Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data
Abstract
:1. Introduction
2. Proposed Method
2.1. Datasets
2.2. Smart Sensors Data Acquisition and Pre-processing
2.3. Deep Autoencoder for Feature Learning
2.4. Fine-Tuning Train Deep Autoencoder with SOM for Clustering
2.5. Level of Consumption by Each Cluster
3. Experimental Results and Discussion
Algorithm 1 Clustering with SOM |
1: Input: Input data: X; SOM grid size M, N; Temperatures ; Maximum iterations MaxIter; |
2: Preparation: |
3: Pretrained deep autoencoder |
4: Steps: |
5: for i from 0 to MaxIter do |
6: Load training batch |
7: Compute cluster assignments for the batch using Equation (3). |
8: Update the temperature parameter using Equation (6). |
9: Compute topographic weights for the batch using Equation (5). |
10: Train autoencoder |
11: end for |
12: Assign energy consumption levels to clusters |
Output: Levels of energy consumption |
3.1. Evaluation Metrics
3.2. Results and Comparison with State-of-the-Art
3.3. Cluster Visualizations and Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Naspi, F.; Arnesano, M.; Stazi, F.; D’Orazio, M.; Revel, G.M. Measuring Occupants’ Behaviour for Buildings’ Dynamic Cosimulation. J. Sens. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Programme, U.N.E. Energy Efficiency for Buildings. Available online: http://www.studiocollantin.eu/pdf/UNEP%20Info%20sheet%20-%20EE%20Buildings.pdf (accessed on 9 September 2019).
- Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A. Power supply-demand balance in a Smart Grid: An information sharing model for a market mechanism. Appl. Math. Model. 2014, 38, 3350–3360. [Google Scholar] [CrossRef]
- Naspi, F.; Stazi, F.; Arnesano, M.; Seri, F.; Zampetti, L.; Revel, G.M.; D’Orazio, M. Measuring users-windows interactions in buildings: Behavioural models for the summer season. TEMA 2018, 4, 1–12. [Google Scholar]
- Sameti, M.; Haghighat, F. Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power. Renew. Energ. 2019, 130, 371–387. [Google Scholar] [CrossRef]
- Grindvoll, H.; Vermesan, O.; Crosbie, T.; Bahr, R.; Dawood, N.; Revel, G.M. A wireless sensor network for intelligent building energy management based on multi communication standards-A case study. J. Inf. Technol. Constr. 2012, 17, 43–61. [Google Scholar]
- Ai, S.; Chakravorty, A.; Rong, C. Household Power Demand Prediction Using Evolutionary Ensemble Neural Network Pool with Multiple Network Structures. Sensors 2019, 19, 721. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-I.; Ko, J.-M.; Choi, S.-H. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In Proceedings of the 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Paris, France, 11–15 April 2011; pp. 1–6. [Google Scholar]
- Hernández, L.; Baladrón, C.; Aguiar, J.; Carro, B.; Sánchez-Esguevillas, A. Classification and clustering of electricity demand patterns in industrial parks. Energies 2012, 5, 5215–5228. [Google Scholar] [CrossRef] [Green Version]
- Ford, V.; Siraj, A. Clustering of smart meter data for disaggregation. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 507–510. [Google Scholar]
- Rhodes, J.D.; Cole, W.J.; Upshaw, C.R.; Edgar, T.F.; