final of this
section. From the macro perspective, the overall performance gap between our proposed algorithm
algorithm and other comparative algorithms, shows a trend of increasing first and then decreasing.
The performance is due to the fact that, with the increase of task vehicles, the resting resource
availability provided by service vehicles gradually reduces. During the process, the dimensionality of
solution space reduces in a gradual way, and the performance gap between our proposed algorithm
and RANDOM get smaller gradually.
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Figure 8. The performance of the overall reward.

In Figure 9, the performance of the proposed computation offloading scheme (CVN) is simulated,
which joins VCC and RCC together. The computation offloading schemes enabled by VCC and RCC are
utilized as the comparative schemes. It is apparent that CVN scheme can achieve better performance
than both VCC and RCC schemes. At the beginning, there are less task vehicles in the model and
the service vehicles’ on-board computation resource is sufficient to accommodate the task vehicles’
resource requirements. In this way, CVN scheme and VCC scheme can achieve the same performance.
With the increase of task vehicles, the resource availability of service vehicles cannot satisfy their
resource requirements any longer. As a result, CVN scheme demonstrate a better performance than the
VCC scheme. Due to the expensive price of computation resource provided by RSUs, the performance
of RCC scheme is always inferior to CVN scheme.
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Figure 9. The performance of cognitive vehicular networks (CVN), vehicular cloud computing (VCC),
and remote cloud computing (RCC) schemes.

With the identical simulation environment with Figure 9, the resource utilization of service
vehicles is shown in Figure 10. In particular, the resource utilization [36] can be defined as the ratio
of the allocated resource to the overall on-board resource availability. From Figure 10, it is obvious
that VCC scheme can achieve better performance than CVN and RCC algorithm. It is obvious that
there is no other available computational resource except the underutilized on-board resource in
the VCC scheme. In this way, the VCC scheme’s utilization rate is the highest one than the other
schemes. In contrast, for the RCC scheme, all the computation tasks are offloaded to resource-rich RSUs,
and service vehicles’ underutilized on-board resource are not utilized at all; thereby, its utilization rate
is the lowest one.
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Figure 10. The resource utilization rate of service vehicles between CVN, VCC, and RCC schemes.

Under a total 13 computation tasks, Figure 11 presents the impact of the pricing strategy on
the computation offloading management scheme. Specifically, the computation tasks allocated to
service vehicles’ on-board resource or cloud computing center are defined as VCC and CC, respectively.
The price index of cloud computing corresponds to a set of gradually increasing unit price. It is
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apparent that, with the increase of unit price of RCC, the resource utilization from RCC decreases
gradually. It is natural that task vehicles tend to choose cheaper on-board computation resource.
In other words, if the pricing strategy of RCC is reasonable, the RCC-based computation offloading
will be welcomed by task vehicles.
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Figure 11. The resource utilization distribution between VCC and RCC with the increasing price of
computation resource on RCC.

Under a vehicular scenario with 15 vehicles, the performance comparisons among Value-based,
Location-based, and Random-based asynchronous iteration sequence are shown in Figure 12. It is
obvious the different stages demonstrate heterogeneous tendencies. In the first half stage, Kt ≤ 7,
the three schemes’ performance are almost identical, whereas the Value-based scheme is better than
the other schemes. The reason is due to the fact that the case Kt ≥ 8 means that there is less resource
availability than resource requirement in the VCC network, and the Value-based scheme can give
priority to the task vehicles with high-value, which certainly enhances the overall performance than
other schemes. In addition, the Location-based scheme and random-based scheme can achieve a
similar performance since they neglect the value information in the resource scheduling process in the
VCC network.

