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Abstract: Telemedicine and all types of monitoring systems have proven to be a useful and low-cost
tool with a high level of applicability in cardiology. The objective of this work is to present an
IoT-based monitoring system for cardiovascular patients. The system sends the ECG signal to a Fog
layer service by using the LoRa communication protocol. Also, it includes an AI algorithm based
on deep learning for the detection of Atrial Fibrillation and other heart rhythms. The automatic
detection of arrhythmias can be complementary to the diagnosis made by the physician, achieving a
better clinical vision that improves therapeutic decision making. The performance of the proposed
system is evaluated on a dataset of 8.528 short single-lead ECG records using two merge MobileNet
networks that classify data with an accuracy of 90% for atrial fibrillation.
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1. Introduction

Cardiovascular diseases (CVD), such as high blood pressure, ischaemic heart disease or
arrhythmias, are currently the leading cause of death in the world [1]. In Spain, 28.30% of deaths were
related to CVD, according to the latest report published by the National Institute of Statistics (INE) on the
causes of death in 2018 (https://www.ine.es/dynt3/inebase/es/index.htm?padre=6177&capsel=6179).

According to the European Society of Cardiology (ESC), “The clinical specialty of cardiology
provides expert care for patients with heart and circulatory diseases” [2]. The cardiology service,
one of the most demanded in the healthcare centers, has suffered very substantial changes caused by
the current pandemic of COVID-19. For instance, in outpatient care, telematic consultation became
very important at a time when it was necessary to suspend face-to-face appointments. To address
this challenge, healthcare centers had to incorporate telemedicine systems, specifically telecardiology
systems, which proved to be a useful and low-cost tool with a wide range of applications. In addition to
providing support in the current pandemic situation, telecardiology supports those rural communities
that are far from urban areas and lack specialized medical services.

In telecardiology systems, the primary diagnostic tool is the electrocardiogram (ECG),
which represents the standard method for evaluating patients with cardiovascular disorders (rhythm
or conduction disorders). [3]. In a conventional 12-lead ECG device, the electrical potentials of the
heart are measured using 10 Ag/AgCl electrodes that are attached to different parts of the body
surface [4]. Several monitoring systems are available on the market to record the ECG signal and send
it to an analysis station. These systems include conventional devices for non-invasive monitoring such
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as the Holter or external cardiac event recorders [5]. However, monitoring systems have progressively
introduced new devices for ECG capture that incorporate more comfortable and less intrusive sensors,
known as wearable ECG monitoring systems [6,7]. Although now available, these systems were
typically designed for recreational purposes and clinical experience remains limited. Therefore, there is
still a demand for an easy-to-use, low-cost monitoring system that reduces diagnostic time and prevents
the patient from travelling to the health center. In this case, the Internet of Things (IoT) could be the
key to developing a wearable ECG monitoring system.

The IoT is a network of physical objects or devices that uses sensors and APIs to connect and
exchange data over the Internet [8,9]. It makes it possible to share information in real time and
also to collect and analyze data on a small and large scale, something that is already transforming
the way medicine is organized and conceived. Currently, most interactions between a physician
and a patient require equipment and devices, including external medical devices, such as glucose
monitors; implanted, such as pacemakers; or stationary, such as home monitoring devices and scanners.
Providing connectivity to these devices makes it possible to create an infrastructure of health systems
and services: the internet of medical things (IoMT) [10]. The IoMT explosion is being driven by an
increase in the number of connected medical devices that can generate, collect, analyze or transmit
health data and connect to health care provider networks, transmitting or storing data in the cloud or
internal servers.

The large-scale development of more efficient IoT and IoMT applications has been made possible
thanks to the emergence of new hardware technologies such as radio frequency identification (RFID),
wireless network technologies (Bluetooth, Wi-Fi, low energy ZigBee) and low energy wireless area
network (LPWAN) technologies such as LoRa and SigFox, which help improve the connection of
devices to the Internet.

