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Abstract: Next-generation mobile communications networks will have to cope with an extraordinary
amount and variety of network performance indicators, causing an increase in the storage needs of the
network databases and the degradation of the management functions due to the high-dimensionality
of every network observation. In this paper, different techniques for feature extraction are described
and proposed as a means for reducing this high dimensionality, to be integrated as an intermediate
stage between the monitoring of the network performance indicators and their usage in mobile
networks’ management functions. Results using a dataset gathered from a live cellular network
show the benefits of this approach, in terms both of storage savings and subsequent management
function improvements.
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1. Introduction

Management tasks in current mobile networks, such as network optimization or fault
management, have become cumbersome and expensive, due to the high complexity of modern
networks, thus increasing both the operational and the capital expenditure (OPEX and CAPEX,
respectively). In order to overcome this, the automation of such management tasks has become an
important challenge, which is even more relevant for 5G networks [1]. However, the huge amount
of available data related to different services and network segments decreases the efficiency of the
automation of such management functions due to the fact that storage and algorithms are not prepared
to work with such big data. To know the current network state (e.g., whether the network behavior
is sub-optimal or degraded), these management functions rely on network performance indicators,
which in the context of cellular networks are called key performance indicators (KPI). These indicators
quantify the performance of network processes and functionalities and are monitored and stored by the
Operations Support System (OSS) of the cellular network. As a result, and for network management
tasks to be optimally performed, Mobile Network Operators (MNOs) and vendors have put a lot
of effort into arranging a sufficiently detailed and varied amount of KPIs. However, many of these
KPIs do not provide relevant information about the network state. The result is a large amount of
data that has to be stored in network nodes, causing storage problems. Moreover, such amount of
data may produce over-fitting of the algorithms used for the automation of the management tasks.
To avoid these problems, an efficient selection of a set of KPIs should be carried out in order to
optimize the network management tasks. Traditionally, troubleshooting experts have made this
selection manually [2], being a task that is quite time-consuming and highly complex in nature. These
limitations have caused many experts to use the same set of KPIs, the ones that usually have shown
better results in terms of error metrics, in most of the management problems. However, the set of KPIs
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that is traditionally selected could not be the most suitable one for some specific management tasks,
leading to non-optimal performance. To cope with this issue, dimensionality reduction has become an
essential preprocessing task.

Regarding cellular network management, few works have been reported in this field. Some works
have applied feature selection techniques with the aim of classifying traffic flows. For example,
in [3], a supervised correlation-based technique for KPI selection is applied in a UMTS (Universal
Mobile Telecommunications System) network. In [4], however, authors applied dimensionality
reduction to improve the classification of Internet traffic. In [5,6], supervised techniques for automatic
feature selection are applied to determine the most useful KPIs to eventually identify the cause for a
performance degradation in a cellular network. Specifically, in [5], a supervised technique based on a
genetic algorithm is proposed. The authors of [6] also propose a supervised method, which relies on
the statistical dissimilarity of KPIs when conditioned to different network states.

However, given their supervised nature, the works in [5,6] rely on the availability of a network
status label attached to every network observation, which seldom is present. Actually, most of
the performance management data stored in nowadays cellular networks are unlabeled, due to the
high amount of time required for network experts to analyze and document every network fault,
together with the pressing need for a fast response. In this case, an unsupervised selection method can
be applied for dimensionality reduction which carries out a selection of a representative set of KPIs.
Specifically, in [7], an unsupervised technique for KPI selection is proposed as a clustering module
followed by a supervised feature selection technique.

In addition to feature selection, dimensionality reduction encompasses a second family of Machine
Learning techniques, which is feature extraction. Feature extraction techniques convert the original
features into a new and lower-dimensional set of synthetic features. The application of feature
extraction to cellular network management is presented in several works. The authors of [8] propose a
framework for Self-Organizing Network (SON) coordination where dimensionality reduction stage is
implemented by using Self-Organizing Maps (SOM). In [9], different techniques for dimensionality
reduction are applied to time series prediction. Finally, Ref. [10] is focused on the combination of
selection and extraction techniques as part of a fault management framework.

A possible limitation of the application of dimensionality reduction methods to management
tasks is a reduction in the accuracy of the results. Regarding this issue, a trade-off between accuracy
and storage needs must be achieved. These types of decisions are common in autonomic management
problems [11].

