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Abstract: This manuscript presents an approach to the challenge of biometric identification based
on the acceleration patterns generated by a user while walking. The proposed approach uses the
data captured by a smartphone’s accelerometer and gyroscope sensors while the users perform the
gait activity and optimizes the design of a recurrent neural network (RNN) to optimally learn the
features that better characterize each individual. The database is composed of 15 users, and the
acceleration data provided has a tri-axial format in the X-Y-Z axes. Data are pre-processed to estimate
the vertical acceleration (in the direction of the gravity force). A deep recurrent neural network
model consisting of LSTM cells divided into several layers and dense output layers is used for user
recognition. The precision results obtained by the final architecture are above 97% in most executions.
The proposed deep neural network-based architecture is tested in different scenarios to check its
efficiency and robustness.

Keywords: accelerometry; gait; walk; identification; recognition; recurrent neural network; LSTM;
accuracy; smartphone

1. Introduction

The number of devices connected to the Internet (IoT) grows every year and consequently the
data generated by them [1,2]. Among these devices, smartphones play an important role because of the
continuous increase in their functionalities and user acceptance. Therefore, security in these devices
must be one of the main points to be considered in their development. Some of the latest techniques
used for preventing unauthorized access to mobile devices are based on biometrics. This involves the
analysis and measurement of different physical characteristics or behaviors of an individual, with the
objective of achieving recognition or identification.

Biometric identification methods have evolved over time and with the evolution of technology.
The most well-known are fingerprinting, facial recognition, retinal scan, palm geometry, and voice
recognition among others. However, other biometric variants are emerging that aim to be less
intrusive. An example of this is the recognition of people based on the characteristics of their gait.
This identification according to the way a person walks has a number of advantages and disadvantages.
Its main advantages are that it allows an automatic, periodic, and non-intrusive identification (following
the principles of “calm computing,” where the user is not disturbed by the technology), since he or
she only has to carry the device (which will usually be a smartphone) or be recorded to make an
identification by computer vision. As disadvantages we can mention that they are biometric methods
that offer less accuracy than others like fingerprints. This can be solved by the continuous and periodic
identification mentioned above. The performance of gait-based identification methods can also be
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boosted if the data samples used to perform the user detection are formed by a large enough interval
of the user walking (for example 3 s as used in this paper), trying always to require the shortest time
possible to perform a correct identification.

In this manuscript, user identification has been proposed through the use of recurrent neural
networks (RNN), which use the acceleration patterns generated by users when walking, and which are
captured by a smartphone sensor. These data are captured axially, and will be processed to calculate
the vertical acceleration (or acceleration over the axis of gravity) as it simplifies the data and allows the
identification to be done independently from the orientation in which the device was placed on each
case. This data pre-processing and further development of neuronal architecture are done with Python
3 programming language.

The database that is being used is open access [3]. It is a complete database made up of 15 subjects
(8 men and 7 women) who perform different activities while monitoring and capturing data with
the devices and sensors (mostly smartphones) attached to their body. The subjects in the database
have an average age of 32 ± 12.4 years, an average height of 1.73 ± 6.9 m and an average weight of
74.1 ± 13.8 kg. The smartphone used for the capture is the “Samsung Galaxy S4” as mentioned in the
information about database. It is also important to mention that the activity has been carried out freely,
without restrictions and in different environments (country, city, street...).

The main contributions of the paper are based on the following points. First, we carry out an
identification of the users based on the accelerometry patterns, trying to achieve the highest possible
accuracy, as well as a robust and efficient model in different scenarios. Second, we develop a deep
neural network model, based on LSTM (“long-short-term memory”) layers adapted to the optimal
processing of time series of data from wearable sensors. Third, we carry out experiments and tests to
check the effectiveness and robustness of this model in different scenarios showing promising results.

2. State-of-the-Art

Different mechanisms and methods have been proposed and validated in previous research studies
in order to recognize a particular person based on his or her gait characteristics. The mechanisms
could be divided into three major families according to the technology used for gait monitoring and
characterization: vision, floor sensor, and wearable sensor-based mechanisms [4]. Wearable sensors do
not suffer from the hindering factors affecting computer vision methods such as occlusions, camera
field of view/angle, or illumination deficiencies and are nowadays commonly embedded in widespread
mobile devices providing scenarios for gait recognition systems without special equipment (either
cameras or equipped floors) [4].

