Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Data and Remote Sensing Imagery
2.2.1. Synchronous Field Spectral Data
2.2.2. Water Quality Data
2.2.3. Remote Sensing Data
2.3. Methodology
2.3.1. TSS Retrieval Model
2.3.2. Markov Dynamic Evaluation
2.3.3. Accuracy Assessment of TSS Retrieval Model
3. Results
3.1. TSS Model
3.1.1. TSS Model Calibration and Validation
3.1.2. Comparison and Verification of TSS Models
3.1.3. Accuracy Assessment Based on Synchronous Remote Sensing Images
3.2. Spatiotemporal Characteristics of TSS Concentration
3.2.1. Analysis of Optical Characteristics of the Water Body in Hedi Reservoir
3.2.2. The Temporal and Spatial Patterns of TSS Distribution in Hedi Reservoir
3.3. Analysis on Driving Factors of TSS Change
3.3.1. Changes Characteristic of the Concentration of TSS in Flood Season and Dry Season
3.3.2. Effect of Precipitation on the Concentration of TSS
3.3.3. The Influence of Human Activities on TSS Concentration
3.4. Markov Evaluation of TSS Dynamic
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Wang, M.; Yu, Z. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr. 2014, 59, 1193–1202. [Google Scholar] [CrossRef]
- Dyer, K.R.; Christie, M.C.; Feates, N.; Fennessy, M.J.; Pejrup, M.; van der Lee, W. An Investigation into Processes Influencing the Morphodynamics of an Intertidal Mudflat, the Dollard Estuary, The Netherlands: I. Hydrodynamics and Suspended Sediment. Estuar. Coast. Shelf Sci. 2000, 50, 607–625. [Google Scholar] [CrossRef]
- Elias, E.P.L.; van der Spek, A.J.F.; Wang, Z.B.; de Ronde, J. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Neth. J. Geosci.-Geol. En Mijnb. 2012, 91, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Foteh, R.; Garg, V.; Nikam, B.R.; Khadatare, M.Y.; Aggarwal, S.P.; Kumar, A.S. Reservoir Sedimentation Assessment through Remote Sensing and Hydrological Modelling. J. Indian Soc. Remote Sens. 2018, 46, 1893–1905. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, M.; Bazán, R.; Ferral, A.; German, A.; O’Mill, P.; Rodriguez, C.; Pinotti, L. Evaluating the feasibility of using Sentinel-2 imagery for water clarity assessment in a reservoir. J. South Am. Earth Sci. 2019, 95, 102265. [Google Scholar] [CrossRef]
- Duan, H.; Cao, Z.; Shen, M.; Liu, D.; Xiao, Q. Detection of illicit sand mining and the associated environmental effects in China’s fourth largest freshwater lake using daytime and nighttime satellite images. Sci. Total Environ. 2019, 647, 606–618. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Yang, B.; Zhang, Y. Short-term dynamics and driving factors of total suspended matter concentration in Lake Taihu using high frequent geostationary ocean color imager data. Hupo Kexue 2018, 30, 992–1003. [Google Scholar] [CrossRef]
- Loisel, H.; Mangin, A.; Vantrepotte, V.; Dessailly, D.; Ngoc Dinh, D.; Garnesson, P.; Ouillon, S.; Lefebvre, J.-P.; Mériaux, X.; Minh Phan, T. Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sens. Environ. 2014, 150, 218–230. [Google Scholar] [CrossRef]
- Wackerman, C.; Hayden, A.; Jonik, J. Deriving spatial and temporal context for point measurements of suspended-sediment concentration using remote-sensing imagery in the Mekong Delta. Cont. Shelf Res. 2017, 147, 231–245. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 2014, 147, 232–242. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 2014, 140, 779–788. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surf. Process. Landf. 2009, 34, 1082–1092. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Sun, Z.; Fan, Y. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes. J. Geogr. Sci. 2014, 24, 129–142. [Google Scholar] [CrossRef]
