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Abstract: With limited computing resources and a lack of physical lines of defense, the Internet
of Things (IoT) has become a focus of cyberattacks. In recent years, outbreak propagation attacks
against the IoT have occurred frequently, and these attacks are often strategical. In order to detect
the outbreak propagation as soon as possible, t embedded Intrusion Detection Systems (IDSs) are
widely deployed in the IoT. This paper tackles the problem of outbreak detection in adversarial
environment in the IoT. A dynamic scheduling strategy based on specific IDSs monitoring of IoT
devices is proposed to avoid strategic attacks. Firstly, we formulate the interaction between the
defender and attacker as a Stackelberg game in which the defender first chooses a set of device nodes
to activate, and then the attacker selects one seed (one device node) to spread the worms. This yields
an extremely complex bilevel optimization problem. Our approach is to build a modified Column
Generation framework for computing the optimal strategy effectively. The optimal response of the
defender’s problem is expressed as mixed-integer linear programming (MILPs). It is proved that the
solution of the defender’s optimal response is a NP-hard problem. Moreover, the optimal response
of defenders is improved by an approximate algorithm–a greedy algorithm. Finally, the proposed
scheme is tested on some randomly generated instances. The experimental results show that the
scheme is effective for monitoring optimal scheduling.

Keywords: outbreak detection; Internet of Things; Stackelberg game; dynamic scheduling strategy

1. Introduction

1.1. Background

With the rapid development of communications technology and perceptual recognition
technology, the Internet of Things [1] has been widely applied in intelligent medical treatment,
intelligent transportation and other areas, which has brought tremendous convenience to peoples’
lives [2], but lots of security challenges at the same time. In recent years, the IoT has been subjected to a
large number of attacks with typical outbreak propagation features [3]. Through outbreak propagation,
a worm can infect a wide range of devices (e.g., intelligent devices, smart webcams) in a short period [4],
resulting in severe economic losses, and even large-scale network paralysis. For example, in October
2016, the Mirai worm [5] infected some 500,000 IoT devices on the east coast of the United States within
6 hours, causing DYN to lose $110 million; in May 2017, the WannaCry worm attacked more than
300,000 users in 150 countries in 24 hours, causing a loss of 8 billion US dollars [6], especially for users
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with IoT devices, such as the medical systems [7]. To detect the worm outbreak propagation as soon
as possible, we can collect potential threat data by deploying specific embedded Intrusion Detection
Systems (IDSs) in the IoT [8,9]. Therefore, the rapid detection of the worm outbreak propagation in the
IoT with limited resources by IDS has become an urgent problem to be solved. Herein, such IoT devices
with embedded IDS are collectively referred to as “sensors”. The "scheduling strategy" mentioned in
the following chapters of this paper is mainly aimed at methods of “sensor” combination opening.

1.2. Motivation

Generally, the initiator of outbreak propagation is a malicious party, and our goal is to detect the
outbreak propagation as soon as possible. For example, in a water network, the problem is where
should we place a limited number of sensors to quickly detect contaminants [10–14], while in smart
power grids, what is concerned about is finding the failure node in a short time [15]. It is natural in
these scenarios to consider the problem of adversarial outbreak detection (AOD), where the defender
can first select a set of nodes to deploy sensors, and subsequently the attacker can choose the source
of infection to spread malicious information. Although there have been many studies on the AOD
problem [11,15], the scenario setting of these works (e.g., a water network setting) is different from
our scenario and assumptions (e.g., cybersecurity settings and parameters). A common assumption
in the existing AOD problem is that the attacker first chooses an initially infected node according
to a probability distribution [10,12]. However, in our scenario, the attacker strategically initiates an
outbreak propagation by considering the monitoring strategy in the IoT. Therefore, the following
problems need to be considered for our scenario:

1.2.1. The Uncertainty of Propagation Trajectory

The propagation trajectory is uncertain. For instance, the attacker exploits a vulnerability to infect
node v0, which has two adjacent nodes v1 and v2. There are some vulnerabilities on nodes v1 and v2

that can be exploitable by attackers, respectively. It is uncertain which vulnerability on nodes v1 and
v2 will be exploited by the attacker to spread malicious code, as shown in Figure 1. The uncertainty
of the outbreak propagation trajectory leads to two problems: (1) the outbreak propagation process
is dynamic; (2) the outbreak detection time is uncertain. It should be considered how to simulate
the dynamic of the outbreak propagation process, and how to determine the time when outbreak
propagation is detected. Moreover, the determination of detection time will be complicated by the
propagation dynamics and uncertainty.
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1.2.2. The Limit of Computing Resource

Most of the devices in the IoT are micro-embedded, with limited hardware and software resources
as well as minor computing tasks, and more resources need to be saved for normal services. For example,
in smart grid defense, it may not be realistic to apply the latest patch to all systems since it may
potentially require system downtime affecting customer service [15]. Continuous running of the IDS
program can cause the excessive power consumption which will lead to the crash of the IoT network.
Thus, the balance between limited resources and scheduling monitoring needs to be considered.
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1.2.3. The Dynamics of Scheduling Strategy

The IoT system is composed of a mass of devices that are frequently exposed to public situations,
lacking effective protection, and are more vulnerable to attack [16]. For example, while the administrator
adopts a regular scheduling strategy to monitor network security status, the attacker can obtain
the relevant information (e.g., position) of the sensors through some attack analysis tools (such
as eavesdropping [17], extended sleep [18], polymorphic worm [19], probe-response attack [20]).
The attacker strategically selects a network device node as a source of infection outbreak propagation
through acquired sensors information to avoid being monitored [20]. There have been some existing
works taking into account the adversarial environment [10,11,15], but the impact of the attacker on
monitoring scheduling strategy has been neglected. Due to the certain regularity of the existing
schemes and it cannot deal with the above attacker’s strategical attack.