Marsico et al. [5] performed a detailed review of existing techniques for person identification based
on gait parameters extracted from wearable sensors. The authors classify biometric traits for person
identification as hard and soft. Hard ones generally allow a sufficiently accurate subject recognition,
though suffering from trait-specific problems. Soft traits either identify entire groups of individuals or
lack sufficient permanence. Although gait is considered a soft trait, the accuracy of the algorithms has
significantly improved during the past decade. A second review on the use of wearable sensors for
gait monitoring and person identification is presented in [6]. The authors present several taxonomies
of human gait and its applications in clinical diagnosis, geriatric care, sports, biometrics, rehabilitation,
and industrial areas. Available machine learning techniques are also presented with available datasets
for gait analysis.

The challenge of person identification based on the time series captured from wearable sensor
devices such as accelerometers and gyroscopes has been approached in several ways in previous research
studies. Deb et al. [7] proposed a gait-based identification algorithm based on finding similarities on
the wearable sensor data based on a new time-warped similarity. Comparing the time dynamics of
the captured sensor signals with previous labeled data, the user with the highest similarity could be
proposed as the identified user. Several metrics have been using for finding such similarities. The
authors in [8] proposed a solution based on signal similarities based on correlation, frequency domain,
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and statistical distributions of the data acquired from a three-dimensional accelerometer, which was
placed on the subject’s waist. The paper in [9] proposed a method for identification using absolute
peak distance analysis, correlation, histogram, and first-order moments. Thang et al. [10] made use of
time domain data to perform similarity analysis with “dynamic time warping” (DTW). The similarity
calculations have been optimized for limited sensor device execution [11] and particularized for
segments of users with particular needs such as elderly people [12].

A different approach for user identification based on wearable sensor data has applied
machine-learning methods in order to find patterns and particular traits for each specific user.
The authors in [10] extracted frequency components from accelerometer data and used support vector
machines (SVM) in order to classify users. A different method based on the use of SVM with radial
approximation was presented in [13]. The authors in [14] also proposed the use of SVM for person
identification based on wearable sensor data. Other machine learning algorithms have also been
proposed and validated. The paper in [15] used a Hidden Markov model for accelerometer-based gait
recognition while the paper in [16] proposed the use of the k-NN (k Nearest Neighbor) algorithm in
order to find the closet user in the space of computed features compared to previous traces recorded in
the dataset. There have also been proposals to optimize the results by combining several algorithms
and performing a majority vote at the end such as [17].

The idea behind machine learning models is to able to find particular patterns in the data with
small variability for intra user data and big differences among users. In order to find intricate patterns
embedded in the sensor data, deep learning algorithms have also been recently used with wearable
sensor data for user identification. The authors in [18] explore the use of a convolution neural network
(CNN) in order to extract the features from data that are fed into a one-class support vector machine
(OSVM) for user verification. Giacomo et al. in [19] also make use of a deep CNN structure with a
couple of fully connected layers and a softmax function in order to associate a probability of detection
for each of the users in the dataset. The research paper in [20] presents an in-depth study of the
building and training of a recurrent convolutional neural network with a real dataset based on gait
reading performed through five body sensors. The time series from five body sensors are fed into a
convolutional neural network with 2 1D convolutional layers and a recurrent neural network based on
gated recurrent units (GRU). The output is passed into two pooling layers for feature sub-sampling
and a final softmax function is used to estimate the likelihood for each data sample to capture the
gait of a particular user. The authors in [21] also make use of a hybrid deep neural network based on
both convolutional neural networks (CNN) and recurrent neural networks (RNN). Apart from the
learning structure, the paper focuses on analyzing the data of free walking segments of the participants
(not constrained to perform a particular activity in a predefined scenario). Recurrent neural networks
(RNN) are able to model complex time-dependent patterns and have also been used in [22] for optimal
feature extraction for gait characterization and user recognition. However, several mechanisms for
manual tuning were used which limit the generalization of the results.

In the current paper, we explore and optimize RNN structures for gait recognition for users freely
walking in the wild. Compared to the paper in [21] which explores deep learning techniques for
unconstrained walking segments, we are able to improve the accuracy of result by almost 4%.

3. Proposed Methods

This section describes the pre-processing of the acceleration data, and explain in detail the method
and architecture used to perform the identification based on the optimization of a deep recurrent neural
network that will learn the particular patterns to characterize the gate particularities of each participant.

