Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique
Abstract
:1. Introduction
2. Finite Element Modelling for EMI Based SHM Technique
2.1. Background
2.2. Damping Model
3. Sparse Regularization Based Electromechanical Impedance Technique for Damage Quantification
3.1. Measurement of Changes in Impedance Signatures
3.2. Inverse Problem in EMI-Based Damage Identification
3.3. Conventional Tikhonov Regularization Method
3.4. Sensitivity Based Damage Detection Method Using Sparse Regularization
4. Experimental Studies
4.1. Introduction and Experimental Setup
4.2. Model Calibration for Aluminium Plate with Surface Bonded PZT Transducer
4.3. Damage Quantification in a Plate Structure
4.4. Identification Results and Discussion
5. Experimental Study on the Influence of Temperature Variation
5.1. Previous Studies on the Effect of Uncertainties on Impedance
5.2. Temperature Effects on the Impedance Responses of a Plate Structure
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naik, T.R.; Malhotra, V.M.; Popovics, J.S. The ultrasonic pulse velocity method. In Handbook on Nondestructive Testing of Concrete, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 8-1–8-19. [Google Scholar]
- Gucunski, N. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration; Transportation Research Board: Washington, DC, USA, 2013. [Google Scholar]
- Kersemans, M.; De Baere, I.; Degrieck, J.; Van Den Abeele, K.; Pyl, L.; Zastavnik, F.; Sol, H.; Van Paepegem, W. Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scan. Polym. Test. 2014, 34, 85–96. [Google Scholar] [CrossRef]
- Arjun, V.; Sasi, B.; Rao, B.P.C.; Mukhopadhyay, C.; Jayakumar, T. Optimisation of pulsed eddy current probe for detection of sub-surface defects in stainless steel plates. Sens. Actuators A Phys. 2015, 226, 69–75. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, J.; He, Y.; Chen, D.; Li, K. Influence of metallic shields on pulsed eddy current sensor for ferromagnetic materials defect detection. Sens. Actuators A Phys. 2016, 248, 162–172. [Google Scholar] [CrossRef]
- Lu, Y. Non-Destructive Evaluation on Concrete Materials and Structures Using Cement-Based Piezoelectric Sensor. Doctoral Dissertation, Hong Kong University of Science and Technology, Hong Kong, China, 2010. [Google Scholar]
- Binda, L.; Saisi, A.; Tiraboschi, C.; Valle, S.; Colla, C.; Forde, M. Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr. Build. Mater. 2003, 17, 613–627. [Google Scholar] [CrossRef]
- Shokouhi, P.; Wolf, J.; Wiggenhauser, H. Detection of delamination in concrete bridge decks by joint amplitude and phase analysis of ultrasonic array measurements. J. Bridge Eng. 2014, 19, 04013005. [Google Scholar] [CrossRef]
- Grosse, C.U.; Reinhardt, H.W.; Krüger, M.; Beutel, R. Application of Impact-Echo Techniques for Crack Detection and Crack Parameter Estimation in Concrete. In Proceedings of the International Conference on Fracture ICF-11, Turin, Italy, 20–25 March 2005; pp. 4884–4889. [Google Scholar]
- Park, G.; Sohn, H.; Farrar, C.R.; Inman, D.J. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Dig. 2003, 35, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.P.; Chaudhry, Z.; Liang, C.; Rogers, C.A. Truss structure integrity identification using PZT sensor-actuator. J. Intell. Mater. Syst. Struct. 1995, 6, 134–139. [Google Scholar] [CrossRef]
- Raju, V. Impedance-Based Health Monitoring Technique of Composite Reinforced Structure. In Proceedings of the 9th International Conference on Adaptive Structures and Technologies, Cambridge, MA, USA, 5–7 August 1998; pp. 448–457. [Google Scholar]
- Tseng, K.K.H.; Naidu, A.S. K Non-parametric damage detection and characterization using smart piezoceramic material. Smart Mater. Struct. 2002, 11, 317. [Google Scholar] [CrossRef]