In view of the above three aspects, there are many studies. The principles of epidemic modelling
were applied to IoT networks composed of wireless sensor nodes to describe the uncertain propagation
trajectory, where the most commonly are model SI, SIR and SIS [21–23]. The game theory was introduced
into IoT network to obtain allocated resources for the defenders and the attackers [11,16,24–26].
The adversary was set as the attacker chooses to pollute when knowing the position of the sensor,
and some deployment schemes of sensors in the adversarial environment was proposed [11,27,28].
While, under such circumstance, it is considered that the robustness of collecting threat data and
detecting outbreak propagation can be affected by the strategic attack. Thus, existing approaches
cannot be directly applied in current situation. It is necessary to design an effective scheduling strategy
to carry out irregular dynamic monitoring of adversarial outbreak propagation in IoT, making the
results of detection more robust.

1.3. Our Contribution

To address the above challenges, we used the Monte-Carlo [29] method to simulate the outbreak
propagation process of trajectory uncertainty. We built the AOD problem as a Stackelberg model,
in which the controller of the IDSs acts as the defender, first selects the scheduling strategy (i.e., the
initial strategy), the initiator of the outbreak propagation as the attacker, and then the source node of
the outbreak propagation based on the selected open sensors selected by the observed defender. It is
more realistic considering the impact of attackers on monitoring scheduling strategy, aiming at the
attack and defense process between administrators and attackers. The leader (defender) will select
several nodes of the network for monitoring, whereas the follower (attacker) will select one node in the
network as the source of infection. The contribution of this paper is as follows:

• Firstly, we generated a “Propagation Time Initialization Table” to obtain the determined
detection time.

• Secondly, we built a Stackelberg model which is proposed to formulate the Adversarial Outbreak
Detection problem in limited resource for IoT.

• For the Stackelberg model, we adopt a CG-AOD algorithm. As the response of defender is an
NP-hard problem, we formulated mixed-integer linear programming (MILPs) and exploited an
approximate algorithm–greedy algorithm to speed up the solution. Theoretically, we proved that
an approximate ratio of constant factors can be obtained through the algorithm.

• Finally, we design a numerical experiment and a series of experiments in terms of solution time
and quality by constructing a specific network case model and expansion model. The results show
that the CG-AOD and CG-AOD/Appro algorithm is robust and scalable.

The rest of this paper is organized as follows: In Section 2, we discuss related work. In Section 3,
we introduce our theoretical model. Section 4 formulates CG-AOD algorithm as two parts and analyzes
the corresponding factors. Experiments and the analysis are given in Section 5. A conclusion is drawn
in Section 6.
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2. Related Work

We divide the related work into four parts: (i) IDS for IoT (ii) outbreak detection, (iii) the use of
game theory in computer security, and (iv) Monte Carlo method in IoT.

2.1. IDSs for IoT

In an IoT network, due to the complex environment, the different standards and communication
stacks involved, the limited resources, as well as lack of a physical line of defense (i.e., there are no
gateways or switches to monitor the information flow), traditional IDS techniques are difficult to apply.
Current IDSs for IoT technologies is focused on the architecture type, and from this point of view,
the future development direction of IoT IDS is proposed and evaluated [30]. Zarpelao [8] classified the
IDSs into four attributes which include detection method, IDS placement strategy, security threat and
validation strategy, and introduced the work of making specific IDS schemes for IoT or developing
an attack detection strategy that may be embedded in IDSs. In addition, to promote multi resource
sharing and heterogeneous resource demand allocation, Lin [16] recommended an IDS architecture
and a resource allocation scheme with edge computing. Sforzin [31] proposed architecture based on
limited resource containing devices which can be effectively serve as IDS in IoT. These works have
indeed taken into account of the deployment of IDSs, but no dynamic scheduling strategy based on
IoT device specific IDSs are involved.

2.2. Outbreak Detection

The second part of work is outbreak detection, which involves deploying a limited number of
sensors to detect the spread of an outbreak propagation as early as possible. In previous schemes,
the outbreak detection improves the efficiency and accuracy of the algorithm from the perspective of
the sensor by exploiting sub-modularity to obtain an approximation value (1-1/e), but not take into
account the strategic behavior of the attacker and ignores the setting of the adversarial environment.
Obviously, the IoT device without the physical line of defense becomes a target of interest for the
attacker. The related works of AOD problem are as follows: Leskovec [10] firstly studied outbreak
detection problem and gave an efficient algorithm—Cost-Effective Lazy Forward (CELF) selection—by
exploiting sub-modularity which is 700 times faster than a simple greedy algorithm. Many works are
proposed to improve the CELF algorithm [22,32–34]. Krause [35] first considered the setting of an
adversarial environment and proposed a SATURATE algorithm to ensure that the solution is superior
to the current best solution, but required a higher cost than CELF. However, this work is focused on
a rather static scenario, where the adversary first chooses an initially infected node according to a
probability distribution, which is fundamentally different from our case.

2.3. Security Game

The third part of work is a security game that has been used to calculate the optimal allocation of
security resources in IoT under an adversarial environment. In view of the traditional game model,
there are many deficiencies, such as analysis of complexity, slow convergence speed and the high cost
of exchange of information/problems. Semasinghe [36] discussed the multiple uncommon game theory
model (e.g., evolutionary game, the average field game, and so on), so as to adapt to the inherent
characteristics of IoT network in the future. For the resource allocation problem in IoT, Rullo [37]
proposed a linear programming based formulation for solving the problem of optimally placing a set
of security resources in static IoT networks, considering a fixed defender budget, the strategic behavior
of the attacker, and modeling the interaction between attacker and defender as a Stackelberg game.
Altman [38] proposed a game theory-based approach to study jamming attacks in wireless networks.
Nmavar [39] distributed the power of the subcarriers to decrease the aggregate bit error rate (BER)
for thwarting the jamming attack. Zhu [40] investigated sensor networks by a multi-player game
which is formalized to model the non-cooperative strategic behavior between the attackers and the
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network. Cheng [41] proposed the approach based clustering algorithm and used Pareto to analysis
the optimal resource management from the perspective of game theory. In addition, there are some
models very similar to the adversarial environment setting in this work, and two categories based
on the difference in the player’s strategy space: double oracle [42–44] and column generation [45–47].
The work provided some methods to optimize the deployment of the sensor for outbreak detection
problem, but the scenario setting of these methods are different from ours.