3.1. Data Pre-Processing

The database that is being used is open access [3] and it is made up of 15 subjects (8 men and
7 women) who perform different activities while monitoring and capturing data with the devices and
sensors (mostly smartphones) attached to their body. Among the activities, this section will focus on the
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analysis of the free walking data. The subjects in the database have an average age of 32 ± 12.4 years,
an average height of 1.73 ± 6.9 m, and an average weight of 74.1 ± 13.8 kg. The smartphone used for
the capture is the “Samsung Galaxy S4.” The activity has been carried out freely, without restrictions
and in different environments (country, city, street...). The samples can be found for different activities
and with the sensor placed in different areas of the body. We have selected the samples corresponding
to the walking activity when the sensor is placed in the thigh/pocket area since it represents a common
scenario simulating a common case in daily life (representing a natural position in which this device
is usually worn, and which occurs in most cases). The walking activity has been performed by the
different users for approximately 10 min, resulting in a total of 30,000–35,000 samples per user, so the
sampling frequency will be around 50 Hz. This implies that the time between samples is 0.02 s, which is
important to consider when packing the samples to represent a given time of activity.

3.1.1. Calculating the Vertical Acceleration Component

The first step in pre-processing the data is the calculation of the vertical component of the
acceleration (or acceleration about the axis of gravity). This procedure consists of making an estimate
of the direction of the gravity force in a window with a duration of “2 m” samples. It means that the
gravity vector will be estimated at each instant, using the previous “m” samples and the “m” following
samples at the instant in which the estimate is to be calculated (see Figure 1). To do this, first the
vector is calculated where each component corresponds to the mean value of the axial acceleration
(X, Y, or Z) in a window of length “2 m” samples as shown in Figure 1. For this case, a window
of size 2 m = 300 samples has been selected, since it has offered good estimation and results in user
recognition. This window size is also selected since it is aligned with the optimal data frame length to
be used as the input for the model as shown in Section 4.3.3. Windows smaller than 2 s show that
there is not enough information in the sensor data to fully describe the particular walking patterns to
characterize each user. A window of 3 s provides the optimal value which both captures the necessary
information describing the walking activity with the minimum number of samples.

Once the vector of the mean acceleration value on the three axes has been obtained, (xm, ym, zm) ,
the module of the vector is calculated, obtaining

∣∣∣Xm, Ym, Zm
∣∣∣:

∣∣∣Xm, Ym, Zm
∣∣∣ =

√
Xm

2
+ Ym

2
+ Zm

2
, (1)

The unit vector of gravity ĝ is then estimated as:

ĝ =
Xm, Ym, Zm∣∣∣Xm, Ym, Zm

∣∣∣ = (
gx, gy, gz

)
, (2)

To obtain the acceleration on the axis of the estimated gravity force at each instant (accg), a scalar
product is made between the value of acceleration captured at that instant and the estimated unit
vector of gravity

accg = acc(X,Y,Z) · ĝ = (accX, accY, accZ)· (gX, gY, gZ) =

accX ·gX + accY ·gY + accZ ·gZ,
(3)

This value of the estimated acceleration on the axis of gravity is less dependent on the orientation of
the device and has a more representative value on the way the user moves while walking. Some graphs
of this value can be shown for different users in Figure 2.

The initial and final moments of these vertical acceleration values (accg) have been eliminated,
because they correspond to the moments when the user started/stopped walking and the acceleration
is so low that it practically represents noise.
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3.1.2. Sample Packaging

Sample packaging means that the vertical acceleration samples (accg), are grouped together to
represent a specific time of user activity. If a single acceleration sample were used for identification,
it would be virtually impossible for the neural network to perform user identification. For the general
development of this article, a package of 150 samples has been used, as shown in Figure 3, so that each
sample package represents an approximate time of 3 s of the user walking (150 samples • 0.02 s/sample
= 3 s). We have tried to keep it as short as possible to speed up the identification and to avoid high
capture times for user recognition, always keeping a high precision as the main objective.
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3.1.3. Data Labeling for Training and Testing the Algorithm

Each user’s samples have been labeled with a numerical identifier. This way, each vertical
acceleration sample can be associated with a user and know who it belongs to. After packing the
samples in windows, each sample pack will be labeled, so that it can be assigned to its respective user.
This will be necessary to run the training and validation of the neuronal model.