- Vieira Filho, J.; Baptista, F.G.; Inman, D.J. Time-domain analysis of piezoelectric impedance-based structural health monitoring using multilevel wavelet decomposition. Mech. Syst. Signal Process. 2011, 25, 1550–1558. [Google Scholar] [CrossRef]
- Da Silva, S.; Dias Junior, M.; Lopes Junior, V. Structural health monitoring in smart structures through time series analysis. Struct. Health Monit. 2008, 7, 231–244. [Google Scholar] [CrossRef]
- Fan, X.; Li, J.; Hao, H. Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model. Smart Struct. Syst. 2016, 18, 501–523. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.B.; Lee, C.G.; Lee, C. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng. Struct. 2012, 39, 210–220. [Google Scholar] [CrossRef]
- Na, S.; Lee, H.K. Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique. Compos. Sci. Technol. 2013, 88, 62–68. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Inman, D.J. Simplified fuzzy ARTMAP network-based method for assessment of structural damage applied to composite structures. J. Compos. Mater. 2016, 50, 3501–3514. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Inman, D.J. Performance analysis of simplified Fuzzy ARTMAP and Probabilistic Neural Networks for identifying structural damage growth. Appl. Soft Comput. 2017, 52, 53–63. [Google Scholar] [CrossRef]
- Bhalla, S.; Naidu, A.S.K.; Ong, C.W.; Soh, C.K. Practical Issues in the Implementation of Electro-Mechanical Impedance Technique for NDE. In Proceedings of the SPIE’s International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, Melbourne, Australia, 16–18 December 2002; Volume 4935, pp. 484–494. [Google Scholar]
- Liang, Y.; Li, D.; Parvasi, S.M.; Song, G. Load monitoring of pin-connected structures using piezoelectric impedance measurement. Smart Mater. Struct. 2016, 25, 105011. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. 2000, 6, 153–160. [Google Scholar] [CrossRef]
- Park, G.; Farrar, C.R.; di Scalea, F.L.; Coccia, S. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 2006, 15, 1673. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer. J. Intell. Mater. Syst. Struct. 1997, 8, 335–343. [Google Scholar] [CrossRef]
- Zhou, S.; Liang, C.; Rogers, C.A. Integration and design of piezoceramic elements in intelligent structures. J. Intell. Mater. Syst. Struct. 1997, 8, 363–373. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A.N. Characterization of piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 2000, 11, 959–976. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Three-dimensional electromechanical impedance model for multiple piezoceramic transducers—structure interaction. J. Aerosp. Eng. 2008, 21, 35–44. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, Y.Y.; Soh, C.K. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment. Smart Mater. Struct. 2008, 17, 035008. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Three-dimensional electromechanical impedance model. I: Formulation of directional sum impedance. J. Aerosp. Eng. 2007, 20, 53–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Chen, J.; Wu, C.; Wen, D. Electromechanical impedance response of a cracked Timoshenko beam. Sensors 2011, 11, 7285–7301. [Google Scholar] [CrossRef]
- Hamzeloo, S.R.; Shamshirsaz, M.; Rezaei, S.M. Damage detection on hollow cylinders by electro-mechanical impedance method: Experiments and finite element modeling. C. R. Mec. 2012, 340, 668–677. [Google Scholar] [CrossRef]
- Xu, J. Parameter Identification and Damage Detection Using Evolutionary Programming. Doctoral Dissertation, Nanyang Technological University, Singapore, 2005. [Google Scholar]