Intelligent devices generate an enormous amount of IoT data that must be analyzed and exploited
in real time, so artificial intelligence (AI) tools are required to process and give context to this data in
order to generate actions without human intervention. AI algorithms can make more accurate and
comprehensive diagnoses by offering personalized treatments. For instance, automatic ECG diagnosis
has been studied for decades. In the early years, machine learning techniques were applied, such as
fuzzy set theory [11], rough set theory [12], Hidden Markov models [13], artificial neural network [14]
and Support Vector Machine [15]. However, the trend in automatic diagnosis points to the use of deep
learning, which attempts to model high-level abstractions in data by using computer architectures
that support multiple, iterative, non-linear transformations of data expressed in matrix or tensor form.
This new automatic learning paradigm has opened the door to countless applications in the field of
automatic diagnostic [16,17].

Many of these applications usually run on web servers that analyze the information sent by each
of the devices. This massive sending of data causes a delay in the reception of the results, so the
analysis can be done through a three-layer architecture. The first layer is the analysis embedded in the
device, which is known as Edge Computing. The second layer is a Fog computing service that offers
low latency and fast response time for healthcare applications [18].The third layer is the Cloud.

In this paper we propose a monitoring system for patients with cardiovascular diseases,
specifically arrhythmias, equipped with an ECG device. The system is capable of sending the ECG
signal to a service located in the Fog layer using the LoRa communication protocol. In addition,
it includes a deep learning-based AI algorithm to help the physician make the diagnosis. This tool
automatically classifies single short ECG lead records for the detection of Atrial Fibrillation and other
heart rhythms. This monitoring system could be especially interesting for patients who live in rural
areas or those who require telematic assistance during pandemics, such as the current COVID-19,
since it allows the acquisition of bio-signals remotely and avoids the need for a face-to-face consultation.
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2. State of the Art

ECG signal monitoring is a major concern in cardiovascular health care. In fact, many CVDs
can be better diagnosed, controlled, and prevented through continuous monitoring systems.
Currently, new technologies are being integrated into the development of ECG monitoring systems to
provide efficient, cost-effective, fully connected and powerful systems. In this section we present the
most relevant and related works that approach the same domain or characteristics, highlighting their
contributions to the state of the art.

Holter-based ECG monitoring is the traditional monitoring system used in clinical practice.
A Holter monitor is a 12-lead medical device connected to the patient’s body through electrodes that
records heart rhythms continuously for 24 or 48 h [19]. The patient carries the Holter in a pocket
or a bag placed around the neck or waist. After the established period for registration, the monitor
is returned to the physician for analysis of the collected data. It is catalogued as a wearable and
continuous monitoring device, since it enables the correct diagnosis of some CVD’s that may go
unnoticed due to the absence of symptoms.

The current COVID-19 pandemic scenario has had an enormous impact on healthcare around the
world, leading to a growing demand for remote health care that has accelerated the implementation
of new monitoring systems to reduce the workload in a saturated healthcare system [20]. These new
ECG monitoring systems are based on two types of emerging technologies: Monitoring devices and
enabling technologies.

There are a great number of devices for ECG monitoring systems that can be classified as
mobile devices, wearable devices and sensor devices, being the smartphone the most relevant device.
For instance, Kailas et al. [21] developed a device that monitors heart activity, which is easy to operate
and non-invasive. In addition, the power supply is supplemented by the energy harvesting from the
mobile phone via the audio jack. It is also noteworthy that the incorporation of smart phones into
monitoring systems has improved the acquisition and transmission of medical information. In this
regard, Mahmud et al. [22] presented a prototype of a wireless health monitoring system to capture
ECG and heart rate in real time using a smart phone case.

In ECG monitoring systems, enabling technologies support ECG processes, such as preprocessing,
processing, storage, analysis and display of ECG signals. These technologies include IoT and
Cloud/Fog computing.

Many of the studies related to IoT-based ECG monitoring systems evaluate the use IoT devices
to capture ECG signals that are transmitted in real time over the Internet to the physician [23,24].
Nevertheless, other studies besides incorporating IoT devices, focus on improving data acquisition
and processing. In this sense, Sundarasekar et al. [25] proposed the use of Maximal Overlap
Discrete Wavelet Transform to decompose the ECG and identify changes in the R waves of the
noisy signals. Similarly, Djelouat et al. [26] incorporated Compressive Sensing in an IoT-based ECG
monitoring platform to leverage the ECG signal structure and achieve high efficiency in the acquisition.
In addition, the platform provides an abnormality detection for each heart beat using different pattern
recognition algorithms.