This paper presents a detailed comparison among different feature extraction techniques and
their application to a fault diagnosis problem. Unlike [10], which is more focused on feature selection
techniques and where only one feature extraction technique is considered, this work evaluates the
advantages of using different feature extraction methods to improve fault diagnosis results. In addition,
although the work presented in [9] is also based on feature extraction techniques, the problem
addressed is highly different to the one considered in this work. Feature extraction techniques are a set
of methods that allow for reducing the dimensionality of problems of different nature. These methods
select a small group of features from a large dataset to combine them and compute new features.
These new features contain the most important information from the original dataset regarding the
scenario where this technique is being applied. Therefore, the considered problem for the application
of feature extraction has an important impact on the final result. The objective of this work is to analyze
the suitability of the mostly used families of techniques for feature extraction when they are applied to
a fault diagnosis problem in a cellular network. The use of these techniques may not only reduce the
dimensionality of the diagnosis problem, but also improve the fault diagnosis results. With this aim,
the diagnosis error rate (DER) indicator is used, which stands for the samples’ misclassification rate.
In addition to DER, the data storage needs are also considered as a key metric for the evaluation of
each technique.



Sensors 2020, 20, 6944 3 of 10

The rest of the paper is organized as follows: firstly, the problem formulation is presented,
describing the scenario considered in this work. Secondly, an overview of feature extraction
techniques is described, focusing on two specific feature extraction families. Then, the performance
analysis is shown. Details of the experiments carried out and obtained results are provided.
Finally, some conclusions are drawn from the previous study and tests.

2. Problem Formulation

In a cellular network, performance information is monitored and periodically stored in a
centralized database: the OSS database (see dashed lines in Figure 1). This information usually
takes the shape of service or network performance metrics (such as KPIs), as well as user call traces,
and may be expressed as a set of N-dimensional samples, x̄ = {x1, x2, . . . , xN}, being N the number
of the monitored metrics, that is, the number of features. A feature could be, for example, the number
of user connection attempts registered by a base station in a given time period. Usual values for N
(several thousands), together with the high number of network elements simultaneously monitored,
entail the storage of a huge amount of performance data every day and pose a performance issue for
subsequent fault diagnosis functions. Together with x̄, a possible additional label, y, often referred
to as the ground truth label, may be attached. This label corresponds to the network state under
which each sample was gathered. A ground truth label could be a coverage hole, a problem of
interference, or a network overload. The availability of this label allows using supervised techniques for
dimensionality reduction [3,5] and supervised techniques for automatic diagnosis [12,13], whereas its
lack forces network experts to only use unsupervised techniques for both dimensionality reduction
and RCA functions [2].

In the context of performance analysis, diagnosis functions take the shape of classifying
systems, Figure 1, also called automatic diagnosis systems. Specifically, in a classification problem,
a dimensionality reduction technique is a procedure that, before the classification itself, either finds
or generates a set of q features (with q << N) that represents a sample with the minimum loss of
useful information compared to the original set. That is, after dimensionality reduction has taken
place, the classifier takes x̃ ∈ Rq as its input, instead of x̄ ∈ RN (see solid lines in Figure 1).

Figure 1. Comparison of a typical (dashed lines) and proposed (solid lines) schemes for network
performance information gathering and use in performance analysis functions.

3. Feature Extraction

Feature extraction is a family of dimensionality reduction techniques where a new set of features
is built from the original feature set. In order to reduce dimensionality, the number of the new features
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is lower than the number of the original ones. Feature extraction is a tool that projects the original
features onto a more convenient and reduced basis. These new features are computed in such a way
that they retain as much information as possible from the original feature set.

In the context of cellular networks, this means that a new set of synthetic KPIs are built upon the
combination of the original ones retaining as much information as possible. Therefore, a feature
extraction technique is a process that transforms an element x̄ ∈ RN , defined by the features
{x1, . . . , xN}, in an element x̃ ∈ Rq, defined by the features {x̃1, . . . , x̃q}, where each new feature
x̃j comes from the combination of several features of x̄. Even though x̃ may have any number of
dimensions, in general, it is preferred that q < N, thus making x̃ contain the information of x̄ in
a lower number of dimensions. A scheme for feature extraction is shown in Figure 2. In this case,
given that the vast majority of feature extraction techniques is unsupervised, only x̄ is used as its input.
The result is a model for KPI transformation that may differ depending on the particular technique
being used. For example, it may consist of a matrix describing how the indicators at the input are
linearly combined to produce the synthetic ones. It may also describe nonlinear functions to be applied
over the former to get the latter. In any case, the resulting output takes the form of x̃: a vector with less
dimensions that x̄ and which is comprised of features x̃1 to x̃q. The tilde in x̃1 to x̃q highlights the fact
that these features are different from those at the input, not being a subset of the latter, such as would
be the case in feature selection techniques.