- Chen, S.; Fang, L.; Li, H.; Chen, W.; Huang, W. Evaluation of a three-band model for estimating chlorophyll-a concentration in tidal reaches of the Pearl River Estuary, China. ISPRS J. Photogramm. Remote Sens. 2011, 66, 356–364. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Chen, S.; Li, D.; Wang, D.; Liu, J. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987–2015 based on remote sensing. Sci. Total Environ. 2018, 618, 1125–1138. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Li, D.; Wang, D.; Liu, W.; Yang, J. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China. Geosci. Model Dev. 2017, 10, 4347–4365. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Wu, J.; Wei, X.; Tang, S.; Zhan, H. Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015. Cont. Shelf Res. 2019, 172, 22–32. [Google Scholar] [CrossRef]
- Ritchie, J.; Cooper, C. An Algorithm for Estimating Surface Suspended Sediment Concentrations with Landsat Mss Digital Data. Water Resour. Bull. 1991, 27, 373–379. [Google Scholar] [CrossRef]
- Wu, G.; Cui, L.; Duan, H.; Fei, T.; Liu, Y. An approach for developing Landsat-5 TM-based retrieval models of suspended particulate matter concentration with the assistance of MODIS. ISPRS J. Photogramm. Remote Sens. 2013. [Google Scholar] [CrossRef]
- Fauzi, M.; Wicaksono, P. Total Suspended Solid (TSS) Mapping of Wadaslintang Reservoir Using Landsat 8 OLI. IOP Conf. Ser. Earth Environ. Sci. 2016, 47, 012029. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogramm. Remote Sens. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Dong, Q.; Song, Q.; Ding, J. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 2010, 114, 392–403. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, X.; Huang, D. Retrieving high concentration of suspended sediments based on GOCI: An example of coastal water around Hangzhou Bay, China. J. Zhejiang Univ. Sci. Ed. 2015, 42, 213–220. [Google Scholar]
- Zhao, L.; Wang, Y.; Jin, Q. Method for estimating the concentration of total suspended matter in lakes based on goci images using a classification system. Acta Ecol. Sin. 2015, 35, 5528–5536. [Google Scholar]
- Chen, J.; Cui, T.; Qiu, Z.; Lin, C. A three-band semi-analytical model for deriving total suspended sediment concentration from HJ-1A/CCD data in turbid coastal waters. ISPRS J. Photogramm. Remote Sens. 2014, 93, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zha, Y.; Zhou, Y.; Liu, M. A Landsat 8 OLI-Based, Semianalytical Model for Estimating the Total Suspended Matter Concentration in the Slightly Turbid Xin’anjiang Reservoir (China). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 398–413. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, W.; Chen, W.; Wang, H. Remote sensing analysis of rainstorm effects on sediment concentrations in Apalachicola Bay, USA. Ecol. Inform. 2011, 6, 147–155. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, L.; Chen, F.; Fei, T. Developing MODIS-based retrieval models of suspended particulate matter concentration in Dongting Lake, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 46–53. [Google Scholar] [CrossRef]
- Secchi, S.; Mcdonald, M. The state of water quality strategies in the Mississippi River Basin: Is cooperative federalism working? Sci. Total Environ. 2019, 677, 241–249. [Google Scholar] [CrossRef]
- Yun, Y.; Zou, Z.; Feng, W.; Ru, M. Quantificational analysis on progress of river water quality in China. J. Environ. Sci. 2009, 21, 770–773. [Google Scholar] [CrossRef]
- Lin, G.; Han, B. Analysis of plankton and eutrophication in Hedi reservoir, Guangdong Province. Ecol. Sci. 2002, 21, 208–212. [Google Scholar]