Many of these systems are not only used for monitoring elderly people, there are military
applications that use these technologies in order to monitor soldiers in combat. Jethwa et al. [27]
developed a system for monitoring the health of soldiers, which allows for the tracking of information
from the war zone on the health status of each soldier. The system helps to improve the speed of
decision-making and can prevent potential problems affecting soldiers’ health. Another important
feature of the system is its low power consumption, due to the use of the LoRa module for data
transmission instead of the high power consumption GSM/GPRS modules. There are also conceptual
designs for an application in which the ECG will be monitored and transmitted via the LoRa to a
remote location. Panagi et al. [28] mention that this is one of the most distinctive features that makes
the LoRa an attractive technology for this application. It is the low implementation cost, the ease of
implementation, the long area coverage and the acceptable transmission rate for the ECG. The authors
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identified several key components for the LoRa node that can be integrated into a small unit that will
favour portability, scalability and ease of use. The authors focused on the development of the LoRa
node and on performing functional tests with it to verify and characterize its performance.

Regarding Cloud Computing, some studies proposed the use of this infrastructure to provide
storage and processing resources over the internet [29,30]. In this way, ECG signal processing is
optimized and the cost of data transmission in ECG monitoring systems is reduced. Later, with the
integration of monitoring systems to the cloud, and the use of Big-Data [31] as a tool for analysis
and storage, it has been necessary to introduce intermediate stations in order to reduce high-power
consumption. This can be improved by reducing the sending of data and processing it locally on the
same devices, such as Fog devices.

Fog computing extends the cloud by migrating data processing closer to the production
site, thereby accelerating the system’s responsiveness to events. The Fog infrastructure allows the
management of multiple data from IoMT devices that send the information to the Fog node reducing
the latency, response time or data delay [32–34]. Several low-cost applications using IoT and Fog
devices can be found in the literature in order to streamline diagnostics. Gia et al. [35] proposed a Low
Cost Health Monitoring (LCHM) model to gather the health information of different heart patients.
The sensor nodes monitor and analyse the ECG signals to efficiently process the data of the cardiac
patients, however the response time of the LCHM is longer which reduces the performance. Each of
the sensor nodes acquires ECG, respiratory rate and body temperature, and then transmits this data to
an intelligent gateway, which communicates wirelessly with the system to analyze the information
and make an automatic decision. Mutlag et al. [36] developed a Multi-Agent Fog Computing (MAFC)
model for healthcare critical tasks management, which significantly manages Fog computing resources
by providing two levels of task prioritization (local and global). The MAFC model mapped between
three decision tables to optimize the scheduling of critical tasks by assigning tasks with their priority,
network load and network resource availability. He et al. [37] proposed a system to address the
complexity and high number of personalized services in large-scale IoT-based healthcare applications.
The framework, called FogCEPCare, used a set of custom services that work proactively using the
complex event processing architecture of cloud computing. Bandopadhaya et al. [38] presented an
integrated health monitoring system based on IoT and distributed computing for deployed soldiers.
The proposed IoT architecture was service-oriented in three layers, where the computing functionalities
were distributed among all the layers in order to improve the security of the soldier and to obtain a
fast response to any unexpected event