2.4. Monte Carlo Method in IoT

In the field of IoT security, Monte Carlo method is applied to several scenarios. In the mobile
Internet of Things scenario, Rullo [48] addressed the problem of security resource allocation by using
the Monte Carlo method to generate different device configurations in a geographic area in order to
evaluate the proposed method with several network topologies. Xu [17] focused on the transmission
design for secure relay communications in IoT networks, where the communication is exposed to
eavesdroppers with unknown number and locations, and exploited Monte Carlo model simulations to
validate the theoretical result.

The aforementioned work provided some methods to optimize the deployment of sensor for the
outbreak detection in IoT and many security games methods based on resource-limited for deploying
sensors. However, compare with our work, the scenario setting of these methods, including threat
propagation process, utility calculation methods, and so on, are totally different.

3. Adversarial Outbreak Detection Game Model

In this paper, we introduce the attacker factor into the AOD problem and formulate the problem
as a Stackelberg game for IoT. In our Stackelberg game, the network manager is the leader who moves
first to perform the dispatch of the sensor, and the attacker is the follower who observes the strategy of
the leader and responds to it.

In order to clearly describe the whole process of project implementation, the Implementation
Process Framework is given in Figure 2, which consists of four stages: preprocessing and initialization,
strategy calculation, policy distribution, and strategy execution. In external hardware, the “Processing
Time Initialization Table” is generated, the “CG-AOD Algorithm” is called, the signal of schedule is
sent. In sensors, the sensor is activated.
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3.1. Network

We formulate the communication network deployed with sensors as an undirected graph G(V, E)
(called a target network), where v ∈ V is the node and e ∈ E represents the connection between two
nodes. In this graph, each node v ∈ V can deploy with a sensor, and it can also be the candidate
for the attacker. Par(v)) is the set of the parent node of v. Furthermore, each edge e ∈ E has a label
denoted by p : E→ (0, 1] to describe the probability of infection propagation through it. For each edge
e = (u, v) ∈ E, p(u, v) represents the probability that v is infected by u through the edge (u, v), while if
(u, v) < E, p(u, v) := 0. Although the structure of the target network varies over time, the critical
devices in it, which are often the main targets of attackers, do not change their position frequently
after the collector deployed. In other words, the network structure composed of nodes of the deployed
collector is stable. Hence, we assume that the network structure is static.

3.2. Virus Propagation

Considering that our work is only to collect IoT device data and detect IoT device state, we exploit
the discrete-time infection SI model [22], which is consist of the Susceptible(S) and Infected(I). The SI
model used to simulate the outbreak propagation in IoT can be described as follows: Let It ⊆ V be the
set of nodes that get infected at the step t ≥ 0 with I0 = u. We define Jt := ∪0≤i≤tIi as the cumulative set
of nodes that get infected before step t ≥ 0. Then, at step t + 1, each infected node u ∈ Jt may infect its
out-neighbors v ∈ V\Jt with an independent probability of p(u, v). Thus, a node v ∈ V\Jt is infected at
step t + 1 with the probability:

1−
∏

u∈Jt∩Par(v)
(1− p(u, v)) (1)

If node v is infected successfully, it will be added into the set It+1. Then Jt+1 will be updated by
Jt+1 ← Jt ∩ It+1 . Note that each infected node has more than one chance to activate its susceptible
out-neighbors until they get infected, and each node keeps its infected state once it is infected by others.
The cumulative infected process (Jt)t≥0 is Markovian.

3.3. Strategies

A pure defender strategy D = 〈Dv〉 is to select k sensors to monitor, i.e.,
∑

v∈V Dv = k, where
Dv ∈ {0, 1}, Dv = 1 indicates that the sensors v are opened to monitoring; otherwise, Dv = 0 indicates
that the sensors v is not opened to monitoring. In other words, the vector D consists of |V| elements,
only k of which are 1, and the others are all 0. The defender’s pure strategy space is denoted by
D, in which there are (|V|, k) pure strategies. VD represents a collection of all sensors in strategy D.
A mixed defender strategy is a probability distribution over pure strategies, i.e., x = 〈xD〉 with xD

representing the probability that D is played, where,
∑

D∈D xD = 1, the sum of all xD is equal to 1. In
other words, each pure strategy D corresponds to a probability xD, and the number of xD equals to
the number of the pure strategies, that is, (|V|, k). Note that the number of xD that are not 0 cannot be
limited, but usually less than (|V|, k).

The attacker choose only one node from all nodes in IoT as the source of infection, which is a pure
strategy for the attacker. We denote an attacker’s pure strategy as a vector A = 〈Av〉, where Av = 1 if
v ∈ V, and the node is selected as the source of infection by the attacker; otherwise, Av = 0. In other
words, vector A consists of |V| elements, only one of which is 1, and the others are all 0. The attacker’s
pure strategy space is denoted byA, in which there are |V| pure strategies. VA represents a collection
of all nodes in strategy A. The attacker’s mixed strategy is denoted by y =

〈
yA

〉
with yA representing

the probability that A is played.

3.4. Utility

As most related works do, we formulate the issue of activating k optimal sensors as a zero-sum
game. The defender wants to detect the attacker’s infected node as early as possible, while the attacker
tries to keep the period of infection propagation as long as possible. It should be noted that when an
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infected node is detected, the process of spreading all malicious information in the target network is
terminated immediately.

