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Abstract: Nuclear magnetic resonance gyroscopes (NMRGs) may be operated in an environment with
violent vibration that usually contains both linear components and angular components. To analyze
the influence of angular vibration on an NMRG, cross-axis coupling effects are studied. The cross-axis
rotation rates induce an equivalent magnetic field. Its influence can be described by the Bloch equations.
The approximate frequency shift and amplitude of the spin oscillator with an equivalent magnetic
field in the cross-axis were obtained, which was validated by numerical simulation. The findings
show that the angular vibration component leads to a remarkable error for the NMRG. When the
angular vibration frequency is near the Larmor frequency, the oscillation frequency of the spins may
be locked to the angular vibration frequency, destroying the NMRG’s ability to measure rotation rates.
The cross-axis coupling problem should be considered in the design of an NMRG and corresponding
inertial navigation systems.

Keywords: nuclear magnetic resonance gyroscope; cross-axis coupling; magnetic field; rotation rate;
frequency shift

1. Introduction

A nuclear magnetic resonance gyroscope (NMRG) measures rotation rates through the detection of
the Larmor precession frequency of atomic spins in a static magnetic field [1–4]. Its physical foundation
can be traced back to the pioneering work done by Larmor in 1895, Rabi in 1938, Bloch et al. in
1946 [5,6]. Leete filed a patent application on NMRG in 1952, which was assigned to the General
Electric Company. Since then, several other companies conducted research on the NMRG. Both Singer
and Litton had demonstrated NMRG prototypes with navigation grade in the 1980s [7]. However,
compared with optical gyroscopes developed in the same period, the NMRG did not show enough
advantages. Therefore, research on the NMRG entered a low tide.

The turnaround took place in the 2000s when micro-fabrication technology became more and more
mature [7]. NMRGs have attracted considerable attention due to potential advantages including small
size, weight and power. It is believed that the NMRG is an ideal sensor for inertial applications, since it
has no mechanical part and is thus insensitive to mechanical shock and vibration [6–8]. The NMRG
has already achieved near navigation-grade performance with a volume of 10 cm3 [5], indicating a
bright prospect for mass applications.

The NMRG has the greatest sensitivity to the axis along the applied static field, but it can be
affected by cross-axis rotation rates as well [9,10]. That is, the NMRG is not a true single-axis gyroscope.
Physically, the NMRG is essentially a spin oscillator that is easily affected by a magnetic field, regardless
of it being a true or equivalent magnetic field [9–12]. The magnetic field shield suppresses the
external magnetic field but cannot suppress the equivalent magnetic field due to mechanical rotation.
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The cross-axis coupling effects for a cryogenic 3He gyroscope have been investigated in detail [9,10].
The relaxation time for 3He can be as long as 140 h, which makes the relaxation in the dynamical
equation of spins negligible, and the 3He gyroscope can be operated in an open-loop mode [10]. It was
clear that cross-axis rotation will degrade the performance of an NMRG. Recently, it was found that an
NMRG using 129Xe and 131Xe is easily miniaturized, which has attracted considerable attention [2].
However, the relaxation time of 129Xe and 131Xe is much shorter than that of cryogenic 3He. As a
result, it is better to operate such an NMRG in a closed-loop mode, where a feedback driving field is
applied [11]. Due to these differences, the previous analysis cannot be directly applied to miniature
NMRGs. Miniature NMRGs have been mainly developed for use in strap-down inertial navigation
systems, which not only need high precision but also a low cross-axis sensitivity [13]. Therefore, it is
important to analyze the cross-axis coupling effects in an NMRG based on 129Xe and 131Xe.

In this paper, we established a theoretical model for the spin oscillator to analyze the cross-coupling
effects in a 129Xe/131Xe NMRG. We find that these effects lead to a shift in the Larmor frequency, i.e.,
a measurement error in the NMRG. When the mechanical vibration contains a cross-axis rotation
component near the Larmor frequency, the error will be very large. Moreover, this may result in
the oscillation frequency being locked to the mechanical vibration rate, which destroys the NMRG’s
ability to measure the rotation rate. These results are of significance to the design of an NMRG and its
corresponding strap-down inertial navigation system.