Cost reduction and communication efficiency are also an extremely important purpose of many
monitoring systems. That is why some IoT-based monitoring systems include low-cost computer
board such as the Arduino, as a signal acquisition tool, and the Raspberry Pi, as a Fog Computing
tool. However, a new wireless transmission board has emerged on the market, the LoRa ESP-32,
which allows data to be communicated over very long distances with low power consumption and
could be used in health monitoring systems. In fact, some researchers have already proposed its use
for monitoring people in adverse situations. For instance, Tayeh et al. [39] proposed a decentralized
emergency alert system based on LoRa devices, which allow to automatically identify and locate a
victim in areas without network coverage. The system consists of an intelligent clock that is used to
obtain the user’s heart rate and physical activity, an IoT device with a GPS that transmits an alert
through the LoRa device when the clock is activated, and finally a smartphone that displays the alert
along with the victim’s location and address. This system was tested in a remote area located in the city
of Belfort in France. Shobha et al. [40] presented a system based on the LoRa to track the movement
of people in rural areas, forest areas and hiking sites. The authors highlight the low consumption of
the battery, which makes it durable and suitable for long-term monitoring. They also point out the
versatility of the LoRa, since it supports two-way communication, which is useful for rescuing people
in emergency situations.



Sensors 2020, 20, 7353 5 of 19

There is still a long way to go to achieve monitoring systems with complex computer requirements
that are energy efficient and low cost. We aim to close the gap by presenting a prototype of a monitoring
system for cardiovascular patients that includes new technologies such as IoT, Fog Computing,
and deep learning to provide a cost effective, fully connected, and powerful ECG monitoring system.

3. Problem Description

For the next few years, in European countries, a progressive and important increase in
cardiovascular pathology is expected due to the aging of the population, the increase in the presence
of risk factors (smoking, obesity or sedentary life) and improvements in the quality of treatments with
the consequent chronification of the disease [41]. For this reason, CVD continue to be a health priority
that justifies and makes it essential to monitor them.

Cardiac arrhythmias are one of the diseases most often treated by the clinical cardiologist.
Atrial fibrillation (AF) is the most common cardiac rhythm disorder among the population and
its incidence and prevalence are progressively increasing worldwide, especially in developed
countries [42]. For instance, in European countries, it is estimated that 1–3% of the adult population
is diagnosed with AF, exceeding 15% in people aged 80 or over [43]. While normal sinus rhythm,
manifests as a single electrically activated wave front that propagates from the atria to the ventricles,
AF is characterized by the presence of multiple errant wave fronts with different patterns of propagation
that may be asymptomatic or result in symptoms such as palpitations, dyspnea and dizziness [42].
This causes characteristic elements to appear in the ECG signal such as discrete lack of P waves [44],
as shown in Figure 1. Therefore, detection of AF can be problematic, even more when episodic
occurrences of the arrhythmia are observed.

Figure 1. Samples of 1 lead electrocardiogram (ECG) records contained in the dataset of the 2017
Computing in Cardiology Challenge (https://www.physionet.org/content/challenge-2017/1.0.0/).
From top to bottom, ECG with Normal Rhythm and Atrial Fibrillation.

Consequently, the detection and treatment of this pathology requires continuous monitoring.
However, the european health care model is oriented towards individualized attention, and is still not
efficient for the high demand of chronic patients who make extensive use of health resources and need
intensive and continuous monitoring. In addition, in the current pandemic situation, Nishiga et al. [45]
report that chronic cardiovascular patients are at greater risk of suffering from COVID-19, having severe
conditions with worse evolution and even death, so it is very necessary for them to follow the treatment
of their disease through telematic consultation.

https://www.physionet.org/content/challenge-2017/1.0.0/
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The monitoring of these patients optimizes and controls the fulfillment of treatments,
thus preventing costly hospitalizations. Frequently, this follow-up takes place in the medical practice,
although the current trend is to refer them to home care based on remote consultation through
a telecardiology system [46], specially for those living in rural areas where access to primary or
specialized medical services, such as cardiology, is often complicated by limited health, technical and
human resources.

Telecardiology allows primary care health workers to interact in real or deferred time with
cardiologists to avoid transfers and resolve emergencies. The primary care physician determines the
need to conduct a telecardiology consultation for the patient based on the patient’s medical record,
complete physical examination, and laboratory tests. If the patient agrees to deferred or real-time
reporting, he or she will need to sign the informed consent form. In the medical office, the signals
and images are acquired with the appropriate equipment and sent through a telecommunications
network to the cardiologist. Once the cardiologist has received the information, it is displayed on a
screen to be able to examine it and issue a diagnostic opinion, in order to suggest the most convenient
specialized treatment. The technology used in a telecardiology consultation is a combination of
portable diagnostic devices (e.g., ECG ), computer/intelligent phone and wireless communication
infrastructure, which requires a stable data transmission network [46,47]. The transmitted data can
be stored at a receiving station for immediate or later processing and examination. In cardiology,
a wide range of invasive and non-invasive variables are used, and most of them can be recorded
manually by the patients themselves (e.g., blood pressure, heart rate, three-lead ECG, body weight,
or oxygen saturation).