- Wu, G.; de Leeuw, J.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment. Water Res. 2007, 41, 3271–3280. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Fan, J.; Jiang, H.; Chen, X. The characters of backscattering coefficient during flood period in Poyang Lake. J. Cent. China Norm. Univ. Nat. Sci. Ed. 2019, 53, 283–289. [Google Scholar]
- Huang, D. Optical Properties and Remote Sensing Inversion of Suspended Particulate Matter in Surface Water during Flood Period in Poyang Lake. Master’s Thesis, Nanchang Institute of Technology, Nanchang, China, 2018. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef] [Green Version]
- Yepez, S.; Laraque, A.; Martinez, J.-M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Gallay, M.; Lopez, J.L. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). Comptes Rendus Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zha, Y.; Shi, K.; Zhou, Y.; Wang, M. Remote sensing estimation of total suspended matter concentration in Xin’anjiang Reservoir using Landsat 8 data. Huan Jing Ke Xue Huanjing Kexue 2015, 36, 56–63. [Google Scholar] [PubMed]
- Hou, L.; Ma, A.; Hu, J.; Shan, G.; Deng, J.; Han, J.; Ding, Z. Study on Remote Sensing Retrieval Model Optimization of Suspended Sediment Concentration in Jiaozhou Bay. Period. Ocean Univ. China 2018, 48, 98–108. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zou, Z. Dynamic evaluation for water quality of rivers based on Markov process. Chin. J. Environ. Eng. 2007, 1, 132–135. [Google Scholar]
- He, B. Markov method of dyamic assessment on water quality. Environ. Eng. 2003, 21, 60–62. [Google Scholar]
- Wang, L.; Zou, Z. Study of Lake Eutrophication Tendency Based on Gray-Markov Forecast Model. In Proceedings of the 2008 ISECS International Colloquium on Computing, Communication, Control, and Management; IEEE: Guangzhou, China, 2008; pp. 679–683. [Google Scholar]
- Li, S.; Wang, X. The Spectral Features Analysis and Quantitative Remote Sensing Advances of Inland Water Quality Parameters. Geogr. Territ. Res. 2002, 18, 26–30. [Google Scholar]
- Liu, H. Correlation Analysis on Phytoplankton Quantity and Environmental Factors in Hedi Reservoir. Res. Soil Water Conserv. 2015, 22, 163–167. [Google Scholar]
- Wang, X.; Yang, Y. Spatial-temporal Distribution of Chlorophyll-a and Its Relationship with Environmental Factors in Hedi Reservoir. J. Hydroecology 2017, 38, 65–69. [Google Scholar]
- Zhou, F. Optical properties of Chlorphy in Reservoir Water and its Concentration Inversion Model by Remote Sensing. Master’s Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Shu, X.; Yin, Q.; Kuang, D. Relationship between algal chlorophyll concentration and spectral reflectance of inland water. J. REMOTE Sens.-BEIJING- 2000, 4, 45–49. [Google Scholar]
- Shen, Q.; Zhang, B.; Li, J.; Wu, Y.; Wu, D.; Yang, S.; Fang-fang, Z.; Gan-lin, W. Characteristic Wavelengths Analysis for Remote Sensing Reflectance on Water Surface in Taihu Lake. Spectrosc. Spectr. Anal. 2011, 31, 1892–1897. [Google Scholar] [CrossRef]
- Han, L.; Rundquist, D. The Response of Both Surface Reflectance and the Underwater Light-Field. Photogramm. Eng. Remote Sens. 1994, 60, 1463–1471. [Google Scholar]
- Liu, Z.; Cui, T.; Zhang, S.; Zhao, W. Piecewise Linear Retrieval Suspended Particulate Matter for the Yellow River Estuary Based on Landsat8 OLI. Spectrosc. Spectr. Anal. 2018, 38, 2536–2541. [Google Scholar] [CrossRef]
- Smith, R.; Baker, K. Optical-Properties of the Clearest Natural-Waters (200-800 Nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Xiang, J.; Pang, Y.; Li, Y.; Wei, H.; Wang, P.; Liu, X. Hydrostatic settling suspended matter of large shallow lake. Adv. Water Sci. 2008, 111–115. [Google Scholar]
- Huang, B.; Hong, C.; Qiu, J.; Huang, F.; Yang, J.; Wang, Z. Study on soil-water holding capacity of eucalyptus. Water Resour. Hydropower Eng. 2015, 46, 126–130. [Google Scholar]