- Shuai, Q.; Zhou, K.; Zhou, S.; Tang, J. Fault Identification Using Piezoelectric Impedance Measurement and Model-based Intelligent Inference with Pre-screening. Smart Mater. Struct. 2017, 26, 045007. [Google Scholar] [CrossRef]
- Ezzat, A.A.; Tang, J.; Ding, Y. A model-based calibration approach for structural fault diagnosis using piezoelectric impedance measurements and a finite element model. Struct. Health Monit. 2020, 19, 1839–1855. [Google Scholar] [CrossRef]
- Kim, J.; Wang, K.W. An enhanced impedance-based damage identification method using adaptive piezoelectric circuitry. Smart Mater. Struct. 2014, 23, 095041. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. An integrated health monitoring technique using structural impedance sensors. J. Intell. Mater. Syst. Struct. 2000, 11, 448–455. [Google Scholar] [CrossRef]
- Wang, X.; Tang, J. Damage identification using piezoelectric impedance approach and spectral element method. J. Intell. Mater. Syst. Struct. 2009, 20, 907–921. [Google Scholar] [CrossRef]
- Sepehry, N.; Bakhtiari-Nejad, F.; Shamshirsaz, M. Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates. J. Intell. Mater. Syst. Struct. 2017, 28, 2473–2488. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y.; Bao, Y.; Zhou, X. Selection of regularization parameter for l1-regularized damaged detection. J. Sound Vib. 2018, 423, 141–160. [Google Scholar] [CrossRef]
- Hernandez, E.M. Identification of isolated structural damage from incomplete spectrum information using l 1-norm minimization. Mech. Syst. Signal Process. 2014, 46, 59–69. [Google Scholar] [CrossRef]
- Pan, C.D.; Yu, L.; Liu, H.L.; Chen, Z.P.; Luo, W.F. Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization. Mech. Syst. Signal Process. 2018, 98, 32–49. [Google Scholar] [CrossRef]
- Cao, P.; Qi, S.; Tang, J. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis. Smart Mater. Struct. 2018, 27, 035020. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Li, J.; Hao, H. Impedance resonant frequency sensitivity based structural damage identification with sparse regularization: Experimental studies. Smart Mater. Struct. 2018, 28, 015003. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Soh, C.K. Towards more accurate numerical modeling of impedance based high frequency harmonic vibration. Smart Mater. Struct. 2014, 23, 035017. [Google Scholar] [CrossRef]
- Peairs, D.M.; Park, G.; Inman, D.J. Improving accessibility of the impedance-based structural health monitoring method. J. Intell. Mater. Syst. Struct. 2004, 15, 129–139. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, H. Statistical damage identification of structures with frequency changes. J. Sound Vib. 2003, 263, 853–870. [Google Scholar] [CrossRef]
- Theodoridis, S.; Kopsinis, Y.; Slavakis, K. Sparsity-aware learning and compressed sensing: An overview. Acad. Press Libr. Signal Process. 2012, 1, 1271–1377. [Google Scholar]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted ℓ 1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.D.; Xu, Y.L. Comparative studies on damage identification with Tikhonov regularization and sparse regularization. Struct. Control Health Monit. 2016, 23, 560–579. [Google Scholar] [CrossRef]
- Makkonen, T.; Holappa, A.; Ella, J.; Salomea, M.M. Finite element simulations of thin-film composite BAW resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 1241–1258. [Google Scholar] [CrossRef]
- Van den Berg, E.; Friedlander, M.P. Sparse optimization with least-squares constraints. SIAM J. Optim. 2011, 21, 1201–1229. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Law, S.S.; Ding, Y. Substructure damage identification based on response reconstruction in frequency domain and model updating. Eng. Struct. 2012, 41, 270–284. [Google Scholar] [CrossRef]