In Figure 13, the impact of the number of neighbor agents on system performance is evaluated. In a
CVN with 15 vehicles in total, three sizes of neighboring services vehicles: large (11), intermediate (8),
and small (5), are simulated, respectively. Moreover, in addition to service vehicles, all other vehicles
are task vehicles. Based on the certain service vehicles, the size of neighbor agents gradually changes
from 1 to 10. It is apparent that the three cases’ overall tendency are gradually rising. In fact, the larger
neighborhood space can achieve better environmental information and more available resource options.
From a macro perspective, the intermediate scheme can achieve the best performance compared to
the other schemes. Specifically, the intermediate size can achieve a relative balance between resource
supply and demand. However, for the small size, the available resource is much more than task
vehicles, and only a small part of resource availability can be utilized. In terms of the large size, the task
vehicles’ resource requirements cannot be satisfied by the limited on-board resource availability
provided by service vehicles. Generally speaking, although a bigger neighbor agents’ size can obtain
a better performance, a bigger size heralds a greater computation complexity. Above all, under
the limited computation capability, a reasonable neighbor agents’ size is very important to obtain a
better performance.
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Figure 12. Performance comparisons among different iteration orders.
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Figure 13. Performance comparisons with different neighbors.

Last but not least, considering the importance of the computation overhead, we analyze the
computational complexity of the proposed computation offloading algorithm. In our model, since the
primary network and the target network have identical structures, we only consider the primary
network to reflect out model’s computational complexity. In fact, the computational complexity of
the primary network mainly comes from the execution stage and training stage. Due to the fact
that the backpropagation-based training stage is the reverse process of the execution stage, we only
calculate the execution stage’s computational complexity. Specifically, the amount of neurons of the
mth layer of the primary network is defined as Um, and the computational complexity of mth layer
is O (Um−1Um+UmUm+1). As a result, for the primary network with M layers, the execution stage’s

computational complexity is Oexecution = O

(
∑

2≤m≤M−1
(Um−1Um+UmUm+1)

)
. Moreover, for each

agent, its overall computational complexity is 3 ·Oexecution, which mainly considers the execution stage
on the primary network and the target network, as well as the training stage on the primary network.
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As a result, the overall computational complexity of the propose multi-agent DDQN algorithm is
3 · N ·Oexecution. With the same derivation approach, the computational complexity of the synchronous
multi-agent RL algorithm is 3 · NM · Oexecution; it is obvious that our proposed algorithm with
asynchronous iteration order has a much less computational complexity. Furthermore, considering that
the synchronous training scheme needs to spend more iterations in the training process, our proposed
algorithm’s superiority is more prominent from the perspective of computational complexity.

7. Discussion

In this paper, to accommodate the resource-intensive vehicular applications, a computation
offloading scheme integrating VCC and RCC was proposed. Specifically, VCC represents on-board
computation resource, and RCC indicates infrastructure’s computation. In our model, the VCC is
equipped with a dynamic and uncertain resource availability, while the RCC’s resource availability
are stationary and sufficient. To overcome the challenges brought by the dynamic and uncertain
resource availability of VCC, the concept of CVN is proposed. To solve the computation offloading
in a CVN, a perception-exploitation mechanism is designed, which mainly comprise resource
discovery and computation offloading two parts. To the best of the author’s knowledge, it is the first
work to investigate the computation offloading under the vehicular scenario with a dynamic and
uncertain resource availability. In particular, although there have been some on-board computation
resource-based computation offloading related works, the dynamics and uncertainty of on-board
computation resource are always neglected or it is assumed that as the resource utilizing status can be
obtained effortlessly. Due to the privacy concern and selfish attitude, the conventional computation
offloading scheme with a clearly known resource utilization status are unrealistic at all. To overcome
the resource uncertainty, we propose an LSTM network-based resource discovery mechanism to
predict the on-board resource availability. Based on the resource discovery results, a multi-agent
DRL algorithm is proposed to obtain the computation offloading strategy, in which multiple agents
iteratively update to guarantee the training stability.