A categorization of the label has also been carried out. This procedure consists of making a one
hot encoding (Figure 4), so that the label is represented by a numerical vector with 0 and 1 values.
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The last layer of the neural network will be made up of as many neurons as there are subjects to
be identified in the database. The activation function in the last layer will be softmax so that, for each
sample, the output is a vector of the same shape and length as this categorization. Therefore, it is
possible to obtain the estimate that the neuronal network makes on the samples and assign it to the
corresponding user after making the inverse transformation of the categorization.

3.1.4. Sample Train-Test Division

Finally, in order to perform a proper model training and evaluation, it will be necessary to divide
the data set into training and test. To do this, a random partition of 70% of the data is made for training
and 30% for testing. The training data are used to model the neural network and make it learn how to
identify each user when introducing the corresponding samples. The test data are used so that once
the complete model has been trained it can be validated and its performance checked with samples
that the system has not used during training, and which are therefore new to the neural network.

3.2. Proposed Architecture

3.2.1. Recurrent Neural Networks and LSTM Cells

A deep recurrent neural network has been designed to carry out the identification based on
LSTM cells. Previous architectures described in Section 2 made a more extensive use of a different
architecture based on deep convolutional neural networks. Recurrent neural networks are designed
to be able to learn patterns from time series. The research in this manuscript has been based on the
study of such deep architectures in order to characterize the gait of different people in order to perform
user identification.

In a summarized way it can be said that LSTM (“long-short-term memory”) neural networks use
memory units in order to remember values from the short and long past data reacting to time patterns
for each user. Each LSTM cell is composed of a status cell and three doors: entrance door, exit door,
and forget door.

• The status cell can be interpreted as a continuous flow of information over several instants of
time. At each instant of time you have to decide which information is retained, which is modified,
and which is allowed to pass.

• Entrance door: Controls when new information can enter the status cell. It also determines how
much of that new information will be allowed into the status cell.

• Exit door: Controls when the information from the memory is used for the result and how much
information from the status cell will be offered at the output.

• Forget door: Controls when information is forgotten. This way, you can create space for new
important data and remove less relevant ones. The function of this door is to determine whether
the information will be stored in the status cell, or whether it will be discarded.

The details for LSTM networks can be found in [23,24].

3.2.2. Proposed Architecture for User Identification Based on Gait Data

The proposed architecture uses a stack of RNN layers connected to several dense layers and an
output softmax layer in order to associate a probability to each window of input data to belong to each
user in the system. The parameters and different options of the network have been adjusted between
executions in order to optimize the accuracy of results.

The details for each of the layers are:

• The first two layers are RNN based on LSTM cells, formed by as many LSTM cells as there are
moments of time (samples) in the packaged input data. Since the samples have been packed
in windows of 150 samples (3 s), there will be 150 LSTM cells processing each time window of
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input samples. The first one has shown optimal results for 50 to 100 memory units (offering
more or less similar results), and the second layer LSTM has shown better results for 100 memory
units (as captured in Section 4). Memory units represent the internal state of the LSTM cell and
are able to learn and forget time-dependent patterns based on the previous state and current
inputs. The optimal number of memory units will therefore depend on the complexity of the time
dependencies in the patterns to be detected.

• Then two hidden layers will be stacked, fully connected, with 100 and 90 neurons respectively.
The activation function of these layers will be ReLU, as it offers a fast convergence that is
especially useful in deep neural networks. This activation function usually works very well in the
intermediate hidden layers.

• Lastly, there is a layer formed by as many neurons as the number of total users you want to
differentiate. Since in this case the database has 15 users, there will be 15 neurons. The activation
function for these neurons is softmax. As this is a multi-class classification problem, with this
activation function it will be possible to obtain a categorical probability distribution over the
different possible K-subjects.

The network design and development has been made in Python 3 programming language,
because of its high compatibility with libraries such as Keras [25], which allows the implementation of
neural networks.

The following parameters of interest have been used for the training of the network:

• Loss function (the function used to estimate how far the current parameters are from the optimal
ones when training the model and therefore the function to be minimized in such training):
Categorical cross entropy. Used for multi-class classification problems.

• Optimizer (the numerical algorithm used to find the optimal value for the parameters in the
model that minimize the loss function): Adam. It has the advantages of other optimizers such as
RMSprop and SDG (Stochastic Gradient Descent) with momentum. It offers fast convergence
and its operation is based on the use of first and second moment gradient estimates, adapting its
learning rate to each weight of the neural network.