2. Theoretical Analysis

2.1. Principle of an NMRG

An NMRG using 129Xe and 131Xe is, in fact, a dual-species spin oscillator, as is shown in
Figure 1 [1,11,14,15]. A vapor cell contains a mixture of gases, including 129Xe/131Xe, N2 and so on.
To obtain angular momentum from the pump light, an excess amount of 87Rb is filled into the vapor cell.
When heated, the 87Rb will vaporize and absorb pump light. The pump light is circularly polarized,
so each photon carries angular momentum equal to one } in the propagating direction. After taking in
the circularly polarized photons, the spin of the 87Rb atom will align along the z-direction, i.e., become
polarized. Through spin-exchange collisions, the angular momentum transfers from the 87Rb spins to
the 129Xe/131Xe nuclear spins. As a result, the 129Xe/131Xe nuclear spins become polarized and give rise
to a magnetization M. A linearly polarized probe light transmits through the cell and interacts with
the polarized 87Rb atoms. The polarization plane of the transmission light varies with the magnetic
field sensed by the 87Rb atoms. Therefore, the magnetization of the nuclear spins can be detected.
The output of the detector is sent to a signal processing system, which is used to obtain the magnetic
field in the x and y directions. The y-axis magnetization component My is amplified in the gain module,
shifted by a phase of Φ, and then applied to drive the X-coil. For an appropriate gain and phase shift,
the nuclear spins will precess continuously. More details for the NMRG can be found in [1].

Sensors 2020, 20, 734 2 of 12 

 

mechanical rotation. The cross-axis coupling effects for a cryogenic 3He gyroscope have been 
investigated in detail [9,10]. The relaxation time for 3He can be as long as 140 h, which makes the 
relaxation in the dynamical equation of spins negligible, and the 3He gyroscope can be operated in 
an open-loop mode [10]. It was clear that cross-axis rotation will degrade the performance of an 
NMRG. Recently, it was found that an NMRG using 129Xe and 131Xe is easily miniaturized, which 
has attracted considerable attention [2]. However, the relaxation time of 129Xe and 131Xe is much 
shorter than that of cryogenic 3He. As a result, it is better to operate such an NMRG in a closed-loop 
mode, where a feedback driving field is applied [11]. Due to these differences, the previous analysis 
cannot be directly applied to miniature NMRGs. Miniature NMRGs have been mainly developed 
for use in strap-down inertial navigation systems, which not only need high precision but also a 
low cross-axis sensitivity [13]. Therefore, it is important to analyze the cross-axis coupling effects in 
an NMRG based on 129Xe and 131Xe. 

In this paper, we established a theoretical model for the spin oscillator to analyze the 
cross-coupling effects in a 129Xe/131Xe NMRG. We find that these effects lead to a shift in the Larmor 
frequency, i.e., a measurement error in the NMRG. When the mechanical vibration contains a 
cross-axis rotation component near the Larmor frequency, the error will be very large. Moreover, 
this may result in the oscillation frequency being locked to the mechanical vibration rate, which 
destroys the NMRG’s ability to measure the rotation rate. These results are of significance to the 
design of an NMRG and its corresponding strap-down inertial navigation system. 

2. Theoretical Analysis 

2.1. Principle of an NMRG 

An NMRG using 129Xe and 131Xe is, in fact, a dual-species spin oscillator, as is shown in Figure 1 
[1,11,14,15]. A vapor cell contains a mixture of gases, including 129Xe/131Xe, N2 and so on. To obtain 
angular momentum from the pump light, an excess amount of 87Rb is filled into the vapor cell. 
When heated, the 87Rb will vaporize and absorb pump light. The pump light is circularly polarized, 
so each photon carries angular momentum equal to one   in the propagating direction. After 
taking in the circularly polarized photons, the spin of the 87Rb atom will align along the z-direction, 
i.e., become polarized. Through spin-exchange collisions, the angular momentum transfers from the 
87Rb spins to the 129Xe/131Xe nuclear spins. As a result, the 129Xe/131Xe nuclear spins become polarized 
and give rise to a magnetization M .A linearly polarized probe light transmits through the cell and 
interacts with the polarized 87Rb atoms. The polarization plane of the transmission light varies with 
the magnetic field sensed by the 87Rb atoms. Therefore, the magnetization of the nuclear spins can 
be detected. The output of the detector is sent to a signal processing system, which is used to obtain 
the magnetic field in the x and y directions. The y-axis magnetization component yM is amplified 
in the gain module, shifted by a phase of Φ, and then applied to drive the X-coil. For an appropriate 
gain and phase shift, the nuclear spins will precess continuously. More details for the NMRG can be 
found in [1]. 