Given defender’s strategy set D and attacker’s strategy set A, if D∩A = ∅, defender’s strategy
and the attacker’s strategy select sets of nodes with no intersection, which means that the defender fails
in detecting the infection event, the attacker succeeds, he will gain a payoff P(A) = −P(D). Otherwise,
if D∩A = 0, which means that the defender catch the attacker, the defender’s payoff is P(D) = −P(A).
Due to the probability of infection, it is uncertain whether node v ∈ D can be successfully infected
by the parent node Par(v). Therefore, the Monte Carlo method is adopted to simulate the infection
process for MC times and record every result of each time. We store these records in the “Propagation
Time Initialization Table”, as shown in Table 1. The “ Propagation Time Initialization Table” records
the time when each node uA ∈ V in the network successfully infects other nodes as the source node,
and the record of the simulation once. In addition, the “Propagation Time Initialization Table” is an
offline table, which is generated in the preprocessing phase in Figure 2. After the preprocessing phase
is generated, the “Propagation Time Initialization Table” is stored in external hardware in the form of
files, which can be directly read for obtaining in subsequent use.

Table 1. Propagation Time Initialization Table.

Node v0 v1 . . . vj . . . vn

u0 0 α(0, 1) . . . α(0, j) . . . α(0, n)
u1 α(1, 0) 0 . . . α(1, j) . . . α(1, n)
. . . . . . . . . . . . . . . . . . . . .
ui α(i, 0) α(i, 1) . . . α(i, j) . . . α(i, n)
. . . . . . . . . . . . . . . . . . . . .
un α(n, 0) α(n, 1) . . . α(n, j) . . . 0

The time spent in the process of propagation from the infected node ui ∈ V to all the nodes v j ∈ V
in the network can be defined as follows:

α
(
ui, v j

)
= α(i, j) =

0, i = j

N, i , j
(2)

where N is a positive integer.
According to the ” Propagation Time Initialization Table”, the time of an attacker’s pure strategy

A being detected by the defender’s pure strategy D in the Monte Carlo process is defined as:

t(A, D) := min
{
min

{
α
(
ui, v j

)∣∣∣∣It ∩VD , ∅ with I0 = VA
}
, Tmax

}
(3)

where Tmax is the time interval that we observe.
Since the malicious information successfully infects the neighboring node with a certain probability,

using the Monte Carlo method, the detection time τ(A, D) indicates the time that a pure strategy A of
the attacker performs the malicious information propagation is detected by one of the sensors in the
defender’s pure strategy D:

τ(A, D) :=
1

MC

MC∑
m=1

tm(A, D) (4)

The defender’s payoff function is as follows:

P(D) = τ(A, D) (5)

Attacker’s payoff function is P(A) = −P(D).
The mixed strategy function of the attacker is as follows:
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Given a defender’s mixed strategy x and an attacker’s pure strategy A, the expected attacker
utility is:

Ua(x, A) = P(A)
∑
D∈D

(1− zD,A)xD (6)

where zD,A means that defender’s strategy x overlaps attacker’s strategy A. It should be noted that z is
the flag bit here, which is used to facilitate the reader to understand the meaning of the formula, that is,
z = 1 if D∩A , ∅; z = 0 if D∩A = ∅. In the following chapters, the meaning of this flag bit has been
included in the objective function and constraints, so it does not appear clearly.

Similarly, the attacker’s expected utility Ua(D, y) of playing mixed strategy y against D is:

Ua(D, y) =
∑
A∈A

(1− zD,A)yA P(A) (7)

When both players use mixed strategies, the expected utility of the attacker is:

Ua(x, y) =
∑
D∈D

xDUa(D, y) =
∑
A∈A

yAUa(x, A) (8)

The mixed strategy function of the defender is as follows:
Given a defender’s mixed strategy x and an attacker’s pure strategy A, the expected attacker

utility is:
Ud(x, A) =

∑
D∈D

(1− zD,A)xD P(D) (9)

where, the parameter z in defender’s function is the same as the parameter z in attacker’s function,
which will no more details here.

The defender’s expected utility Ud(D, y) of playing mixed strategy y against D is:

Ud(D, y) = P(D)
∑
A∈A

(1− zD,A)yA (10)

When both players use mixed strategies, the expected utility of the attacker is:

Ud(x, y) =
∑
D∈D

xDUd(D, y) =
∑
A∈A

yAUd(x, A) (11)

3.5. Equilibrium

The Stackelberg equilibrium (SSE) is equal to the Nash equilibrium under the given zero-sum
assumption (the defender maximizes the minimum utility, or equivalently, minimizes the maximum
attacker utility). Thus, the optimal mixed strategy x of both players can be computed by solving the
following linear programming (LP) problem:

max U (12)

s.t. U ≤ Ud(x, A) ∀A ∈ A (13)∑
v∈V

Dv = k (14)

∑
D∈D

xD = 1 (15)

xD ≥ 0 ∀D ∈ D (16)

Equation (12) is the optimization goal. Equation (13) enforces that U is the minimum utility.
Equation (14) enforces that the defender covers a maximum of k nodes. Equation (15) ensures that the
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summation of all mixed strategies equal to 1. Equation (16) guarantees that probability of the mixed
strategy being chosen is not 0.

When strategy spaces of both players are small, the optimal solution can be obtained by solving
the LP. However, with the growing scale of the network |V|, the attacker’s strategy space increases,
and the space of the defender’s strategy grows exponentially with the budget k, thus the LP cannot
find the optimal solution in a short time. A new algorithm is required to solve the optimal strategy of
both sides.