Location | Date | Samples | TSS Concentration (mg/L) | |||||
---|---|---|---|---|---|---|---|---|
Total | Calibration | Validation | Max | Min | Mean | Standard Deviation | ||
Hedi Reservoir | August 2015 | 10 | 21 | 8 | 50 | 5 | 11.65 | 1.52 |
October 2015 | 19 | |||||||
Poyang Lake | June 2017 | 20 | 13 | 7 | 66 | 4 | 28.48 | 3.64 |
All | - | 49 | 34 | 15 | 66 | 4 | 18.52 | 2.09 |
Season | Type of Data | Image Date | Track Number | |
---|---|---|---|---|
Dry season | Landsat8 OLI | 14 Novmeber 2014 | 21 December 2016 | Path: 124 Row: 45 |
1 January 2015 | 8 December 2017 | |||
17 January 2015 | 24 December 2017 | |||
3 November 2016 | 6 January 2017 | |||
5 December 2016 | 22 January 2017 | |||
Sentinel-2 | 19 December 2018 | 49QDE | ||
Flood period | Landsat8 OLI | 9 July 2014 | 30 July 2016 | Path: 124 Row: 45 |
11 September 2014 | 16 September 2016 | |||
27 September 2014 | 14 May 2017 | |||
13 October 2014 | 30 May 2017 | |||
12 July 2015 | 18 August 2017 | |||
14 September 2015 | 3 September 2017 | |||
30 September 2015 | 18 June 2018 | |||
16 October 2015 | 6 September 2018 | |||
11 May 2016 | 8 October 2018 |
TSS Level Transfer Process | Annotation | ||
---|---|---|---|
−3 | I→IV | TSS level has been reduced by 3 levels (from I to IV), water quality has deteriorated | |
−2 | II→IV, I→III | TSS level has been reduced by 2 levels (from II to IV or I to III), water quality has deteriorated | |
−1 | I→II, II→III, III→IV | TSS level has been reduced by 1 level (from I to II or II to III or III to IV), water quality has deteriorated | |
0 | No change | TSS level has not changed, water quality remains stable | |
1 | IV→III, III→II, II→I | TSS level has been increased by 1 level (from IV to III or III to II or II to I), water quality has improved | |
2 | IV→II, III→I | TSS level has been increased by 2 levels (from IV to II or III to I), water quality has improved | |
3 | IV→I | TSS level has been increased by 3 levels (from IV to I), water quality has improved |
From | Study Area | Data | Model | Validation | |||
---|---|---|---|---|---|---|---|
Santiago Yepez et al. (2018) | Orinoco River | OLI Bands 5 | 15 | 10.79 | 47.28 | ||
Wang et al. (2009) | Yangtze River | ETM Bands 4 | — | ||||
Christopher Wackerman et al. (2017) | Mekong Delta | OLI Bands 2,4 | 15 | 15.94 | 31.28 | ||
Muhammad Fauzi et al. (2016) | Wadaslintang Reservoir | OLI Bands 3,4 | 15 | 8.78 | 27.36 | ||
Wang et al. (2017) | Pearl River estuary | OLI Bands 4,5 | 13 | 20.57 | 63.54 | ||
Hou et al. (2018) | Jiaozhou Bay | ETM Bands 2,3,4 | — | ||||
Zhang et al. (2015) | Xin’anjiang Reservoir | OLI Bands 2,3,8 | 15 | 12.85 | 34.16 | ||
This study | Band ratio model | Hedi Reservoir | OLI Bands 3,4 | 15 | 6.39 | 19.62 | |
Three-band model | OLI Bands 2,3,4 | 15 | 6.24 | 18.02 |
Years | ||
---|---|---|
Pixel-Based TSS | Region-Averaged TSS | |
2014 | ||
2015 | ||
2016 | ||
2017 | ||
2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, F.; Chen, S.; Wang, C.; Chen, J.; Zhou, H.; Xue, Y. Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China. Sensors 2020, 20, 6911. https://doi.org/10.3390/s20236911
Zhao J, Zhang F, Chen S, Wang C, Chen J, Zhou H, Xue Y. Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China. Sensors. 2020; 20(23):6911. https://doi.org/10.3390/s20236911
Chicago/Turabian StyleZhao, Jing, Fujie Zhang, Shuisen Chen, Chongyang Wang, Jinyue Chen, Hui Zhou, and Yong Xue. 2020. "Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China" Sensors 20, no. 23: 6911. https://doi.org/10.3390/s20236911
APA StyleZhao, J., Zhang, F., Chen, S., Wang, C., Chen, J., Zhou, H., & Xue, Y. (2020). Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China. Sensors, 20(23), 6911. https://doi.org/10.3390/s20236911