 
Figure 1. Principle of a dual-species spin oscillator. Figure 1. Principle of a dual-species spin oscillator.



Sensors 2020, 20, 734 3 of 12

The spin oscillator shown in Figure 1 actually has two spin oscillators: a 129Xe oscillator and a
131Xe oscillator. The 129Xe and 131Xe spins show negligible interaction through direct spin interaction,
but coupling through the driving coil can occur. The driving fields of 129Xe and 131Xe influence each
other, but this is not our concern here. In the following derivation, we will take the 129Xe spin oscillator
as an example to describe the operating principle.

The motion of the spins satisfies the following Bloch equation [10,12]:

d
dt

M = M× (γB + Ω), (1)

where M is the magnetization of the spins, γ is the gyromagnetic ratio, B is the magnetic field and Ω is
the rotation rate of the gyroscope with respect to the inertial frame.

Equation (1) shows that the rotation has the same effect as a magnetic field Be f f = Ω/γ. Thus,
we will discuss cross-coupling effects using the following equation:

d
dt

M = M× γB. (2)

Taking the relaxation time into account, Equation (2) can be expanded into the motion equation
for the components of the magnetization:

dMx
dt = γ(MyBz −MzBy) −

Mx
T2

dMy
dt = γ(MzBx −MxBz) −

My
T2

dMz
dt = γ(MxBy −MyBx) +

M0−Mz
T1

, (3)

where Mx, My and Mz are the three components of the magnetization M, respectively; Bx, By and Bz are
the three components of the magnetic field, respectively; T1 and T2 are the longitudinal spin relaxation
time and the transverse relaxation time, respectively.

Defining a complex vector M+ = Mx + iMy, and, from Equation (3), we can obtain: dM+

dt = −iγBzM+ + iγMz
(
Bx + iBy

)
−

M+
T2

dMz
dt = γ(MxBy −MyBx) +

M0−Mz
T1

. (4)

To achieve analytical expressions for the oscillation frequency and amplitude for the 129Xe spin
oscillator, we posit the following hypothesis. A static magnetic field with magnitude Bz = B0 is
applied along the z-axis, and a field Bd

x = 2D cos(ω0t) is applied along the x-axis to drive the spins.
The feedback system has limited bandwidth so that the components with a frequency out of the range
of ω± ∆ω f are filtered out. Here, ∆ω f is the bandwidth of the filter. Through adjusting the phase shift
and gain in the feedback loop, the spin magnetization precesses about the z-axis with frequency ω0 in
a clockwise manner. Therefore, we can write the following expressions:

Mx = Mx0 cos(ω0t) + My0 sin(ω0t)
My = −Mx0 sin(ω0t) + My0 cos(ω0t)

, (5)

where Mx0 and My0 are the components in the x and y-axes at t = 0, respectively.
With a rotatingwave approximation, we can describe the driving magnetic field for 129Xe as follows:

Bd
x = D cos(−ω0t)

Bd
y = D sin(−ω0t)

, (6)
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Inserting Equations (5) and (6) into Equation (4), we have:

M+0 = iγDMz0T2

γDMy0 = M0−Mz0
T1

, (7)

where M+0 = Mx0 + iMy0 and Mz0 is the Mz in the steady state.

2.2. Modeling of a Spin Oscillator with a Cross-Axis-Rotation-Equivalent Magnetic Field

The influence of the cross-axis-rotation can be modeled by a transverse magnetic field; we might
as well call this the cross-axis-rotation-equivalent (CARE) magnetic field. Without loss of generality,
the CARE magnetic field can be described as follows:

Be
x =

∑
n

Bn cos(−ωnt−ϕn)

Be
y =

∑
n

Bn sin(−ωnt−ϕn)
, (8)

where Bn, ωn and −ϕn are the amplitude, angular frequency and phase of the n-th component,
respectively.

With the CARE magnetic field, the motion of the spin oscillator still satisfies Equation (4), where
Bx = Bd

x + Be
x, By = Bd

y + Be
y. We assume that the spins still precess around the z-axis but that the

angular frequency of Bd
x and Bd

y changes from ω0 to ω because of the CARE magnetic field; thus,
we obtain the following expressions for the solutions of Equation (4):

M+ =
(
M⊥0 + M∗

⊥

)
e−iωt = M⊥e−iωt

Mz = Mz0 + M∗z
, (9)

where M∗
⊥

and M∗z are variations of the transverse and longitudinal magnetization due to the CARE
magnetic field.