Feature

extraction

KPI 

transformation

ҧ𝑥

𝑥1
𝑥2

𝑥𝑁

… ෤𝑥…

෤𝑥1
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Figure 2. Scheme for feature extraction in the context of fault diagnosis functions. The upper branch
represents the model creation during the learning phase (in this case, the KPI transformation to be
applied), whereas the lower branch represents the application of such KPI transformation.

The reason why feature extraction techniques get to retain a higher amount of useful information
than feature selection techniques given the same number of resulting features is that not all the
information retained in the selected (contrary to the extracted) KPIs is useful information. This fact
is mainly due to the nature of the magnitude being quantified and its suitability to represent
the performance of the underlying process. At this point, the utility of a feature, or KPI, can be
quantified as its variance with respect to the variance of the whole dataset, considering all the KPIs.
Often, the techniques for feature extraction have as the criterion that the per-feature variance is
maximized, thus reducing the number of necessary features to retain the whole variance. This is the
case for the techniques based on principal component analysis (PCA) [14].

This work is focused on the application of two of the most promising feature extraction families
to cellular network performance analysis. The application methodology followed in this work for
all the feature extraction techniques is the same. That is, in all cases, the selected feature extraction
technique is applied before a fault diagnosis stage. As a result of this application, a set of KPIs from the
available dataset is selected in order to compute some synthetic KPIs. Therefore, these synthetic KPIs
are obtained as a combination of the selected KPIs. Each technique obtains a different set of synthetic
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KPIs since the learning process is different for each method. More details about the functioning of the
feature extraction techniques and their learning processes can be found in the references associated
with each technique. These new KPIs are the ones used in the subsequent stage of fault diagnosis.
Based on the results obtained in the diagnosis stage, it is possible to determine the most appropriate
feature extraction technique to be used in a fault management problem.

3.1. Component Analysis

The techniques based on component analysis define the features transformation using information
from their statistical behavior. Within this group, one may find techniques implying both a
linear transformation over the original features (e.g., PCA) and techniques implying nonlinear
transformations, like the kernel PCA (kPCA).

• PCA: Principal component analysis is one of the most used feature extraction techniques in a
wide variety of fields of science, due to its high effectiveness and ease of implementation. In the
context of mobile networks, given an original set of KPIs of N dimensions, PCA determines the q
dimensions or hyperplanes that, being orthogonal among them and a linear combination of the
former N KPIs, maximize the variance of the projection of the original samples.

Figure 3 shows, as an example, the resulting features of applying PCA over a set of test KPIs.
The orthogonality of x̃1 and x̃2 can be seen as a result of applying PCA.

Figure 3. Resulting features of the application of PCA (red lines, x̃) over a set of samples of two KPIs.

• Kernel PCA (kPCA): this nonlinear feature extraction technique applies PCA over the KPIs
resulting from a nonlinear transformation of the original KPIs [15]. The nonlinear function
applied on the original space is known as the kernel. This way, simple hyperplanes, resulting from
the application of PCA, defined over the transformed space, result in complex structures in the
space of the original KPIs.

• Independent component analysis (ICA): Unlike PCA, which only looks for the orthogonality of
the resulting synthetic KPIs, ICA targets the statistic independence of these—generally by means
of minimizing the mutual information among the features [16]. Linear and nonlinear variants of
this technique exist.

3.2. Manifold Learning

The methods based on manifold learning are a set of nonlinear techniques for feature extraction.
They rely on the premise that a set of samples of high dimensionality is indeed a body with a set of a
lower number of dimensions, whose shape has been manipulated to result in the latter. This can be
seen as a 2D plane which has been rolled up to result in a three-dimensional structure. In a problem
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of classification, such as a fault diagnosis based on KPIs, it would be easier to define the decision
boundaries over a two-dimensional structure instead of over a three-dimensional structure.

Figure 4 shows an example of this. In Figure 4a, a 2D plane which has been rolled up to result in
a three-dimensional structure is depicted. Figure 4b shows the result of unwrapping the plane after
applying a manifold learning technique. In the problem of classification, it would be difficult to define
the decision boundaries over a structure as the one shown in Figure 4a; however, it would be easy to
do this with the structure shown in Figure 4b.

