Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. sEMG Sensor System
2.1.1. Overall Design of the Sensor System
2.1.2. Design of the sEMG Sensor Modules
2.1.3. Identification of the Relevant sEMG Channels
2.2. Demonstration of the Proof-of-Principle of the sEMG Sensor System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
# Subject | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
E | First | E | First | E | First | E | First | E | First | |
1 | 4 | 4 | 10 | 10 | 1 | 1 | 6 | 6 | 10 | 10 |
2 | 6 | 6 | 4 | 4 | 1 | 1 | 13 | 13 | 5 | 1 |
3 | 15 | 15 | 1 | 1 | 3 | 3 | 7 | 7 | 11 | 11 |
4 | 4 | 13 | 5 | 5 | 15 | 15 | 9 | 9 | 3 | 3 |
5 | 2 | 2 | 1 | 1 | 2 | 2 | 16 | 16 | 6 | 6 |
6 | 14 | 14 | 16 | 16 | 10 | 16 | 16 | 16 | 4 | 4 |
7 | 4 | 4 | 10 | 10 | 4 | 4 | 8 | 8 | 2 | 2 |
8 | 3 | 3 | 1 | 1 | 15 | 15 | 4 | 4 | 7 | 7 |
9 | 12 | 12 | 2 | 2 | 10 | 10 | 5 | 5 | 16 | 16 |
10 | 1 | 1 | 2 | 2 | 14 | 14 | 14 | 14 | 16 | 16 |
# Subject | RMS sEMG Sensor System [mV] | RMS Pre-Gelled Electrodes [mV] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial1 | Trial2 | Trial3 | Trial4 | Trial5 | Mean | STD | Trial1 | Trial2 | Trial3 | Trial4 | Trial5 | Mean | STD | |
1 | 0.09 | 0.08 | 0.11 | 0.10 | 0.08 * | 0.09 | 0.011 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.004 |
2 | 0.10 | 0.11 | 0.36 | 0.27 | 0.06 | 0.18 | 0.115 | 0.05 | 0.05 | 0.05 | 0.07 | 0.07 | 0.06 | 0.010 |
3 | 0.15 | 0.11 | 0.13 | 0.12 | 0.14 | 0.13 | 0.012 | 0.10 | 0.12 | 0.11 | 0.13 | 0.12 | 0.12 | 0.011 |
4 | 0.08 * | 0.08 | 0.08 | 0.07 | 0.09 | 0.08 | 0.006 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.002 |
5 | 0.18 | 0.20 | 0.17 | 0.17 | 0.17 | 0.18 | 0.010 | 0.11 | 0.10 | 0.11 | 0.11 | 0.10 | 0.11 | 0.005 |
6 | 0.08 | 0.10 | 0.09 * | 0.08 | 0.06 | 0.08 | 0.012 | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.002 |
7 | 0.24 | 0.13 | 0.11 | 0.22 | 0.16 | 0.17 | 0.049 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.002 |
8 | 0.16 | 0.14 | 0.14 | 0.11 | 0.12 | 0.13 | 0.017 | 0.06 | 0.06 | 0.07 | 0.05 | 0.07 | 0.06 | 0.007 |
9 | 0.24 | 0.22 | 0.11 | 0.17 | 0.19 | 0.19 | 0.044 | 0.11 | 0.13 | 0.15 | 0.12 | 0.23 | 0.15 | 0.043 |
10 | 0.05 | 0.04 | 0.04 | 0.06 | 0.06 | 0.05 | 0.007 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.04 | 0.002 |
Mean of column above | 0.13 | 0.028 | Mean of column above | 0.08 | 0.008 | |||||||||
Standard Deviation of column above | 0.064 | 0.032 | Standard Deviation of column above | 0.035 | 0.011 |
# Subject | SNR sEMG Sensor System [dB] | SNR Pre-Gelled Electrodes [dB] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial1 | Trial2 | Trial3 | Trial4 | Trial5 | Mean | STD | Trial1 | Trial2 | Trial3 | Trial4 | Trial5 | Mean | STD | |
1 | 29.32 | 25.62 | 50.75 | 37.47 | 26.1 * | 33.84 | 9.46 | 32.19 | 38.73 | 37.39 | 34.12 | 35.20 | 35.53 | 2.32 |
2 | 12.83 | 13.79 | 26.82 | 17.54 | 11.29 | 16.45 | 5.58 | 26.51 | 26.52 | 27.26 | 36.70 | 39.61 | 31.32 | 5.66 |
3 | 24.68 | 37.59 | 37.12 | 38.49 | 25.84 | 32.74 | 6.14 | 50.51 | 62.80 | 58.61 | 67.93 | 64.77 | 60.92 | 6.02 |
4 | 13.6 * | 16.46 | 11.68 | 9.91 | 17.11 | 13.76 | 2.75 | 28.87 | 29.70 | 28.82 | 29.35 | 30.92 | 29.53 | 0.77 |
5 | 54.93 | 36.45 | 62.44 | 35.59 | 31.02 | 44.09 | 12.29 | 49.54 | 42.83 | 46.53 | 46.33 | 45.54 | 46.15 | 2.15 |
6 | 17.66 | 26.18 | 5.59 * | 18.03 | 17.99 | 17.09 | 6.59 | 17.96 | 16.30 | 18.18 | 18.50 | 17.78 | 17.75 | 0.76 |
7 | 71.15 | 32.19 | 9.76 | 28.18 | 40.44 | 36.34 | 20.10 | 45.83 | 46.35 | 44.78 | 46.90 | 46.93 | 46.16 | 0.80 |
8 | 26.75 | 57.81 | 20.46 | 28.40 | 32.18 | 33.12 | 12.91 | 30.59 | 29.21 | 36.21 | 25.10 | 34.39 | 31.10 | 3.92 |
9 | 58.70 | 57.51 | 26.65 | 42.97 | 52.34 | 47.64 | 11.87 | 31.59 | 37.29 | 41.18 | 34.90 | 65.77 | 42.14 | 12.22 |
10 | 12.97 | 13.70 | 4.08 | 11.13 | 8.55 | 10.08 | 3.49 | 10.87 | 11.47 | 11.90 | 11.83 | 11.12 | 11.44 | 0.40 |
Mean of column above | 28.52 | 9.11 | Mean of column above | 35.2 | 3.50 | |||||||||
Standard Deviation of column above | 12.53 | 5.02 | Standard Deviation of column above | 13.72 | 3.49 |
References