Currently, the telecardiology method proposed in the context of the remote ECG monitoring
system is designed and developed for patients who do not necessarily require their presence at home.
The trend in these systems is to have intelligent wearable devices capable of detecting situations
of sudden falls, cardiac abnormalities, and hypertension/hypotension. therefore they are suitable
for real-time monitoring, auto-diagnosis and remote diagnosis [48]. We believe that it is necessary
that these type of systems should have the following features: (1) low cost and easy to use devices
for the registration of bio-signals, especially the ECG; (2) automatic analysis tools supported by AI,
that help the physician to diagnose, or notify the health center in case of a critical episode of the disease;
(3) communications protocols that allow sending the information quickly and efficiently (Figure 2).
In this way, it would be possible to intervene quickly with the activities carried out by the patient.
All this thanks to the two-way communication that the system has.

Figure 2. A general view of the problem description.
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4. System Architecture

This section describes the architecture of the proposed monitoring system which has been
structured in three levels as a typical generalized architecture of Fog computing [49–51] as can be seen
in Figure 3.

1. Physical level (Level 1): formed of physical devices like the ECG device, in addition to other
devices for capturing other bio-signals such as photoplethysmography (PPG), oxygen saturation
(SpO2), phonocardiography (PCG) or temperature. These devices include an analog-to-digital
conversion (ADC) system and a LoRa communication protocol for the transmission of the
captured signals.

2. Fog Level (Level 2): is a middle level which consists of Fog computing elements typically called
Fog nodes. In this case, these nodes includes software tools like deep learning algorithms and
AI-Fog devices, which are responsible for analysing the ECG signal and also, the rest of signals,
classifying them and making an auto-diagnosis.

3. Cloud Level (Level 3): The top level is a cloud layer constituted of needed cloud services or
applications. In this case, this level involves health centers, hospitals and any related clinical
service. These services receives alerts from the second level if some kind of cardiac anomaly is
detected. If this is the case, the device sends the auto-diagnostic (pre-analysis) along with the
data acquired, allowing the top level services to analyze the problem in depth.

The pillars of Fog architectures are security, scalability, openness, autonomy, reliability, agility,
hierarchical organization and programmability. Moreover, the Fog Architecture defines the required
infrastructure to enable building Fog as a Service (FaaS) to address certain classes of business
challenges [51].

Figure 3. System architecture.

Fog architecture is a very promising technology that brings processing resources closer to the
place where the data is generated, in our case the ECG acquisition, thus providing low latency
and energy efficiency. This paper focuses on the description of the first two levels of the proposed
architecture, since they constitute the core of the system. The information provided by these levels can
be incorporated by services at the Cloud level provided by third parties and is outside the scope of
this paper. According to this, the following sections will describe in detail the physical and Fog levels.

4.1. Physical Level

The physical layer actually consists of a set of capture devices to gather data on health-related
signals to diagnose cardiovascular diseases. The data collected is then transmitted to the center fog layer
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to make the processing and prediction in real time. According to this, this section mainly describes
the proposed equipment for capturing, pre-processing, transmission and analysis of bio-signals,
specially the ECG.

The layer for capturing and pre-processing the ECG signal is divided into three stages. The first
stage is responsible for capturing the ECG. This stage integrates a differential amplifier instrument
AD8232, which is responsible for amplifying the heart signal by raising the amplitude from milli-volts
(mV) to approximately 3.3 volts. The second stage includes an analog-to-digital converter ADS1115
that transforms the analog signal coming from the AD8232 to its corresponding digital value (with a
16-bit resolution) (Figure 4 shows the proposed architecture while Figure 5 shows how the hardware
is deployed).