Inserting Equations (8) and (9) into Equation (4), we have:

dM+

dt + iγB0M+ +
M+
T2

= iγMz

(
De−iωt +

∑
n

Bne−iωnt−ϕn

)
dMz

dt = −γDMy0 + γMx0
∑
n

Bn sin(ωt−ωnt−ϕn) − γMy0
∑
n

Bn cos(ωt−ωnt−ϕn) +
M0−Mz

T1

. (10)

Substituting Equations (7) and (9) into Equation (10), we have:

M∗z ≈ −
1
2
γ
∑

n
Bn

[
My0 + iMx0

1/T1 + i(ω−ωn)
ei(ω−ωn)t−iϕn −

iMx0 −My0

1/T1 − i(ω−ωn)
e−i(ω−ωn)t+iϕn

]
, (11)

and:
dM⊥

dt
+

M⊥
T2
− i(ω−ω0)M⊥ = iγ[Mz0 + M∗z]

D +
∑

n
Bnei(ω−ωn)t−iϕn

. (12)

Since the response of M⊥ to an alternating magnetic field with angular frequency larger than
1/T2 is small, we might as well neglect terms that contain ei(ω−ωn)t−iϕn in Equation (12). As a result,
Equation (12) can be reduced to:

d
dt

M∗⊥ +
1

T2
M∗⊥ − i(ω−ω0)(M⊥0 + M∗⊥) = −(M⊥0 + M∗⊥)

∑
n

1
2
(γBn)

2 1/T1 + i(ω−ωn)

(1/T1)
2 + (ω−ωn)

2 , (13)
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Using the approximation that M∗
⊥

varies very slowly with time, we obtain the following equation
from Equation (13):

ω = ω0 +
∑

n

1
2
(γBn)

2 (ω−ωn)

(1/T1)
2 + (ω−ωn)

2 ≈ ω0 +
∑

n

1
2
(γBn)

2 (ω0 −ωn)

(1/T1)
2 + (ω0 −ωn)

2 . (14)

In a practical case, the CARE field is usually small, so we replace the oscillating frequency ω
with ω0 in the last term of Equation (14) to avoid the difficulty in solving the oscillating frequency.
The validity of the approximation can be proved in the following simulation.

Equation (14) gives the Bloch–Siegert shift formula for spin oscillators [16–18]. It is clear that
when ω0 > ωn, ∆ω = ω −ω0 > 0 and vice versa. Thus, the rotating field Bn pushes the oscillation
frequency farther away from ωn. When ωn = −ω0 and Bn = D, Equation (14) can be written as:

ω = ω0 +
(γD)2

4ω0
. (15)

This is just the case of a Bloch–Siegert shift for only one linear driving magnetic field. When
ωn = 0 and Bn = D, Equation (14) can be written as:

ω ≈ ω0 +
(γD)2

2ω0
. (16)

This is just the case of a cross-axis sensitivity effect when there is a static magnetic field in
the xy-plane.

We can also obtain an approximate solution for M⊥ from Equation (13) for only one CARE
component, B1e−iω1t:

M⊥ = M⊥0 + M∗⊥ ≈
1/T2

1/T2 +
1
2ω

2
1

1/T1

(1/T1)
2+(ω−ωn)

2

M⊥0. (17)

where ω1 = γB1.
When ωn → ω0 , Equation (17) becomes:

M⊥ =
1

1 + 1
2ω

2
1T1T2

M⊥0. (18)

This means that if the CARE magnetic field has the same frequency as ω0, the amplitude of the
spin oscillator decreases. However, when |ωn −ω0| is less than a specific value, the spin oscillator
will be locked to the CARE field [19]. As a result, Equation (18) will not be valid. This can be seen in
the following derivation. We assume there is only one component with frequency ωr near ω0, so we
neglect other components. The CARE magnetic field can be described as:

Be
x = Br cos(−ωrt), Be

y = Br sin(−ωrt), (19)

and the feedback magnetic field can be described as:

Bd
x = D cos(−ωrt−ψ), Bd

x = D sin(−ωrt−ψ). (20)

where ψ is a time varying phase.
We use the following expressions for the solutions of the Bloch equation:

M+ =
(
M⊥0 + M∗

⊥

)
e−i(ωrt+ψ) = M⊥e−i(ωrt+ψ)