(a) (b)

Figure 4. Example of feature extraction using LLE, a technique based on manifold learning, from [17].
(a) samples x̄ in the N-dimensional original space; (b) samples x̃ in the q-dimensional transformed space.

Some of the most well-known feature extraction techniques based on manifold learning are
the following:

• Locally-linear embedding, LLE: this technique allows determining the q-dimensional space
which better preserves the distance between the projection of each KPI and their neighbors’ [18].
Figure 4 shows an example of the application of this technique.

• Spectral embedding, SE: this technique, like LLE, uses the concept of neighborhood among KPIs,
in this case, to define the graph whose spectral decomposition allows defining the q-dimensional
space onto which projecting the original space [19].

4. Performance Analysis

In order to show the feasibility of feature extraction techniques for cellular network management,
in this section, the presented methods have been assessed regarding their ability to reduce the number
of features at the input of a method for fault diagnosis while preserving as much useful information
as possible.

4.1. Experiment Setup

A test has been carried out to evaluate the performance of the considered feature extraction
techniques in the field of fault diagnosis. In the experiments, a dataset from a live LTE network with
359 samples has been used [20]. The methodology and analysis proposed in this paper can be easily
applied to a 5G network when a proper dataset is available. Each sample is composed of 286 RAN
KPIs and a ground truth label, indicating the network state under which the sample was collected. In
particular, four different labels are differentiated: high traffic, no traffic, high CPU utilization, and low
coverage. As described before, the comparison among the selected feature extraction algorithms
is made by evaluating the DER obtained in a subsequent diagnosis stage. The inputs used in the
diagnosis stage are the synthetic KPIs computed by each feature extraction technique. DER is defined
as the ratio of problematic cases diagnosed with a different label from the real one (misclassified cases),
NMPC, to the total number of problematic cases, NPC, as shown in the following expression:

DER =
NMPC
NPC

(1)
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An LDA (linear discriminant analysis) classifier is used as the diagnosis tool. Since the feature
extraction techniques do not need the ground truth label for their application, the database is treated as
unlabeled during this procedure. Therefore, labels from the dataset are only used in order to compute
the DER, as a means to quantify the validity of the chosen indicators. Regarding the available KPIs,
they provide information about mobility, accessibility, CPU load, retainability, and throughput.

Seven different situations for feature extraction are distinguished. First, to set a baseline, all the
KPIs are used, representing the situation when no selection is performed. Then, four techniques based
on component analysis have been assessed: PCA, kPCA using a Gaussian kernel (named kPCA1

onwards), kPCA using a sigmoid kernel (named kPCA2 onwards) and ICA. Finally, two feature
extraction techniques based on manifold learning are used: LLE and SE. The same number of synthetic
KPIs are considered in all these situations, 10.

The dataset has been partitioned following a 0.4, 0.4, 0.2 split, devised for the computation of
the KPI transformation model for the feature extraction techniques, the training of the LDA classifier,
and the testing of this classifier, respectively. Given that the dataset considered in this work is not
big enough, the variance of the results is high. Therefore, the conclusions that can be obtained are
not reliable. One approach to reduce this variance is the application of repetitions in the experiments.
With the aim of obtaining more reliable results when the number of cases is scarce either in the testing
or in the modeling set, a stratified Monte Carlo cross-validation (MCCV) of 50 repetitions has been
performed per each step of the modeling-to-testing ratio. That is, the samples assigned to each set have
been randomized in each repetition preserving the relative frequency of each cause in these subsets.
Then, the resulting DERs have been averaged over the 50 repetitions. Finally, a standard normalization
is applied to each split. The selection of 50 repetitions is a result of a trade-off between a reduced
number of repetitions, in order to limit the computational load of the approach, and the reliability
of the results. Some experiments have been carried out in order to find the appropriate number of
repetitions. In these experiments, different numbers of repetitions have been tested until the variance
of the results was low enough.