Figure 4. Architecture of Level 1.

In the stage three, the digital value corresponding to the amplified analog signal is transmitted
to a ESP-32 board via an I2C protocol. This board is responsible for receiving the ECG data and
transmitting it to the Fog device using a built-in SX1276 LoRa chip. The data structure with LoRa
protocol is shown in the Figure 6.

LoRa is a LPWAN protocol integrated into devices with limited power (e.g., battery powered)
and transmission of a few bytes at a time. LPWAN technologies have been developed to enable new
human-centered wireless and health monitoring applications [52]. In these devices the data traffic
can be initiated by the end-user device or by an external entity that wants to communicate with the
end-user device [53,54]. LPWAN and its open protocol LoRaWAN® has become the solution for many
applications, featuring some of 5G’s strengths that allow it to take advantage of an open standard and
a thriving global ecosystem. A LoRa device has high range of communication that can easily reach
more than 10 km, being greater than that offered by Bluetooth®, Wi-Fi or the 5G mm. Also, it operates
in the 900 MHz ISM (Industrial Scientific and Medical) band with a data rate between 0.3–50 Kb/s.
Although the data rate could be acceptable for the transmission of signals such as ECG [55], we do
not use real-time data transmission in our system. In this sense, the data is stored for a period of time
(1 min approx) and then transmits it to the Fog module for classification.

The data structure used in sending the ECG to the Fog node converts the signal into an image.
This image is analyzed by the second level, in order to determine if the user has any cardiac anomaly.
This will be explained in next section.
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Figure 5. Hardware Deployment.

Figure 6. The data structure employed by ESP-32 to send the signal.

4.2. Fog Level

This second level is responsible for handling all incoming data generated on the first level and
processing it to determine if there is an arrhythmia in the ECG recording.

The Hardware part of this level is formed by a low-cost raspberry pi system. This system will be
in charge of the ECG data classification process.

However, this system does not have the necessary computing power to execute deep learning
models, so it was necessary to incorporate a co-processor, such as Intel Neural Compute Stick 2
(NCS 2) (Figure 7), which decreases the classification time. The Intel NCS 2 is aimed at cases where
neural networks must be implemented without a connection to cloud-based computing resources.
It offers quick and easy access to deep-learning capabilities, with high performance and low power
for integrated IoT applications, and affordably accelerates applications based on MobileNet [56] and
computer vision.
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Figure 7. Fog-artificial intelligence (AI) System.

At the end of the process, the raspberry pi system is connected to a WAN network, which can
be wired, 4G or 5G. In this case, we used a 4G USB modem, which allows the system to send the
information obtained from the patient to a hospital, clinic or health center, to be analyzed by the
doctor. The use of a wireless system for sending data packages gives the system the ability to be placed
anywhere in the city.

For the classification process we used a MobileNet network, a computer vision model for the open
source platform TensorFlow. MobileNets are small, low-latency, low-power models that can be used
for classification, detection, embeddings and segmentation processes. These models were designed
to operate quickly with high accuracy in a resource-constrained environment, such as a device or an
integrated application. For our system, we designed two MobileNets which were trained in the cloud
and later embedded in the raspberry pi.

For the classification, it was considered to group the ECG signals into four classes of rhythm
patterns: Normal sinus rhythm (Nsr), Atrial fibrillation (Af), Other rhythm (Or) and Too noisy to classify
(No), based on the data set of the 2017 Computing in Cardiology Challenge (https://www.physionet.
org/content/challenge-2017/1.0.0/). The data set contains 8528 short (9–60 s long) and single-lead
ECG recordings donated by AliveCor. ECG recordings were acquired and band pass filtered by the
Kardia device Mobile™. All data were provided in MATLAB V4 WFDB-compliant format.

The extraction of features that determine the class of each signal was done by applying analysis
in the time and frequency domain.

4.3. Time Domain Signal Analysis

To achieve this classification process, it was decided to convert the ECG signals into images.
First, it was necessary to perform a series of image pre-processing steps to remove all the axis in the
image, as well as crop the image by extracting the area of interest (Figure 8).