Mz = Mz0 + M∗z
. (21)
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Inserting Equations (19)–(21) into Equation (4), we have:

dM+

dt + iγB0M+ +
M+
T2

= iγMz
(
De−i(ωrt+ψ) + Bre−iωrt

)
dMz

dt = −γD
(
My0 + M∗y

)
+ γBr

[
(Mx0 + M∗x) sinψ−

(
My0 + M∗y

)
cosψ

]
+ M0−Mz

T1

, (22)

Substituting Equation (7) into Equation (22), we have:

dM∗z
dt

+
M∗z
T1

= −γDM∗y + γBr
[
(Mx0 + M∗x) sinψ−

(
My0 + M∗y

)
cosψ

]
, (23)

and:

− i
(
ωr −ω0 +

dψ
dt

)(
M+0 + M∗+

)
+

1
T2

M∗+ = iγM∗z
(
D + Breiψ

)
+ iγMz0Breiψ. (24)

We make the approximation that d2ψ/dt2 = 0 and obtain M∗z from Equation (23):

M∗z = −γDM∗y +
γBr

2
(

1
T1

+ i dψ
dt

) [−iM∗x −
(
My0 + M∗y

)]
eiψ +

γBr

2
(

1
T1
− i dψ

dt

) [iM∗x − (
My0 + M∗y

)]
e−iψ, (25)

Using the approximation that M∗
⊥

varies slowly with time, we obtain the following equation:

−i
(
ωr −ω0 +

dψ
dt

)(
M+0 + M∗+

)
+ 1

T2
M∗+ = −i(γD)2M∗y + iγBrMz0eiψ

− iγ2DBrM∗yeiψ

+iγ
2DBr

2

 [−iM∗x−(My0+M∗y)](
1/T1+i dψ

dt

) ei2ψ +
[iM∗x−(My0+M∗y)](

1/T1−i dψ
dt

)


+i (γBr)
2

2

 [−iM∗x−(My0+M∗y)](
1/T1+i dψ

dt

) e2iψ +
[iM∗x−(My0+M∗y)](

1/T1−i dψ
dt

)


. (26)

Neglecting the terms containing ei2ψ, Equation (26) can be reduced to:

−i
(
ωr −ω0 +

dψ
dt

)(
M+0 + M∗+

)
+ 1

T2
M∗+ = −i(γD)2M∗y + iγBrMz0eiψ

− iγ2DBrM∗yeiψ

+iγ
2DBr

2

 [iM∗x−(My0+M∗y)](
1/T1−i dψ

dt

)
+ i (γBr)

2

2

 [iM∗x−(My0+M∗y)](
1/T1−i dψ

dt

)
 . (27)

This equation can be expressed as:

dψ
dt

= ω0 −ωr + d + l cos(ψ−ψ0). (28)

where d, l and ψ0 are functions of M+0, M∗+, Br, T2 and T1. Equation (28) indicates that the spin
oscillator can be locked to the CARE magnetic field when |ω0 −ωr + d| < |l|. This phenomenon is
similar to the lock-in in ring laser gyroscopes [20,21]. A comprehensive analysis can be seen in [19].

We can obtain the lock-in threshold l from Equation (27):

l ≈ γBrMz0/M+0. (29)

The expression of l is consistent with the lock-in threshold with the rotating CARE case given
in [19], since we have made rotating wave approximation in this paper. According to [11], the maximum
of M+0 is M0

√
T2/

(
2
√

T1
)

and the corresponding Mz0 is M0/2. Under this condition, we have:

l ≈ γBr
√

T1/T2. (30)
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3. Numerical Simulation and Discussion

We carry out numerical simulation according to Equation (3). The simulation model based on
Figure 1 is shown in Figure 2. The feedback magnetic field is Bd

x = kMy, Bd
y = kMx and the CARE

magnetic field is Be
x = Br cos(−ωrt), Be

y = Br sin(−ωrt). The parameters are as follows: T1 = 30 s,
T2 = 20 s, B0 = 1.5 µT, γ = 2π × 10 Hz/µT, Mz0 = 100 A/m, k = 0.0015. The initial values for the
magnetization components are Mx = 0.01Mz0, My = 0 and Mz = Mz0, respectively. Other parameters
will be given in the specific simulation.
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The Bloch equations were solved using the MATLAB ODE45 solver. The time step was 50 µs,
and the time span was 0–1000 s. When we obtain the magnetization M(t), we use the My(t) with a
time span of 400 s–1000 s to make a fast Fourier transformation (FFT). We obtain the amplitude and
frequency of the spin oscillator according to the peak in the FFT. With a timespan of 600 s, the frequency
resolution is 0.0017 Hz and the obtained amplitude also shows errors due to limited data.