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinkensmeyer, D.J. JNER at 15 years: Analysis of the state of neuroengineering and rehabilitation. J. Neuroeng. Rehabil. 2019, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Durandau, G.; Farina, D.; Asin-Prieto, G.; Dimbwadyo-Terrer, I.; Lerma-Lara, S.; Pons, J.L.; Moreno, J.C.; Sartori, M. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. J. Neuroeng. Rehabil. 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Deaudelin, I.; Robichaud, L.; Rousseau, J.; Viscogliosi, C.; Talbot, L.R.; Desrosiers, J.; Group, B. Rehabilitation needs for older adults with stroke living at home: Perceptions of four populations. BMC Geriatr. 2007, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Cotton, R.J.; Rogers, J. Wearable Monitoring of Joint Angle and Muscle Activity. In 2019 IEEE 16th International Conference on Rehabilitation Robotics; IEEE: New York, NY, USA, 2019; pp. 258–263. [Google Scholar]
- Uswatte, G.; Giuliani, C.; Winstein, C.; Zeringue, A.; Hobbs, L.; Wolf, S.L. Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: Evidence from the extremity constraint-induced therapy evaluation trial. Arch. Phys. Med. Rehabil. 2006, 87, 1340–1345. [Google Scholar] [CrossRef]
- Patel, S.; Hughes, R.; Hester, T.; Stein, J.; Akay, M.; Dy, J.G.; Bonato, P. A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology. Proc. IEEE 2010, 98, 450–461. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. A Novel Approach to Ambulatory Monitoring: Investigation into the Quantity and Control of Everyday Walking in Patients with Subacute Stroke. Neurorehabil. Neural Repair 2011, 25, 6–14. [Google Scholar] [CrossRef]
- do Nascimento, L.M.S.; Bonfati, L.V.; Freitas, M.L.; Mendes, J.J.A.; Siqueira, H.V.; Stevan, S.L. Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [Google Scholar] [CrossRef]
- Klein, C.S.; Li, S.; Hu, X.G.; Li, X.Y. Editorial: Electromyography (EMG) Techniques for the Assessment and Rehabilitation of Motor Impairment Following Stroke. Front. Neurol. 2018, 9, 3. [Google Scholar] [CrossRef]
- Farina, D.; Negro, F. Accessing the neural drive to muscle and translation to neurorehabilitation technologies. IEEE Rev. Biomed. Eng. 2012, 5, 3–14. [Google Scholar] [CrossRef]
- Roy, S.H.; Cheng, M.S.; Chang, S.S.; Moore, J.; De Luca, G.; Nawab, S.H.; De Luca, C.J. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Folgado, D.; Nunes, F.; Almeida, J.; Sousa, I. Using Inertial Sensors to Evaluate Exercise Correctness in Electromyography-Based Home Rehabilitation Systems; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 797–809. [Google Scholar] [CrossRef]
- Manns, P.J.; Hurd, C.; Yang, J.F. Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton. J. Neuroeng. Rehabil. 2019, 16, 10. [Google Scholar] [CrossRef]
- Merletti, R.; Botter, A.; Troiano, A.; Merlo, E.; Minetto, M.A. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art. Clin. Biomech. 2009, 24, 122–134. [Google Scholar] [CrossRef]
- Clancy, E.A.; Morin, E.L.; Merletti, R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J. Electromyogr. Kinesiol. 2002, 12, 1–16. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Tong, K.Y.; Shin, H.; Li, S.; Zhou, P. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient. Front. Neurol. 2017, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Chen, X.; Lu, Z.Y.; Cao, S.; Wu, D.; Zhang, X. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 244–253. [Google Scholar] [CrossRef]
- Côté-Allard, U.; Gagnon-Turcotte, G.; Laviolette, F.; Gosselin, B. A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition. Sensors 2019, 19, 2811. [Google Scholar] [CrossRef] [Green Version]
- Yamagami, M.; Peters, K.M.; Milovanovic, I.; Kuang, I.; Yang, Z.; Lu, N.; Steele, K.M. Assessment of Dry Epidermal Electrodes for Long-Term Electromyography Measurements. Sensors 2018, 18, 1269. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.M.; Liu, J.X.; Gong, Z.D.; Lei, Y.S.; OuYang, X.; Chan, C.C.; Ruan, S.C. Wearable Physiological Monitoring System Based on Electrocardiography and Electromyography for Upper Limb Rehabilitation Training. Sensors 2020, 20, 4861. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, P.; Huang, H.J. Dry Epidermal Electrodes Can Provide Long-Term High Fidelity Electromyography for Limited Dynamic Lower Limb Movements. Sensors 2020, 20, 4848. [Google Scholar] [CrossRef] [PubMed]