• Metric (the mechanism used to measure the achieved performance): Categorical accuracy.
Accuracy of sample identification in multi-class classification problems.

4. Results, Testing, and Experiments

4.1. Results and Precision Test

We have tried different configurations and parameters in order to optimize the number of memory
cells and the number of hidden layers. Some of the results and tests done with the variations of the
proposed architecture are shown in Table 1, where the accuracy in the same test set and with different
configurations can be seen:

Table 1. Precision results collected for different neural network architectures.

ID

Memory
Units in
LSTM
Layers

Number of
Hidden
Layers

Number of
Neurons in

Hidden
Layers

Number of
Trainable

Parameters

Accuracy
Test

Execution 1

Accuracy
Test

Execution 2

Accuracy
Test

Execution 3

Training
Time

1 50 and 100 2 100 and 90 91.355 97.86% 98.14% 96.76% ~29 min
2 50 and 100 2 100 and 60 87.875 96.13% 96.87% 97.45% ~30 min
3 50 and 100 3 100, 90, and 60 96.365 96.34% 95.33% 95.18% ~31 min
4 50 and 100 3 100, 60, and 30 89.255 96.29% 95.49% 96.12% ~32 min
5 100 and 100 2 100 and 90 141.755 97.88% 97.61% 97.24% ~37 min

All configurations offer very positive results in accuracy (above 95%). The use of multiple hidden
intermediate layers has made the model more robust in accuracy and has a better convergence during
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training. The best results are for the ID1 and ID5 architecture, which corresponds to the configuration
shown in Figure 5. To better measure the performance of these ID1 and ID5 configurations, we took
different test groups and calculated the average accuracy in different executions, obtaining the results in
Table 2. A different seed was used in the random algorithm to split the data into 70% training and 30%
validation. The seed values used are captured as identifiers in the first column in Table 2. The results in
Table 2 show the mean value and the variance for each configuration and group. The variance for the
different groups for configuration ID5 tends to be smaller while the mean value shows an improvement
around 1% in accuracy.
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Table 2. Comparison of ID1 and ID5 architecture in different test sets.

Seed Group Test Accuracy for Configuration ID 1
LSTM (50–100) and 90–100

Accuracy for Configuration ID 5
LSTM (100–100) and 90–100

10 Mean: 97.82% Variance: 0.861 Mean: 98.35% Variance: 0.299
20 Mean: 96.23% Variance: 0.98 Mean: 97.61% Variance: 0.667
40 Mean: 97.08% Variance: 0.612 Mean: 98.15% Variance: 0.425
50 Mean: 96.76% Variance: 0.774 Mean: 96.97% Variance: 0.746

Generally speaking, the ID5 configuration is more accurate than the ID1 configuration, although
it requires more training time because of the increased memory in the first LSTM layer.

Tests were also performed in which acceleration patterns are captured by a smartphone placed on
the chest instead of inside the pocket. This type of data usually contains higher noise values because of
involuntary movements, as well as being less representative of the user’s gait, so accuracy is expected
to be lower than data from the user walking with the smartphone in the pocket.

Even so, positive precision results are obtained with an average that is above 95% in different test
groups as shown in Table 3.
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Table 3. Accuracy in test data with chest sensor.

Configuration ID 5

Accuracy in Test Data with Chest Sensor Mean Accuracy

95.39%
95.793%96.12%

95.88%

4.2. Training Graphics and Confusion Matrix

The training graphics and the confusion matrix are captured in this sub-section based on the
architectures described in the previous one.

For the training graphs what is done is to look at the average accuracy of the model in each
period. In this case, you can see the evolution and convergence of the models during the training
phase. In addition, in this case 5% of the training data has been selected and a new set of validation
data has been created, which will not be used for training. This is intended to see the real evolution of
accuracy during training (in each epoch) on a set of data that is not used for training. This does not
correspond to the actual estimated accuracy value. To see the training graphs, two runs have been
made, one for each model, on the same training, test, and validation sets. These representations are
shown in Figures 6 and 7 for a total of 75 training epochs. First, for the ID 1 architecture the results are
shown in Figure 6.
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The same for the ID5 architecture are captured in Figure 7.
As shown, both the accuracy and the loss in each epoch are represented for the training set and

the validation set. Accuracy is understood to be whether the model’s predictions of the samples match
the actual label to which that sample belongs. Loss is the scalar value that tends to be minimized,
since a lower value implies that the values predicted by the model are correct and correspond to the
real labels of the samples. In this case, the categorical cross entropy loss function (“Categorical cross
entropy”) has been used to calculate the value of loss. The two graphs are related because as accuracy
increases, the loss will decrease.