3.1. Frequency Shift due to a DC Magnetic Field

In this case, the CARE magnetic field is Be
x = 0, Be

y = Br. In theory, the approximate analytical

expression for the oscillation frequency shift will be ∆ f = ω−ω0
2π = 1

2π
(γBr)

2

2ω0
. The simulation and

approximate results are shown in Figure 3. It is clear that the approximate analytical results agree well
with the numerical simulation results.
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According to Beq
y = Ωy/γ we know that the rotation for the y-axis will lead to an equivalent

magnetic field. When the NMRG is placed in a vehicle, the maximum value of Ωy can be as high
as 2π rad/s, equivalent to a magnetic field of 78 nT for the 129Xe spin oscillator and 284 nT for the
131Xe spin oscillator. When B0 = 12 µT, the frequency shifts for 129Xe and 131Xe are 3.5 mHz and
11.8 mHz, respectively. This is a huge error for the NMRG, since it should measure Ωz with an error
of less than 10 nHz for typical applications. To suppress this cross-axis effect, some methods can be
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used. For example, with a three-dimensional magnetic field compensation [22], the influence of low
frequency Ωy can be suppressed greatly, but the bandwidth of the feedback loop should be as high
as possible.

3.2. Frequency Shift due to an Oscillating Magnetic Field

3.2.1. One Component

At first, we carry out simulations for the CARE magnetic field with only one frequency, where
Be

x = Br cos(−ωrt), Be
y = Br sin(−ωrt). According to a previous analysis, the approximate frequency

shift will be ∆ f = 1
4πγ

2B2
r

1
ω0−ωr

. We choose two ωr values and make the ∆ f curve a function of Br.
The simulation and approximate results are shown in Figure 4. The approximate analytical results
agree well with the numerical simulation results.
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(CARE) magnetic field.

Next, at a specific magnetic field Br, we change the frequency fr. The frequency shift ∆ f = 1
4π

γ2B2
r

ω0−ωr

and amplitude Amp = 1/T2

1/T2+
1
2γ

2B2
r

1/T1
(1/T1)

2
+(ω−ωn)2

Amp0 of the spin oscillator are given in Figure 5. Here,

Amp0 denotes the amplitude of the spin oscillator without a CARE field. When ωr → ω0 ,
∣∣∣∆ f

∣∣∣ becomes
very large. The relaxation time T1 removes the frequency shift singular point when ωr → ω0 . At a
specific Br, the spin oscillator is locked to the CARE magnetic field and its frequency is equal to ωr.
We also find that when ωr approaches ω0, the approximation solution has a larger error. The reason for
this is that when ωr approaches ω0, we omitted some terms containing ei(ω−ωn)t in the derivation for
Equations (11) and (13). The approximation for Amp has a slightly larger error, but it still agrees with
the numerical simulation qualitatively. That is, the CARE magnetic field near the Larmor frequency
reduces the amplitude of the spin oscillator. It should be noted that the simulation program from
Equation (3) also contributes to some error, which leads to the numerical data dispersion shown in
Figure 5c,d.
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Figure 5. The frequency shift ∆ f and amplitude Amp of the spin oscillator vs. frequencies of the CARE
magnetic field. (a) ∆ f vs. fr for Br = 30 nT; (b) ∆ f vs. fr for Br = 50 nT; (c) Amp vs. fr for Br = 30 nT;
(d) Amp vs. fr for Br = 50 nT. In (a,b), Num. lock-in denotes the frequency shift in the lock-in state. In
the lock-in state of (c,d), we let Amp = 0 to express that the spin oscillator cannot normally measure the
rotation rates. In fact, the amplitude and frequency of the spin oscillator in the lock-in state is governed
by the CARE magnetic field. The limited data for FFT contribute to the scattering of frequency shift
and Amp to some extent.