- Lynn, P.A.; Bettles, N.D.; Hughes, A.D.; Johnson, S.W. Influences of electrode geometry on bipolar recordings of surface electromyogram. Med. Biol. Eng. Comput. 1978, 16, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Hogrel, J.Y.; Duchene, J.; Marini, J.F. Variability of some SEMG parameter estimates with electrode location. J. Electromyogr. Kinesiol. 1998, 8, 305–315. [Google Scholar] [CrossRef]
- Campanini, I.; Merlo, A.; Degola, P.; Merletti, R.; Vezzosi, G.; Farina, D. Effect of electrode location on EMG signal envelope in leg muscles during gait. J. Electromyogr. Kinesiol. 2007, 17, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Mesin, L.; Merletti, R.; Rainoldi, A. Surface EMG: The issue of electrode location. J. Electromyogr. Kinesiol. 2009, 19, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakonen, M.; Piitulainen, H.; Visala, A. Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control 2015, 18, 334–359. [Google Scholar] [CrossRef] [Green Version]
- Besomi, M.; Hodges, P.W.; Van Dieen, J.; Carson, R.G.; Clancy, E.A.; Disselhorst-Klug, C.; Holobar, A.; Hug, F.; Kiernan, M.C.; Lowery, M.; et al. Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. J. Electromyogr. Kinesiol. 2019, 48, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.M.; Liu, S.H.; Wu, X.H. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection. Sensors 2012, 12, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Sethi, A.; Ting, J.; Allen, M.; Clark, W.; Weber, D. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review. J. Hand Ther. 2020, 33, 180–187. [Google Scholar] [CrossRef]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 16. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Kuznetsov, M.; Gilmore, L.D.; Roy, S.H. Inter-electrode spacing of surface EMG sensors: Reduction of crosstalk contamination during voluntary contractions. J. Biomech. 2012, 45, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Disselhorst-Klug, C.; Williams, S. Surface Electromyography Meets Biomechanics: Correct Interpretation of sEMG-Signals in Neuro-Rehabilitation Needs Biomechanical Input. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef]
- Visconti, P.; Gaetani, F.; Zappatore, G.A.; Primiceri, P. Technical Features and Functionalities of Myo Armband: An Overview on Related Literature and Advanced Applications of Myoelectric Armbands Mainly Focused on Arm Prostheses. Int. J. Smart Sens. Intell. Syst. 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- von Werder, S.; Disselhorst-Klug, C. The role of biceps brachii and brachioradialis for the control of elbow flexion and extension movements. J. Electromyogr. Kinesiol. 2016, 28, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Disselhorst-Klug, C.; Schmitz-Rode, T.; Rau, G. Surface electromyography and muscle force: Limits in sEMG-force relationship and new approaches for applications. Clin. Biomech. 2009, 24, 225–235. [Google Scholar] [CrossRef]
- Sinderby, C.; Lindström, L.; Grassino, A.E. Automatic assessment of electromyogram quality. J. Appl. Physiol. 1995, 79, 1803–1815. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero Avila, E.; Junker, E.; Disselhorst-Klug, C. Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users. Sensors 2020, 20, 7348. https://doi.org/10.3390/s20247348
Romero Avila E, Junker E, Disselhorst-Klug C. Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users. Sensors. 2020; 20(24):7348. https://doi.org/10.3390/s20247348
Chicago/Turabian StyleRomero Avila, Elisa, Elmar Junker, and Catherine Disselhorst-Klug. 2020. "Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users" Sensors 20, no. 24: 7348. https://doi.org/10.3390/s20247348
APA StyleRomero Avila, E., Junker, E., & Disselhorst-Klug, C. (2020). Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users. Sensors, 20(24), 7348. https://doi.org/10.3390/s20247348