4. Approach

In order to solve the problem in the previous section, the idea of column generation algorithm
is introduced [15]. The main idea of the column generation algorithm is to divide the problem
into the Optimal Response and the Approximation Response, and the new variable added into the
Approximation Response will maximize the value of Optimal Response. The algorithm terminates
when the Approximation Response cannot identify any new variables that can improve the value of
Optimal Response. The column generation algorithm can effectively reduce the time to obtain the
optimal solution when the strategy space of one of the two sides in the game is large. The overall
framework of the algorithm is presented in the following section.

4.1. Overview of CG-AOD

An overall flow chart of the column generation algorithm is given in Figure 3. First, after giving the
initial strategy, LP is utilized to solve the small-scale game equilibrium, and then loop iteratively to call
the Approximation Response and the Optimal Response. It should be noted that the Approximation Response
must be called first. If the Approximation Response cannot be found, the Optimal Response is called. When
a better strategy for the defender is not found, the algorithm terminates. The final result converges to
the global optimal solution.
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The algorithm is described in detail using pseudo code as shown in Algorithm 1. CG-AOD is
sketched in Algorithm 1. The first line initializes the strategies of the participating parties. The attacker’s
initial strategy is to choose a random node as the source of infection, while defender randomly select
k nodes as its initial strategy, i.e., D′ = {v|v ∈ V}. Equations (12)–(16) are used in line 5 to solve the
equilibrium of both sides. A heuristic algorithm is utilized by Approximation Response to update
strategies in line 6. Approximation Response utilizes Mixed Integer Linear Programming (MILP) to
obtain the optimal strategy of the defender in line 8. The algorithm terminates when the optimal
strategy cannot be found.
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Algorithm 1 Overview of CG-AOD

1: Input : V, A, B;
2: Output : the mixed strategies o f both players (x, y);
3: InitializeD′,A;
4: repeat;
5: (x, y)← CoreLP(D′,A) ;
6: D

∗
← DAR−D(y) ;

7: if D∗ = ∅ then;
8: D

∗
← DOR−D(y) ;

9: D∗ ← D′ ∪D∗;
10: until D∗ = ∅ and A∗ = ∅;
11: return(x, y);

4.2. Optimal Response

The defender module consists of two parts: Optimal Response and Approximation Response.
Optimal Response, which is responsible for obtaining the optimal response (i.e., optimal strategy) of the
defender to the attacker’s mixed strategy, introduced in this section.

Given the attacker’s mixed strategy, the defender needs to find a pure strategy as its optimal
response. When the defender’s strategy D satisfying Ud(D, y) > Ud(x, y), the strategy is valid and we
add it to the current strategy space D′. The Optimal Response thus finds an improving strategy by
minimizing Ud(D, y) over the entire pure strategy space, and is formulated as the following MILP:

max−
∑

A∈A
yA

{ 1
MC

∑MC−1

i=0

∑N−1

j=0
γA

j (i)t
A
j (i)

}
(17)

s.t.
∑

v∈V
Dv = k (18)

γA
j (i) ≤ D j (19)

βA
j (i) ≤ γ

A
j (i) (20)

D jtA
j (i) −

(
1− γA

j (i)
)
M1 ≤

(
1− βA

j (i)
)
M2 + DltA

l (i) ∀ j, l ∈ V (21)

Dv ∈ {0, 1} (22)

γA
j (i) ∈ {0, 1} (23)

βA
j (i) ∈ {0, 1} (24)∑MC−1

i=0
γA

j (i) = 1 f or all A and i (25)

M1, M2 are big constants (26)

Equation (17) is the optimization goal, where t j(i) is taken from the “Propagation Time Initialization
Table”. Equation (18) enforces that the defender covers at most k nodes. Equations (19)–(25) ensure
that the detection time of the outbreak propagation is minimal. Unfortunately, Optimal Response turns
out to be NP-hard [44]. Therefore, to speed up the computational process, Approximation Response is
required to find one pure strategy that can increase the payoff of defenders. It should be noted that it is
not necessary to find the optimal solution in each iteration step, so the Optimal Response is called only
when the Approximation Response cannot find such a strategy.

Theorem 1. The Optimal Response is NP-hard.
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Proof 1. Proof of the Optimal Response can achieve by simplifying a Set-Cover Problem that is also
NP-hard. The Set-Cover problem is defined as follows: Given a set of n elements U, and Q ⊆ 2U is the
subset of U, the goal of the set cover problem is to find k subsets of Q which can cover all the elements
of U. We turn an arbitrary set-cover problem into a Optimal Response problem as follows.

First, we build all the sensors as a network G = 〈V, E〉. For each element i ∈ U, a node v labeled {i}
is added to the network. For each non-single subset Q ⊆ Q, we add a node v to the network labeled as
Q. The set described above is named as the label set denoted as l(v). For each i ∈ U, Q ⊆ Q, we add an
edge between the node labeled as {i} and the node labeled as Q. Then, we construct the support set
of the attacker’s mixed strategy, i.e., the set where pure strategy is non-zero. For each element i ∈ U,
we construct a corresponding attacker’s pure strategy denoted Ai = {Ui∈Q,Q∈Ql−1(Q)}, where l−1(Q) is
the node labeled as Q. Then, this strategy is added to the support set. Therefore, the attacker’s support
set contains |U| pure strategies.

For example, we assume that U = {1,2,3} and Q = {{1},{2},{3},{1,2},{2,3}}, constructed graph is
shown as Figure 4.
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The support set of attacker’s mixed strategy contains 3 pure strategies as shown in Table 2.

Table 2. Mixed Strategy.

Pure Strategy Corresponding Element in U Vertices

A1 1 {v1, v2}

A2 2 {v2, v3, v4}

A3 3 {v4, v5}

Then, we prove in the corresponding Optimal Response that the set U can be covered by k subsets
in Q if and only if the defender can select all the attacker’s strategies. �

Proof of sufficiency: We assume that the defender can assign k resources to k nodes in the graph to
monitor all the attacker’s strategies. B denotes the set of k nodes. It is proved that for ∀v ∈ B, the set U
can be covered by k sets l(v).