3.2.2. Two Harmonic Components

To check the approximate frequency shift in Equation (14) when the CARE magnetic field
has more frequency components, we choose Be

x = Br1 cos(−ωr1t) + Br2 cos(−ωr2t) and Be
y =

Br1 sin(−ωr1t) + Br2 sin(−ωr2t) to carry out numerical simulations. The approximate frequency shift is
∆ f = 1

4πγ
2B2

r

(
1

ω0−ωr1
+ 1

ω0−ωr2

)
. Here, we choose Br1 = Br2 = Br. The results are shown in Figure 6,

which shows that the approximate frequency shift agrees well with the numerical simulation.
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3.3. Discussions

3.3.1. Comparing the 3He Gyroscope with a Dual-isotope Xe NMRG

Both the amplitude and frequency of the spin oscillator are changed due to the CARE magnetic
field. The dynamical equation for analyzing the 3He gyroscope omitted the relaxation times T1 and T2

in Equation (3) and did not need the driving magnetic field. Therefore, the two types of gyroscopes are
expected to show different behavior.

For a CARE magnetic field with very low frequency, the frequency shift for the two gyroscopes
can be described by Equation (16). However, when the frequency of the CARE magnetic field is near
the Larmor frequency, the 3He gyroscope loses signal periodically, and the amplitude of the Xe NMRG
signal decreases. For the oscillation frequency of the Xe spin oscillator, it is locked to the frequency of
the CARE magnetic field, and, out of the lock-in range, the oscillation frequency shifts according to
Equation (14). This shows the CARE magnetic field pushes the oscillation frequency of a spin oscillator
far away from the CARE magnetic field frequency. Therefore, the CARE magnetic field cannot be
common-mode suppressed effectively by a dual-isotope scheme.

3.3.2. Methods to Reduce the Cross-Axis Effect

If the CARE magnetic field results from the rotation of a vehicle, it has a low frequency. Therefore,
it is clear that we can reduce the cross-axis effect by increasing B0. Assuming a cross-axis input rotation
rate of 1 rad/s, B0 should be larger than 0.049 T for a 3He gyroscope [10]. This is not practical, since the
magnetic inhomogeneity can be very large at this magnetic field. Fortunately, the transverse magnetic
field in Xe NMRGs can be compensated by an alkali atom magnetometer and a feedback loop [22].
In general, a compensation bandwidth of approximately 10 Hz can be obtained.

For a high-frequency CARE magnetic field, the compensation loop cannot follow it in a timely
manner. If the frequency spectrum of the angular vibration covers the Larmor frequency of the spin
oscillator, it will cause a severe error. We might as well take the rotation component around the y-axis as
an example to discuss the influence of the angular vibration [23,24]. We assume the rotation component
has an amplitude of 0.003 rad/s at 100 Hz, corresponding to Beq

y = 0.04 nT for 129Xe and Beq
y = 0.13 nT

for 131Xe. When B0 = 10 µT, the frequency shifts of 129Xe and 131Xe due to the CARE magnetic field
are 12.8 µHz and −3.7 µHz, respectively. Moreover, the worst case is a lock-in phenomenon, which
makes the NMRG unresponsive toward Ωz. With T1 = T2 = 25 s, γBr = 0.003 rad/s and the lock-in
threshold is approximately 0.17 ◦/s. It is a severe error for an NMRG.

To improve the tolerance of the NMRG toward the cross-axis angular vibration, it is better to
choose a stronger B0, to ensure that the Larmor frequency is far away from the angular vibration
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component. The system level vibration isolation can also be used to attenuate possible angular
vibration. In order to solve the lock-in problem, we can also use the biasing method just as that in ring
laser gyroscopes, but it will make the NMRG more complicated.

4. Conclusions

In summary, we analyzed the response of a spin oscillator to a magnetic field in the xy-plane
with both analytical and numerical methods. Approximate analytical equations for the frequency shift
and amplitude of the spin oscillator with the CARE field are obtained, which are verified by solving
the Bloch equations numerically. Then, we discussed the measurement error in an NMRG due to a
rotation component in the x or y-axis. The NMRG is a single-axis gyroscope, but it also has cross-axis
sensitivity to the x and y-axis. If the NMRG is subject to cross-axis rotation with a frequency near to its
magnetic resonance frequency, the measurement error is relatively large, and the rotation rate cannot
be measured. To reduce the cross-axis coupling effect, the resonance magnetic field should be as large
as possible and a mechanical notch filter covering the oscillating frequencies of 129Xe and 131Xe can
be used. These problems should be considered in the design of NMRG-based strap-down inertial
navigation systems.
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