3DOF Ultrasonic Motor with Two Piezoelectric Rings
Abstract
:1. Introduction
2. Design Concept and Operating Principle
3. Modeling of the Actuator
The Actuator
4. Experimental Study
5. Conclusions
- Amplitudes of the contact points vibrations at the resonant frequency depend on the segment number of the top surface electrode and the highest length of the major axis is obtained when the top electrode was divided into six sections.
- The direction of the sphere rotation can be controlled by switching the corresponding segment of the electrode.
- A prototype of USM was fabricated and experiments were performed. Resonant frequencies and modal shapes calculated during numerical simulation demonstrate good agreement with the results obtained during the experimental measurement.
- The sphere angular rotation step measurement was performed and the resolutaion of 30 µrad was achieved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, B.; Lee, J.; Won, C. Micro-Navigation Satellite Network Design and Analysis. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, GA, USA, 16–19 September 2008; pp. 867–876. [Google Scholar]
- Jänker, P.; Claeyssen, F. New applications for aircraft and space applications. In Proceedings of the 10th International Conference on New Actuators, Bremen, Germany, 9–11 June 2008; pp. 325–330. [Google Scholar]
- Uchino, J.; Giniewicz, J.R. Micromechatronics; Marcel Dekker Inc.: New York, NY, USA, 2003; pp. 1–32. [Google Scholar]
- Bansevicius, R.; Bagdoniene, J.; Jurenas, V.; Kulvietis, G.; Mazeika, D.; Drukteiniene, A. Single Cylider-Type Piezoelectric Actuator with Two Active Kinematic Pairs. Micromachines 2018, 9, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasiljev, P.; Mazeika, D.; Kulvietis, G.; Vaiciuliene, S. Piezoelectric actuator generating 3D-rotations of the sphere. Solid State Phenom. 2006, 113, 173–178. [Google Scholar] [CrossRef]
- Bansevičius, R.; Mažeika, D.; Jūrėnas, V.; Kulvietis, G.; Drukteiniene, A. Multi-DOF Ultrasonic Actuators for Laser Beam Positioning. Shock Vib. 2019, 2019, 4919505. [Google Scholar] [CrossRef]
- Shi, S.; Huang, Z.; Yang, J.; Liu, Y.; Chen, W.; Uchino, K. Development of a compact ring type MDOF piezoelectric ultrasonic motor for humanoid eyeball orientation system. Sens. Actuators A 2018, 272, 1–10. [Google Scholar] [CrossRef]
- Kazokaitis, G.; Jurenas, V. Magneto Pjezoelektrinės Pavaros Įrenginys. Patent No. LT2018 531, 19 June 2018. Submitted. [Google Scholar]
- Piezo Data: PZT-4, Lead Zirconate Titatnate. Available online: http://www.efunda.com/materials/piezo/material_data/matdata_output.cfm?Material_ID=PZT-4 (accessed on 10 December 2019).
- Material: Lead Zirconate Titanate (PZT). Available online: https://www.memsnet.org/material/leadzirconatetitanatepzt/ (accessed on 10 December 2019).
- DeAngelis, D.A.; Schulze, G.W. Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers. Phys. Procedia 2016, 87, 85–92. [Google Scholar] [CrossRef]
- Zhao, C. Ultrasonic motors. In Technologies and Applications; Science Press: Beijing, China, 2010; pp. 23–27. ISBN 978-7-03-029018-9. [Google Scholar]
- Zhang, M.; Zhao, J. Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Aluminum 6061-T6; 6061-T651. Available online: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6 (accessed on 10 December 2019).
- Alumina—Aluminum Oxide-Al2O3—A Refractory Ceramic Oxide. Available online: https://www.azom.com/properties.aspx?ArticleID=52 (accessed on 10 December 2019).
- Tzou, H.S. Piezoelectric Shells Distributed Sensing and Control of Continua; Kluwer: Dordrecht, The Netherlands, 1993; p. 320. [Google Scholar]
- PSV-500-3D Scanning Vibrometer. Available online: https://www.polytec.com/fileadmin/d/Vibrometrie/OM_DS_PSV-500-3D_E_42447.pdf (accessed on 11 December 2019).
- Piezo Linear Amplifier EPA-104. Available online: https://piezo.com/products/piezo-linear-amplifier (accessed on 11 December 2019).
- 6500B Impedance Analyzer. Available online: http://www.waynekerrtest.com/products_detail.php?indexs=4 (accessed on 11 December 2019).
Material Property | Piezoceramics PZT-4 |
---|---|
Young Modulus, GPa | 63 |
Poisson coefficient | 0.31 |
Density, kg/m3 | 7500 |
Dielectric permittivity, 103 F/m | ε11 = 1.48, ε22 = 1.48, ε33 = 1.3 |
Piezoelectric coupling matrix, 10−12 C/N | d31 = −123, d32 = −123, d33 = 289, d24 = 496, d15 = 496 |
Compliance matrix, 10−12 m2/N | c11= 12.3, c21 = −4.05, c31 = −5.31, c22 = 12.3, c32 = −5.31, c33 = 15.5, c44 = 39, c55 = 39, c66 = 32.7 |
Components | Flange | Contact Element |
---|---|---|
Material properties | Aluminum 6061 | Aluminum oxide (Al2O3). |
Young’s modulus, GPa | 68.9 | 215 |
Poison’s ratio | 0.33 | 0.21 |
Density, kg/m3 | 2700 | 3950 |
Dimensions, mm | ODxIDxH = 30 × 14 × 1,5 | 1,5 × 2,5 × 1,5 |
Components | 3 Segments (µm) | 6 Segments(µm) | 9 Segments(µm) |
---|---|---|---|
Major axis U(xz) | 24.24 | 27.31 | 11.66 |
Minor axis U(xz) | 12.605 | 13.63 | 12.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jūrėnas, V.; Kazokaitis, G.; Mažeika, D. 3DOF Ultrasonic Motor with Two Piezoelectric Rings. Sensors 2020, 20, 834. https://doi.org/10.3390/s20030834
Jūrėnas V, Kazokaitis G, Mažeika D. 3DOF Ultrasonic Motor with Two Piezoelectric Rings. Sensors. 2020; 20(3):834. https://doi.org/10.3390/s20030834
Chicago/Turabian StyleJūrėnas, Vytautas, Gražvydas Kazokaitis, and Dalius Mažeika. 2020. "3DOF Ultrasonic Motor with Two Piezoelectric Rings" Sensors 20, no. 3: 834. https://doi.org/10.3390/s20030834
APA StyleJūrėnas, V., Kazokaitis, G., & Mažeika, D. (2020). 3DOF Ultrasonic Motor with Two Piezoelectric Rings. Sensors, 20(3), 834. https://doi.org/10.3390/s20030834