4.2. Results and Discussion

Figure 5 shows the resulting DERs for this test. Each box plot represents the first, second, and third
quartile (Q1, Q2 and Q3, respectively; from the bottom, the blue, the red, and the next blue horizontal
lines) as well as the lower and upper adjacent values (i.e., Q1− 1.5 · (Q3−Q1) and Q3 + 1.5 · (Q3−Q1),
respectively) for each method throughout the 50 iterations. Outliers are shown as crosses. In light of
this, all the component analysis-based techniques except for kPCA1 provide a lower DER than the
case with all the KPIs. The reason for the good results of PCA comes from the nature of the KPIs
being monitored and the relation they have among each other, being fundamentally linear. In turn,
this linearity appears from the nature of the processes being quantified, this being a common issue in
cellular networks. The process to obtain KPIs from a network consists of the application of different
formulas for the combination of performance counters. These performance counters are metrics
gathered by the different nodes of the network and are related to the different procedures that are
taking place. Some examples of these counters are the number of connection attempts or the number
of successful connections. Based on these metrics, KPIs such as the ratio of successful connections
can be obtained. Thus, KPIs that are obtained based on similar performance counters can present a
high linear relation. It is also possible to find KPIs that are not related to other KPIs. For example,
a KPI related to cell availability (meaning the time during an hour that the cell is available) is not
related to any other KPI. However, most of the common KPIs are related to at least other KPI in a linear
manner. To confirm this behavior, Pearson correlation coefficients have been obtained and represented
by means of their cumulative density function, Figure 6. Specifically, the correlation for every pair of
KPIs from the considered dataset has been obtained. It can be seen that more than 50% of the obtained
coefficients are above 0.5, indicating a high level of linearity among KPIs.
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Figure 5. Diagnosis error rate (DER) of diagnosis system based on LDA for different feature extraction
families and techniques. Crosses are included representing the outliers.

Figure 6. Cumulative Distribution Function of Pearson correlation coefficient obtained for the
set of KPIs.

In the case of kPCA2, the normalization of the KPIs and the distribution of many of them around
zero makes the sigmoid kernel approximate to a linear function, providing an optimum final DER,
similar to the one provided by PCA. On the other hand, the resulting DERs of both kPCA1 and the
techniques based on manifold learning provide poorer results, even worse than the baseline case for
LLE. The reason is that these techniques assume a strong nonlinearity in the dataset, which is contrary
to the linear character of the relations among the considered KPIs.

As described before, the amount of data that can be collected from a mobile network is very large
and it is increasing with the arrival of new generations of mobile technologies. Based on this large
amount of information, experts must analyze the performance of the network and not only detect if
the network behavior is normal, but also identify the specific problem that is affecting a specific area
of the network. Moreover, when the decision is based on real data, it is important to consider that
part of this information may affect the accuracy of the classification negatively. This fact is shown in
the baseline results, obtaining a worse DER when all the available information is used to make the
fault classification.

Based on these results, the application of feature extraction techniques to a mobile network
management allows for reducing the storage needs up to 96% (using 10 KPIs instead of all 286
monitored KPIs) while improving the DER of a subsequent diagnosis stage more than 50%. The possible
limitations of this approach are a possible reduction in the accuracy of the results, an increase in the
complexity of the system and its adaptation to changes in the network. In relation to the former, it
is important to take into account that an extremely high reduction may reduce the accuracy of the
diagnosis result. In [10], the relation between the DER and the number of computed synthetic counters
from a PCA method is shown. In addition, the complexity of the feature extraction method needs to be
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considered in the whole fault management framework when it is applied to a network. Regarding the
adaptation of changes in the network, it represents the main limitation of this approach. When the
feature extraction method is applied to a network, the main KPIs to perform the fault diagnosis are
determined in order to compute the synthetic KPIs that will be used in the fault diagnosis stage.
This selection is specific for the concrete faults that are being considered. If new faults appear in the
network, it will be necessary to perform the training of the feature extraction method again in order to
adapt the KPI selection including these new faults. One possible approach could be to perform this
training periodically, so that the feature extraction method would be adapted to network changes.

5. Conclusions

This paper has presented the assessment of different techniques for feature extraction, to be
integrated as an intermediate stage between the monitoring of the network KPIs and their usage in
performance analysis in a mobile network. At the expense of losing the meaning of the resulting
KPIs, feature extraction techniques allow for condensing relevant performance information in a more
reduced set of synthetic KPIs. The results of using a set of data collected from a live cellular network
have shown the benefits of this approach in terms of storage savings and subsequent improvements
to the fault diagnosis function. The benefits have been found to be specially relevant when linear
techniques for feature extraction are used, given the mostly linear dependence of the most common
KPIs.
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