We assume that the set U cannot be covered by kl(v) for arbitrary v ∈ B, which shows that there is
at least one element i ∈ U to make i < l(v). Note that the attacker’s strategy Ai can only be the strategy
with a non-zero probability. Ai is defined as ∀v ∈ Ai, ∀i ∈ l(v). Thus nodes in Ai are not contained in B,
and Ai is not monitored by k resources, which is contradict with the assumptions.

Proof of necessity: If the set U can be covered by k subsets Q ⊆ Q and defender can monitor all the
attacker’s strategies by assigning k resources to nodes, then these nodes’ label sets are the k subsets of
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Q. The reason for that can be described as follows. For each {i} ∈ U, if there is a node v with i ∈ l(v)
which is covered, then Ai will be monitored. If U can be covered by k subsets Q, for each i ∈ U, it is at
least one of the k subsets. Thus, all attacker’s strategies can be monitored by k resources.

4.3. Approximation Response

The previous section mainly introduces the Optimal Response, while this section focuses on another
part called the Approximation Response. The Approximation Response is mainly responsible for finding
strategies to improve the payoff of defenders. In this paper, the greedy algorithm is used to calculate
the pure strategy for improving the payoff of defenders [49], i.e., Ud(D, y) > Ud(x, y). First, we prove
the payoff function is a sub-modularity function, which can get a good solution utilizing the greedy
algorithm. A basic conclusion is drawn in literature [50]: for a submodular function, the greedy
algorithm implements a constant factor approximation. At least one constant actor (1 − 1/e) can be
obtained through the set of greedy algorithm D, which is based on the observation point value obtained
by the optimal solution.

Theorem 2. The greedy algorithm ensures that the accuracy of Approximation Response is 1 − 1/e.

Proof 2. First, we define the normalized utility function as follows:

F (D) = Ud(D, y) −Ud(∅, y) =
∑

A∈y|A∩D,∅
yaP(A) (27)

Next, we prove the function F (D) is a submodule. Let v1 and v2 be two node sets chosen by the
defender, and v1 ⊆ v2. Let A1 and A2 be the set of attacker strategies that cannot be monitored by
v1 and v2, i.e., A1 ∈ y

∣∣∣A1 ∩ v1 = ∅ and A2 ∈ y
∣∣∣A2 ∩ v2 = ∅ . We have A2 ⊆ A1 because any strategy

monitored by v1 can be monitored by v2, thus A1 ⊆ A2. As long as the function F (D) is submodular,
it must satisfy the equation as follows:

F (V1 ∪ v) −F (V1) ≥ F (V2 ∪ v) −F (V2) (28)

Then we have:

F (V1 ∪ v) −F (V1) =
∑

A∈y|A∩(V1∪v),∅
yaP(A) −

∑
A∈y|A∩D,∅

yaP(A)=
∑

A∈A2 |A∩v,∅
yaP(A) (29)

For the right-hand side of Equation (28), we can also get:

F (V2 ∪ v) −F (V2) =
∑

A∈A2 |A∩v,∅

yaP(A) (30)

Because A1 ⊆ A2, yaP(A) > 0, Equation (28) is proved. BecauseF (D) is submodular, the algorithm
ensures the (1 − 1/e) accuracy. Pseudo-code is used to describe the greedy algorithm of the
Approximation Response in detail, as shown in Algorithm 2.

As presented in Algorithm 2, the greedy algorithm tries to select a valid defender strategy
iteratively. Input y is the attacker’s strategy space, but only the strategies with non-zero probabilities
are considered. Defender’s strategy set Dappro in line 3 is empty at the beginning, and activated sensors
are added in Dappro for every loop. Lines 4-8 are used for the update. Line 7 iteratively chooses the
nodes that bring the largest marginal utility greedily. If no node satisfies the condition, nodes are
randomly selected and then a measurement is generated in lines 9-10. Finally, it is required to judge
whether the found strategy is valid. If it is valid, it will return, otherwise, it will return null.
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Algorithm 2 Approximation Response

1: input : y ;
2: output : D;
3: Dappro = ∅;
4: for v ∈ V do;
5: D← {v};
6: while |D| < k do;
7: v∗ ← arg maxvUd(D∪ {v}, y) ;
8: D← D∪ {v∗};
9: while |D| < B do;
10: D← D∪ {v} choose v f rom V randomly;
11: if Ud(D, y) > Ud(x, y) then;
12: Dappro = Dappro ∪ {D};
13: return Dappro;
14: else;
15: return null.

�

5. Experimental Evaluation

In this section, we first evaluate the performance of our approach through a numerical example
to demonstrate the validity of our approach in Section 4. Then, we test our algorithms on synthetic
networks, and analyze the algorithms from the aspects of solution quality, scalability and robustness.
All algorithms were run on a 3.20 GHz CPU loads with quad-cores and 16.00 GB memory using
Windows 10. All linear programming involved is calculated using the solution software CPLEX
(version 12.6). Since uncertainty is involved in the model, we run the simulation 100 times for obtaining
each average result (the number 100 comes from the discussion “how many simulation runs are needed
before obtaining an average result?” in [51]).