Looking at both graphs, it can be seen how the convergence is faster in the case of using LSTM cells
with 100 and 100 memory units (for layers one and two). In addition, in both architectures, stability is
quickly reached around a high value for accuracy, however, more training epochs have been used to
make the model robust and able to reach accuracy values like those obtained in the previous tables.
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The confusion matrix is a tool to measure the performance of the classifier. It is a table where the
values estimated by the neural network and the real values are shown. With this representation one
can see which individuals are being confused by the neural network, which are the best identified,
how many samples of each subject have been classified correctly or wrongly, etc. Figure 8 is an example
of a run on a test set with the ID 5 architecture. In this particular case the accuracy obtained is 97.4%.Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 
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4.3. Generalization of Results for the Selected (Best) Neuronal Architecture

This section shows different experiments and validation tests carried out on the final architecture
showing its robustness and efficiency in different areas.

4.3.1. Increasing the Database with Additional Data

We propose to add to the database a series of external data generated in a personal way with the
help of a smartphone. This is to assess whether the model is able to deal with other external data
recorded with different hardware in a different setting and that its domain is not only restricted to the
data in the database [3]. The following elements are used for this purpose:

• Smartphone with accelerometer and gyroscope sensors. In this case, the Xiaomi Redmi
Note 4 smartphone is used, which includes these sensors, in particular the LSM6DS3 sensor,
which performs both tasks and is available on many other devices. It is a sensor with a high
sampling rate (around 200 Hz), so it can be interpolated and adjusted so that samples are taken
at 50 Hz as available in the original database. This sensor must be able to capture the axial
information in the X-Y-Z axes, so that the pre-processing mentioned before can be done in a similar
way to the rest of the data already existing in the database.

• Data capture application. Must allow data export to CSV format and logging from multiple
sensors simultaneously. In this case the application called “Sensor Data Collector” has been
used, created by the database developers [3] and that is available in the corresponding GitHub
repository [26].
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Once these elements are available, it will be necessary to record the walking activity for 10 min
by placing the mobile device in the same position as in the original database [3]. For this experiment
we will also try to recreate as reliably as possible the activities performed in the original database [3].
Since the main results obtained are for the case of walking with a sensor in the pocket/thigh, the same
dynamics will be followed. Therefore:

• A walking activity was recorded in two subjects (male and female) for 10 min continuously and
without interruption.

• Because of the first wave of the COVID-19 pandemic that occurred in March–June 2020, it was
impossible to record such activity in an open environment. For this reason, this activity was
carried out at home with the help of a treadmill set at 4 km per hour.

• The data provided by the accelerometer and gyroscope were recorded simultaneously
and synchronously.

• The CSV files generated for the two users were added with the rest of the database (only with
the data of the thigh/pocket sensor walking activity). These will count as two new subjects with
identifiers 15 and 16, which are added to the fifteen that previously had identifiers from 0 to 14.
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A total of 7139 samples are available (after pre-processing the vertical acceleration calculation,
packaged in 150 and half-segment overlap), corresponding to 4990 for training and 2149 for testing.

• In the last layer of the neural network it is necessary to expand the number of neurons by two in
order to be able to identify the 17 subjects available in the database after adding the new data.
The activation function remains “softmax” since the purpose of identification is the same.

To check if the neural network is capable of identifying new users, training and evaluation are
carried out on the ID 5 architecture that usually offers the best results. The results obtained after several
executions show an accuracy above 95% in all cases. Figure 9 is the confusion matrix corresponding to
an execution where the 96.78% accuracy has been obtained.
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As we can see, the test samples corresponding to the two new subjects (15 and 16) have been
correctly classified in a large percentage. In total 4 samples of subject 15 were confused with subject 16,
and only 1 sample of subject 16 was confused with subject 15. Despite the fact that both cases were
recorded under the same conditions, on the same surface and with the speed set at 4 km per hour,
it was possible to make a correct identification of both subjects. The rest of the users are not affected
by the introduction of new subjects and have positive identification in most of their samples. For the
following sections, these two new subjects are included in the database as they provide a better view
of the system’s performance over a wider range of data. This means that the model is robust to data
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generated by other mobile devices and in other environments. In addition, it is tested for correct
operation outside the database, so it could work in different environments and with different mobile
devices as long as they meet the requirements mentioned at the beginning of this section.