The next step was to resize the image from 1500 × 600 to 224 × 224 pixels, since to train the
MobileNet is necessary that all the images have the same size (224 × 224). The designed MobileNet
has the following hyperparameters: Epochs: 70, batch size: 512, learning rate: 0.001. In the training
process, the test accuracy was about 0.6 due to the limited amount of dataset samples. The MobileNet
was validated by using a confusion matrix (see Figure 9) built from 100 non-used images from the
original dataset. In the confusion matrix it can be seen that in most cases the classification is done
correctly, although it should be noted that 18% of the images belonging to the class Or, have been
classified as Af. This is a slightly elevated value for a false negative, the normal for this case is that the
value should be close to 0. Table 1 summarises the accuracy values of the classification process in the
time domain. For class Af the accuracy is 87%, which suggests that our model works well enough in
the classification process.

https://www.physionet.org/content/challenge-2017/1.0.0/
https://www.physionet.org/content/challenge-2017/1.0.0/
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Figure 8. Extraction of the area of interest from the image.

Figure 9. Confusion matrix of time domain.

Table 1. Accuracy for each class in time domain. Samples used are the same ECG signals converted
into images.

Class Accuracy (%) Number of Samples

Atrial fibrillation (Af) 87 100
Normal sinus rhythm (Nsr) 80 100
Too noisy to classify (No) 88 100

Other rhythm (Or) 75 100

4.4. Analysis of Signals in the Frequency Domain

Taking into account the possibility of improving the classification, it is proposed to carry out
the analysis of the signals in the frequency domain. In this sense, another MobileNet network was
built with the same characteristics of the analysis in time. To analyze the ECG signal in the frequency
domain, the spectrum of the frequency components was used, showing how the signal’s energy is
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distributed over a range of frequencies. Figures 10 and 11 show the frequency content of an ECG signal
with normal rhythm and with atrial fibrillation respectively.

Figure 10. Spectrum of ECG signal with normal rhythm.

Figure 11. Spectrum of ECG signal with atrial fibrillation.

The same pre-processing steps for time domain images were performed for the classification with
spectrum images. As a result of this classification process, the confusion matrix was extracted using
the data for validation. The confusion matrix obtained using 81 non-used images from the original
dataset, the result of this process can be seen in the Figure 12. In this case, in the confusion matrix
obtained in the classification process using the spectrogram images, it can be observed that in 20% of
the cases the system classifies the input as class No when it should be class Nr. This value is excessively
high, although the values of the correct classifications are more than acceptable.
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Figure 12. Confusion matrix of frequency domain.

Nevertheless, Table 2 summarises the accuracy values of the classification process in the frequency
domain. For class Af the accuracy values was 70%. In this case, a lower accuracy value for class Af
may be due to the color uniformity of the images. However, it is a good classification result and an
indicator of the correct performance of the proposed model.

Table 2. Accuracy for each class in frequency domain.Samples used are the same ECG signals converted
into images.

Class Accuracy (%) Number of Samples

Atrial fibrillation (Af) 70 100
Normal sinus rhythm (Nsr) 85 100
Too noisy to classify (No) 60 100

Other rhythm (Or) 81 100

Considering that two MobileNet networks have been used to analyze two types of images,
the result obtained from the classifications is considered acceptable. In both cases we obtained
percentages of classification that did not go below 60% of accuracy. The next step was to merge
these two networks and from this union the real class associated to the input image was extracted.
This process is explained in the following subsection.

4.5. Merging Process of the Two Classifications

The result of these two networks makes it possible to have a better classification, which would
be similar to having the opinion of two different doctors who analyze the same signal with different
methods. Consequently, we merge the output of the two MobileNets, the one that analyzes the signals
in the time domain (MobileNet-1) and the other that analyzes the signals in the frequency domain
(MobileNet-2). This is done in order to obtain a more solid decision about which is the real class.
To obtain this output we use the following equation:

cvd_classi f ied = argmax([θ1] ∗ α1 + [θ2] ∗ α2) (1)

where cvd_classi f ied denotes the final result of the classification. α1 is the output that analyzes the
signals in the time domain and is a probability vector in which the probability of being one of the four
classes is expressed. α2 is also a probabilistic vector but represents the output of the MobileNet-2 which
performs the classification in the frequency domain. θ1 and θ2 are the weights for the MobileNet-1 and
MobileNet-2 classifiers respectively (Figure 13).
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Figure 13. Merging process of the two classifiers.