5.1. Numerical Example

In this part, we use a numerical example to verify the validity of the CG-AOD algorithm which
included Optimal Response and Approximation Response. Given an undirected network G, as shown in
Figure 5, the undirected graph has seven devices which are embedded with specific IDS. The solid line
in the Figure 5 represents the link state of two devices, while the dotted line represents the unstable link
relationship between devices. For simplicity, only seven nodes V = {v0, v1, . . . , v6} with stable links are
selected for calculation. The label corresponding to each edge is represented as p = 0.1. Among them,
the maximum monitoring time is Tmax = 10, the budget of each defender strategy is k = 3.
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We calculate this numerical example by exploiting the mathematical programming in Equations
(12)–(16), and the final exact solution is 2.78624. In the other words, the best time result of the detection
by the defender for the outbreak propagation is 2.78624 seconds. We use the CG-AOD algorithm to
solve the example given in Figure 5, and show the execution results of the algorithm and the process of
CG-AOD in Table 3, which presents the nodes included in the two players’ strategy sets and the utility
of the attackers in each time step.
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Table 3. The Process of CG-AOD.

STEP Attacker Strategy Defender Strategy Payoff

1 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6} {v4,v5,v3}
Equilibrium {v6}(1) {v4,v5,v3}(1) 9

2 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6} {v4,v5,v3},{v4,v5,v6}

Equilibrium {v2}(0.891089)
{v6}(0.108911)

{v4,v5,v3}(0.613861)
{v4,v5,v6}(0.386139) 5.52475

3 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}
{v4,v5,v3},{v4,v5,v6},

{v2,v5,v6}

Equilibrium {v3}(0.473684)
{v6}(0.526316)

{v4,v5,v6} (0.526316)
{v2,v5,v6}(0.473684) 4.73684

4 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}
{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6}

Equilibrium {v0}(0.99099)
{v3}(0.00990099)

{v4,v5,v3}(0.418042)
{v2,v5,v6}(0.376238)
{v3,v5, v6}(0.205721)

3.76238

5 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},

{v0 ,v3,v6}

Equilibrium
{v1}(0.898204)
{v3}(0.0718563)
{v6}(0.0299401)

{v4,v5,v3}(0.409182)
{v2,v5,v6}(0.368263)
{v0,v3,v6}(0.222555)

3.68263

6 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},
{v0,v3,v6},{v1,v3,v6}

Equilibrium

{v1}(0.0539423)
{v2}(0.552908)
{v3}(0.33606)
{v6}(0.0570889)

{v4,v5,v3}(0.393179)
{v2,v5,v6}(0.353861)
{v3,v5,v6}(0.213851)

{v1,v3,v6}(0.0391082)

3.53861

7 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5,v6},
{v0,v3,v6},{v1,v3,v6},

{v2 ,v3,v6}

Equilibrium

{v0}(0.239721)
{v1}(0.421699)
{v2}(0.129297)
{v3}(0.0127931)
{v4}(0.196489)

{v4,v5,v6}(0.275675)
{v2,v5,v6}(0.317281)
{v0 ,v3,v6}(0.150301)
{v1,v3,v6}(0.135167)
{v2,v3,v6}(0.121576)

3.17281

8 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},
{v0 ,v3,v6},{v1,v3,v6},
{v2,v3,v6},{v0,v1,v4}

Equilibrium

{v0}(0.175687)
{v1}(0.183212)
{v2}(0.208893)
{v3}(0.17239)
{v5}(0.198778)
{v6}(0.061041)

{v4,v5,v3}(0.268945)
{v2,v5,v6}(0.239261)
{v0 ,v3,v6}(0.106774)
{v1,v3,v6}(0.100118)
{v2,v3,v6}(0.191897)

{v0,v1,v4}(0.0930045)

2.97854

9 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},
{v0 ,v3,v6},{v1,v3,v6},
{v2,v3,v6},{v0,v1,v4},

{v2 ,v3,v5}

Equilibrium

{v0}(0.01404)
{v1}(0.211501)
{v2}(0.0971293)
{v3}(0.140188)
{v4}(0.198705)
{v5}(0.163512)
{v6}(0.174924)

{v4,v5,v6} (0.22779)
{v2,v5,v6}(0.236859)
{v0,v3,v6}(0.121694)
{v1,v3,v6} (0.113244)
{v2 ,v3,v6}(0.171224)
{v0,v1,v4} (0.088595)
{v2,v3,v5}(0.0405945)

2.92673

10 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},
{v0,v3,v6},{v1,v3,v6},
{v2,v3,v6},{v0,v1,v4},
{v2 ,v3,v5},{v1,v3,v4}

Equilibrium

{v0}(0.00326235)
{v1}(0.0742531)
{v2}(0.122845)
{v3}(0.169188)
{v4}(0.215608)
{v4}(0.2072)
{v6}(0.174924)

{v4,v5,v3} (0.0268422)
{v2,v5,v6} (0.278986)
{v0 ,v3,v6}(0.0251817)
{v2 ,v3,v6}(0.056574)
{v2 ,v3,v5}(0.134177)
{v1,v3,v4} (0.230782)

2.78986

11 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

{v4,v5,v3},{v4,v5,v6},
{v2,v5,v6},{v3,v5, v6},
{v0 ,v3,v6},{v1,v3,v6},
{v2 ,v3,v6},{v0,v1,v4},
{v2,v3,v5},{v1,v3,v4}

{v3,v4,v6}

Equilibrium

{v0}(0.0176406)
{v1}(0.103868)
{v2}(0.124691)
{v3}(0.165048)
{v4}(0.186597)
{v5}(0.199553)
{v6}(0.202604)

{v2,v5,v6}(0.278624)
{v0,v3,v6} (0.0248471)
{v0,v3,v6}(0.246089)
{v2 ,v3,v6}(0.029415)
{v2,v3,v5} (0.162656)
{v1,v3,v4} (0.230108)
{v3,v4,v6}(0.0282604)

2.78624
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When the time step is 1, it is the initialization strategy. Each time step loop calls the
Approximation Response and Optimal Response to select defender strategy and calculates the Nash
equilibrium of the two players under the current strategy.