From both theoretically and practical perspective, the proposed computation offloading scheme
all reflect important significance. Due to the dynamics and uncertainty of resource availability in
the VCC, the perception-discovery mechanism is innovatively proposed to conduct the computation
offloading in a CVN. In the resource discovery stage, one LSTM network is designed to extract the
temporal correlation from the collected historical data and predict the resource utilization status of
VCC. The idea is consistent with the prediction algorithms in transportation field, such as the prediction
of vehicle speed, vehicle path and road traffic flow, etc. From the theoretical perspective, the LSTM
network is successfully extended to predict the on-board resource utilization status prediction, and its
effectiveness in extracting the temporal correlation from the historical data has been effectively
verified with the simulation results. Moreover, the proposed computation offloading management
scheme has important practical implications in the domain of vehicular network, especially in a
vehicular environment with high communication costs or poor channel quality. In addition, another
important aspect of our proposed solution is its efficiency on computation offloading management.
Specifically, with the proposed resource discovery scheme, we can conduct the computation offloading
management in advance. Furthermore, the proposed computation offloading management algorithm
is an asynchronous iterative algorithm, and the neighbor vehicles-based solution space is reduce
to the computation complexity, as well. More scheduling time can be saved to achieve an efficient
computation offloading management. As a result, from the practical perspective, the proposed
computation offloading management scheme can be applied to delay-sensitive vehicular applications.
Furthermore, in our work, some important conclusions have been drawn. The pricing mechanism
has also been proven an important factor to influence the final computation offloading strategy.
Furthermore, the setting of the iteration sequence and the size of neighbor agents-based action space
can have a greater impact on the final system performance. Nevertheless, there are still many unsolved
issues in our investigation and a handful of open problems worth future research efforts. Owing to the
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shortage of the realistic training data, the proposed scheme’s effectiveness should be further verified.
Moreover, the proposed computation offloading scheme has not considered the QoS of vehicular
applications. These issues will be studied in our future research.

Frankly speaking, in this work, due to the limitations of our current research, the proposed
perception-exploitation mechanism only involves the prediction of the utilization status of on-board
computing resources. However, the proposed scheme can be easily extended to other more complex
issues, such as the size of the vehicle tasks and the safety status of vehicles, etc. To solve the
computation offloading with some factors in dynamics and uncertainty, the core issues are to find
a suitable statistical analysis model and design a state prediction model for the statistical analysis
model. The size of computation tasks usually refers to two aspects: the data size and computation
complexity. In most studies, the computation complexity is proportional to the data size with a
predefined ratio. In this way, The size of the vehicular task can uniquely determine the computation
complexity. Under the assumption that the computational complexity can be uniformly quantified into
multiple levels, the vehicular tasks with different size can be regarded as an accumulative version of
multiple sub-task with a smallest level of computation complexity. In this way, the proposed resource
discovery scheme in this paper can be scaled to the computation offloading with heterogeneous size
of vehicular applications. Moreover, in the open vehicular environment, the security of vehicles
is often threatened. Specifically, some vehicles are harmfully used by hackers and other malicious
criminals. For example, some malicious vehicles pretend to be service vehicles to illegally steal
important privacy information from other vehicles, while some vehicles disguise themselves as task
vehicles to spread false information or deliver computing tasks that contain viruses. In this way,
the safety status is an important factor for reliable computation offloading in vehicular network.
To conduct the safety computation offloading, an effective safety status prediction mechanism should
be designed. In fact, the safety status can be reshaped as a sequence of 0–1 value. Based on the collected
historical trust status information, the safety status can be predicted by a customized predictive model.
Furthermore, blochchain technology can be integrated into the predictive model to enhance the
robustness performance. These new ideas will be studied in our future research.

8. Conclusions

In this paper, we investigate the computation offloading in a cognitive vehicular network
(CVN), which jointly considers the on-board computation resource on vehicle cloud computing
(VCC) and computation resource equipped in the remote cloud computing (RCC) center. The overall
scheme mainly comprises resource discovery and computation offloading management two stages.
As for resource discovery, a Long Short-Term Memory (LSTM)-based resource discovery algorithm is
proposed to solve the dynamics and uncertainty of VCC’s resource availability. Moreover, to generate
the training and testing data sets, a self-similar simulator is introduced in our model. Based on the
obtained resource discovery results, a multi-agent double deep Q-learning algorithm is adopted to
implement the computation offloading management, in which an asynchronous iteration mechanism is
designed. To verify the proposed algorithm’s effectiveness, a host of experimental simulations results
are presented in our work.
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