As a future work, the model will be tested with a wider range of users using different mobile
devices in order to have further insights about the scaling of the model for a large number of users.
The results presented in this section provide positive outputs for the identification of new participants
when using different hardware in different settings since the confusion matrix shows that the walking
segments for the 2 new users are never classified as belonging to the previous users in the dataset,
and only one segment in the dataset in [3] is classified as being from one of the new users. However,
an experiment with a wider range of users will provide further results in order to assess the scaling of
the model.

4.3.2. Performing User Identification with Gyroscope Extra Data

In this case, the objective is to check whether the system would improve its performance by using
extra information besides the one provided by the accelerometer. This will be done using the data
captured by the gyroscope during the activity. These data are axial in the X-Y-Z axes as they were
in the accelerometer sensor, so they must be pre-processed in the same way. To do this, the vertical
rotation, or also called rotation on the axis of gravity, is calculated.

The process is similar to that for acceleration data. First the direction of the gravity force is
estimated by averaging the acceleration data as previously described. Then, the vertical rotation
speed (the rotation over the direction of the estimated unit gravity force) is calculated using the dot
product as:
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This value is used for user identification. Since it was recorded simultaneously to the accelerometer,
it is possible to pack it in equal segments of 150 samples and both describe 3 s of the user walking in
the same moments (as captured in Figure 10).
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To check the impact on performance when adding this vertically oriented variable, a new test set
is selected and three different runs are performed on the same test set. One with only the acceleration
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variable (as it has been done so far), one with the orientation variable, and one with both variables.
Table 4 shows the average accuracy obtained in the different tests.

Table 4. Accuracy in test data when using different sensors.

Used Variables Accuracy in Test Data

Only acceleration data 95.85%
Only gyroscope data 93.55%

Both acc and gyro’s data 97.95%

As expected, the accuracy increases when the information from both sensors is used. By having
more information from each sample, the network is able to increase the accuracy and identify those
samples where a single sensor fails. However, the difference is not so noticeable, only 2.1% between
the case of the accelerometer and the case of both sensors. This test shown in the table is particular for
one test group, but a similar behavior has been observed in the rest of the simulations with other test
groups. In some isolated cases, greater accuracy has been obtained by using only the data provided by
the accelerometer. This could be used in a complementary way to increase the accuracy, since generally
the accelerometer and gyroscope data are provided by the same sensor, so their capture can be done
simultaneously without problems. However, by using more variables, training takes longer, so this
will also be an important aspect to consider.

4.3.3. Changing the Window Size for Data Analysis

This section aims to see the effect of changing the packaging of data into sample segments.
As previously mentioned, for the results shown throughout the document, a packaging of 150
acceleration samples was being used. The use of this window has been decided on the basis of different
executions and observation of the results. We have tried to keep it as small as possible to speed up
the identification and to avoid high capture times for user identification, always keeping as a main
objective to achieve a high precision.

To see the effect of changing this size, runs with different data windows are performed and the
accuracy obtained is observed. The tests are performed using data windows smaller and larger than
150. The neural network is the one already mentioned in several sections, ID 5 architecture, and in
order to be able to compare fairly, the same set of test data is used for all executions. The training
is done following the previous guidelines, so 100 training periods and a batch size of 32 are used.
The results are shown in Table 5 (the training time has been included in the table to give an idea about
the complexity of the model).

Table 5. Accuracy testing for different data packet sizes.

Packet Data
Size

Equivalent Time
of Each Packet

Number of
Train Data

Number of
Test Data

Accuracy in
Test Data

Training
Time

300 6 s 2481 1075 98.14% 48.3 min
250 5 s 2983 1291 97.90% 34.2 min
200 4 s 3735 1613 96.40% 32.7 min
150 3 s 4990 2149 98.09% 35.56 min
100 2 s 7498 3223 95.03% 32.4 min
50 1 s 15,022 6448 93.24% 32.6 min
20 0.4 s 18,797 8063 80.14% 33.1 min
12 0.24 s 31,322 13,440 68.58% 33.3 min

As expected, a reduction in the number of samples in each segment makes user identification
more difficult. By using a smaller data package, the available information on the data window is
not enough to fully characterize the walking activity, presenting the neural network with less data
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on each sample and therefore increasing the difficulty to identify a particular user as compared to
the rest of the users. As can be seen in the table, the architecture is capable of identifying users with
80% accuracy when the samples are made up of segments of only 0.4 s, which can be considered as a
really short time. The same happens for the case of 0.24 s per segment, where the accuracy is close to
70%. Convergence time during training slightly increases for segment sizes of 12 and 20 samples, as
compared to segments of 50 or 100 samples, since more epochs are required to converge.