For the merging process, the dataset was divided into three parts, following the distribution
standards when using neural networks: 80% for training, 10% for testing and 10% for validation.

Figure 14 shows the confusion matrix obtained from the merging process and Table 3 summarizes
the accuracy values of the merging process. For class Af the accuracy values was 90%. This allows us
to infer that the combination of the results obtained when analyzing the signals in time and frequency,
gives better results than when analyzing the signals separately.

Figure 14. Confusion matrix of merge process.

Table 3. Accuracy for each class in merge process. Samples used are the same ECG signals converted
into images.

Class Accuracy (%) Number of Samples

Atrial fibrillation (Af) 90 100
Normal sinus rhythm (Nsr) 89 100
Too noisy to classify (No) 92 100

Other rhythm (Or) 95 100

To illustrate the classification process with a real case, a healthy patient’s ECG (without cardiac
arrhythmia) was recorded for one minute. The ECG was captured over an entire day using
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the device described in this document. The signals were captured at intervals of 5 min each.
Accordingly, about 200 images were obtained during the testing process. Once the signals were
captured and sent to the AI-Fog device, this transmission process took approximately 1 min and 3 s.

Later, the conversion of the images was performed, using the same pre-processing of the training
phase. The images were resized to (224 × 224) and the axes and magnitude values were eliminated
to avoid noise that interferes with classification process. Figure 15 shows an ECG signal obtained
from a healthy subject using the proposed monitoring system. In the generated input signal shown in
Figure 15, the system determined that the user had a Normal Sinus Rhythm, and the time it took the
system to perform this classification was 19 ms.

Figure 15. Pre-analysis of the signal was: Normal Sinus Rhythm. Waiting time for classification: 19 ms.
(No magnitudes are indicated to avoid noise to the neural network).

The results of the merged model indicate that this model seems to work correctly with all the
images tested, allowing the correct classification of the classes that were previously trained.

5. Conclusions and Future Work

The world is facing an alarming growth in cardiovascular disease due in part to an unhealthy
lifestyle. Thanks to the high level of sophistication that new technologies have reached in areas
such as informatics and telecommunications (e.g., IoT devices or AI techniques), effective solutions
can be developed to address this challenge. In this sense, we present a ECG monitoring system for
cardiovascular patients. The system incorporate a deep learning tool based on fog computing in order
to perform an early detection of Atrial Fibrillation and other heart rhythms.

The proposed approach was validated with a small group of elderly people from a day care center
near the city of Valencia (Spain). In this center, the necessary infrastructure was installed to simulate a
remote monitoring situation. Preliminary results indicated that the system is capable of identifying
abnormal heart rhythms. Similarly, the results obtained were evaluated by medical personnel without
any problems being detected in the use of the system.

Compared to traditional methods for signal analysis, the proposed method analyzes the ECG
in the time and frequency domain, obtaining two classification models that when merged improve
the accuracy of the procedure. Once the tests were completed, the model was incorporated into the
Fog system, which included an Intel NCS2 processor that optimizes the classification and speeds up
the process. It also incorporates a LoRa communication system, that compared to other transmission
methods such as Bluetooth or Zigbee, has a longer range and low power consumption. This makes it
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ideal for the design of portable devices. Once the network has been trained and the system sends the
ECG, the classification result can be obtained quickly.

Future work will initially focus on acquiring other bio-signals such as photoplethysmography,
phonocardiography or oxygen saturation. This will allow us to have other variables that increase the
quality of monitoring the cardiovascular patient and advise the specialized medical staff. At the same
time, we will continue, as far as possible, to carry out more tests, collaborating with a greater number
of elderly people and thus expanding the experiments carried out to date.
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