- Park, G.; Kabeya, K.; Cudney, H.H.; Inman, D.J. Impedance-based structural health monitoring for temperature varying applications. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 1999, 42, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, S.; Naidu, A.S.K.; Soh, C.K. Influence of Structure-Actuator Interactions and Temperature on Piezoelectric Mechatronic Signatures for NDE. In Proceedings of the ISSS-SPIE 2002 Interna tional Conference on Smart Materials Structures and Systems, Bangalore, India, 14 October 2003; Volume 5062, pp. 263–269. [Google Scholar]
- Sun, F.P.; Chaudhry, Z.A.; Rogers, C.A.; Majmundar, M.; Liang, C. Automated Real-Time Structure Health Monitoring via Signature Pattern Recognition. In Proceedings of the Conf. on Smart Structures and Materials, San Diego, CA, USA, 3 March 1995; Volume 2443, pp. 236–248. [Google Scholar]
Parameters | Symbols | Values | Unit |
---|---|---|---|
Density | 7800 | ||
Hysteretic damping ratio | 0.00625 | ||
Compliance | |||
Piezoelectric strain coefficients | |||
Electric permittivity | 1649 | ||
1649 | |||
1750 |
Property | Symbol | Value | Unit |
---|---|---|---|
Density (aluminium) | 2710 | ||
Young’s modulus (aluminium) | 72 | ||
Poisson ration (aluminium) | 1.4 | ||
Damping ratio (aluminium) | 0.35 | ||
Density (adhesive) | 1000 | ||
Young’s modulus (adhesive) | 1.4 | ||
Poisson ratio (adhesive) | 0.4 | ||
Damping ratio (adhesive) | 0.016 |
Parameters (PZT) | Unit | Value(Manufacturer) | Value(Updated) |
---|---|---|---|
Density | 7800 | 7760 | |
Mechanical loss factor | 80 | 65 | |
Compliance | |||
S11 | 15.9 | 13.8 | |
S33 | |||
S66 | 45.9 | 43.19 | |
Piezoelectric strain coefficient | |||
d31 | −1.853 | −1.74 | |
Damping ratio (bonding layer) | 0.016 | 0.022 | |
Young’s modulus (aluminium) | 72e9 | 70.8e9 |
Experimental Result | Finite Element Model (Hz) | |
---|---|---|
Undamaged (Hz) | Damaged (Hz) | |
20,317.4 | 20,280.4 | 20,317.1 |
20,383.8 | 20,349.7 | 20,386.3 |
20,497.2 | 20,475.2 | 20,512.6 |
21,207.2 | 21,202.4 | 20,127.2 |
21,269.8 | 21,233.6 | 21,274.4 |
21,395.2 | 21,360.1 | 21,384.7 |
21,613.9 | 21,589.6 | 21,617.4 |
21,820.3 | 21,786.2 | 21,811.6 |
21,980.1 | 21,955.5 | 21,981.4 |
22,107.9 | 22,076.4 | 22,098.3 |
22,444.7 | 22,419.0 | 22,449.8 |
22,601.7 | 22,558.7 | 22,594.5 |
23,221.4 | 23,206.3 | 23,220.0 |
23,640.5 | 23,610.1 | 23,640.2 |
24,076.8 | 24,051.9 | 24,079.9 |
24,143.9 | 24,132.2 | 24,144.6 |
25,191.1 | 25,188.4 | 25,192.7 |
25,276.9 | 25,262.0 | 25,274.3 |
25,444.6 | 25,411.5 | 25,444.6 |
26,177.0 | 26,158.4 | 26,180.1 |
26,371.2 | 26,366.2 | 26,371.7 |
26,800.5 | 26,778.7 | 26,800.0 |
26,971.9 | 26,950.4 | 26,968.2 |
27,850.1 | 27,824.3 | 27,850.0 |
28,110.3 | 28,084.9 | 28,114.1 |
28,402.2 | 28,390.2 | 28,406.4 |
29,118.3 | 29,111.5 | 29,118.7 |
29,180.1 | 29,137.6 | 29,180.4 |
Test Result (Damaged) (Hz) | Finite Element Model (Undamaged) (Hz) | |
---|---|---|
23.5 °C | 15 °C | |
20,280.4 | 20,288.3 | 20,317.1 |
20,349.7 | 20,357.5 | 20,386.3 |
20,475.2 | 20,483.1 | 20,512.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Li, J. Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique. Sensors 2020, 20, 7069. https://doi.org/10.3390/s20247069
Fan X, Li J. Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique. Sensors. 2020; 20(24):7069. https://doi.org/10.3390/s20247069
Chicago/Turabian StyleFan, Xingyu, and Jun Li. 2020. "Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique" Sensors 20, no. 24: 7069. https://doi.org/10.3390/s20247069
APA StyleFan, X., & Li, J. (2020). Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique. Sensors, 20(24), 7069. https://doi.org/10.3390/s20247069