You can also see in Table 5 how the increase in segment size over 150 samples does not produce a
noticeable improvement in performance. Therefore, it does not make sense to use data segments larger
than the one used for this case (150), since the objective is to perform quick recognition by minimizing
the walking time needed for identification.

The use of different sizes for the data segments also implies a modification of the architecture of
the LSTM cells available in each LSTM layer, since the time dimension of the input data are modified
according to this segment size. For the realization of this test, the architecture is modified in each
execution so that each LSTM layer has as many as LSTM cells as the temporal dimension of the input
data (Column of Table 5: “Packet data size”).

4.3.4. Identification of Users in Other Activities

It has already been shown that user recognition works correctly for the case of walking activity.
This is the most typical case and the one that occurs most naturally in any user. However, to test how
effective the model is in other environments, we have carried out other experiments in which the
activity from which the accelerometry patterns are captured is different. This had been done by using
the data from the original database [3] (composed of the 15 users) and selecting the data corresponding
to the activities: climbing stairs, running, and jumping. The files corresponding to the capture of the
activity with a device placed in the thigh/pocket have been chosen for consistency with the rest of the
experiments carried out in this work.

After processing the axial information of the files in the same way, the estimated acceleration on
the axis of gravity (vertical acceleration) is calculated. To check if the proposed models are good in
these activities, a precision test has been performed as in the different previous sections. A set of data
for training and a set for testing were chosen, maintaining the proportionality of 70–30% of the data
available for each activity. Training consisted of 75 periods with a batch size of 32 samples. The ID 5
architecture has been chosen for the different runs and the results are shown in Table 6.

Table 6. Accuracy in test data for different activities.

Activities Number of Data Train/Test Training Time Accuracy in Test Data

Climb stairs 3622/1560 ~26 min 90.06%
Run 4883/2101 ~35 min 87.91%

Jump 538/239 ~3.5 min 90.79%

For the different scenarios shown in the table, an accuracy above 85% is obtained, which allows the
correct identification of the users in the different activities. As in the previous experiments, segments of
150 samples (3 s of activity) have been used for the input. Relatively good results are obtained in terms
of accuracy without the need to modify an architecture that was initially designed for the walking
activity. This shows the ability of recurrent neural networks and, specifically, of architectures designed
to be adapted to different physical activities of the user, to perform identification in more scenarios and
without depending on the user having to execute a particular single activity.

5. Conclusions

The results presented in this manuscript show that deep recurrent networks are able to
automatically characterize the gait properties and particularities for users when walking in the
wild (without the need of a predefined setting) with accuracies higher than 0.97. The results outperform
previous studies for gait characterization in unconstrained conditions [21] in which the accuracy values
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are below 0.94 using a hybrid deep neural architecture and previous RNN-based architectures for gait
inspection [22] in which the authors achieve accuracy values below 0.93. Although the accuracy of the
proposed method in this manuscript only slightly outperforms other previous studies in controlled
settings, it allows the walking activity to be freely executed by each user. The authors in [19] reported
a 95% accuracy when the data are collected from six predefined walking segments. The authors in [20]
obtained similar accuracy values from the ones presented in this manuscript but also using the same
dataset in the same controlled environment for data capturing.

The manuscript shows the optimization process for some of the major parameters in the architecture
which provides optimal results for two RNN layers based on LSTM cells with 100 memory cells.

The proposed architecture has also shown good generalization properties when including the
information of new users recorded in sort of similar conditions.

The results also show a slight improvement of results when using both the acceleration and the
gyroscope sensors together, although the complexity of the algorithm and the required time for training
also increase when adding the gyroscope data.

The proposed network has also been trained for other activities such as running and jumping but
the results for user identification are worse than for the case of walking (showing that the way we walk
better characterize each person than the way we run, jump or climb up stairs).
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