5.2. Solution Quality Analysis

In this section, we conduct experiments on synthetic graph and generate synthetic graphs from
graph models: the Barabási-Albert, which is scale-free networks (BA(r)) and where each vertex is
connected to m incumbents using a preferential attachment mechanism [52]. The distribution in the
scale-free network satisfies the power law, which includes a large number of nodes with small degrees.
Besides, the networks of different sizes can be generated by modifying parameters to evaluate the
performance of the algorithm at different averaging. To establish a scale-free network, it is needed to
be aware that when the new node v and the side of v exist are directed. We use BA scale-free network
with parameters r = 2,4, labeled BA(2), and BA(4), respectively. For example, BA(2) indicates that
there are two initial nodes, and each new node is connected with two existing nodes, thus forming a
scale-free network.

5.2.1. Comparison of the Approximation Solution with the Optimal Solution

Approximation. With the increase of network scale, the computational complexity increases, so that
the results of CG-AOD algorithm cannot be obtained within a limited time. And thus we only run
CG-AOD/Appro algorithm, which is one part of CG-AOD algorithm and without Optimal Response.
In the BA(2) network, k = 2, we give the process of solving the global optimal solution directly using the
mathematical programming in Equations (17)–(26) and compare CG-AOD/Appro algorithm with the
CG-AOD algorithm. The experiment result shows that the approximate value of the solution quality
of the CG-AOD/Appro algorithm and the CG-AOD algorithm is about 90%, as shown in Figure 6a.
In the BA(2) network, k = 3, only a part of optimal solutions are obtained. As the number of sensors
increases, the Optimal Response part will run out of resources in the calculation, so it cannot give all the
optimal solutions. Nevertheless, it is not difficult to see that the approximate solution and the optimal
solution given directly follow an approximate degree of more than 90%, which is higher than that at k
= 2, as shown in Figure 6c. For BA(4), k = 4 has a similar result, as shown in Figure 6e.
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Scalability Analysis. We compare the scalability of the two methods under different resource
numbers on BA(2) networks, as shown in Figure 6b–f. When the network and budget are relatively small,
the difference of run time of CG-AOD and CG-AOD/Appro algorithm is little, but the CG-AOD/Appro
algorithm performs better on large-scale networks, and can give the calculation results in a relatively
short time. In Figure 6d,f, the complete solution of CG-AOD is not given, because the runtime of
CG-AOD exponentially increases with the size. It is difficult to get results in a short time when the
network size and budget are large. Overall, CG-AOD/Appro performs better than CG-AOD and can
be scaled up to realistic-sized problems.

5.2.2. Comparison of the CG-AOD/Appro Algorithm with Other Benchmark Methods

In this section, we choose six benchmark methods as a comparison to evaluate the solution quality
of the CG-AOD/Appro algorithm in a complex network.

Benchmark methods. We introduce three pure measure baselines of heuristic algorithms and three
mixed measure baselines of heuristic algorithms. Different strategies of defender choosing in the
benchmark are shown as follows:

• RP: the defender randomly opens k nodes for monitoring, and the attacker randomly selects a
node as the source node of the infection.

• DCP [53]: the defender, according to the node degree value, selects the nodes to monitor, and then
the attacker makes the Optimal Response according to the defender’s pure strategy.

• CELF [10]: the defender uses the CELF algorithm that is the classical greedy algorithm to choose k
nodes for the sensor.

• RM: a defender mixed strategy where the marginal coverage probability of each vertex is a
random value.

• DCM: a defender mixed strategy where the marginal coverage probability of each vertex is
normalized degree centrality.

CELF-M: a defender mixed strategy where the marginal coverage probability of each vertex
is normalized CELF value-based centrality. Solution Quality Analysis. In Figure 7a–b, we compare
the solution quality obtained from our approaches with those obtained from 6 heuristic baselines.
Results show that the solutions of all the heuristic baselines are not ideal in general and become worse
with the increasing network size, while CG-AOD/Appro can always achieve an almost optimal solution,
which is the closest to the solution given by CG-AOD. The performance of RP is dramatically worse in all
cases because it did not consider the network structure. The performance of all mixed strategy heuristics
(i.e., RM, DCM, and CELF-M) is much better than the corresponding pure strategy-based heuristics (i.e.,
RP, DCP, and CELF), confirming the necessity of using randomized dynamic monitoring schedules.
The good performance of CG-AOD/Appro indicates that our scheme has a better effective response.
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Robustness. We compare the utility of CG-AOD/Appro under different the number of defender
resources. Figure 7c shows a decreasing efficiency of CG-AOD/Appro which is faster than the
other 6 heuristic baselines. The solutions are still near-optimal and outperform other heuristic
algorithms significantly.

The above experiments show that the solutions of all the baselines are not ideal in general and
become worse with the increasing network size when the defender strategy obtained from the six
baselines, while CG-AOD/Appro can always obtain almost the optimal solution. CG-AOD/Appro
offers significant performance and robustness.

6. Conclusions

In this paper, we investigate the problem of adversarial outbreak detection (AOD) in the IoT,
in which a network defender aims to detect the attacker as soon as possible by generating a dynamic
scheduling strategy in the network. There are two key issues to be considered: (1) IoT devices usually
have limited resources and the sensors cannot detect the outbreak propagation continuously; (2) the
IoT devices are usually expose to the public situation, and the attacker can strategically employ
analytical tools to maximize the influence of worms’ propagation. We present the work through
applying Stackelberg security games for outbreak detection in the adversarial environment and study
the strategies and utility of both players. Firstly, we formulate the interaction between the defender
and the attacker as a Stackelberg game. Secondly, we build a modified Column Generation framework
for computing the optimal strategy effectively and construct the optimal response of defenders as a
mixed-integer linear programming (MILPs), and prove that solving the optimal response of defenders
is an NP-hard problem. Then, the optimal response of defenders are improved by using an approximate
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algorithm-greedy algorithm. Finally, we demonstrate the effectiveness, scalability and robustness of
our scheme through experiments.
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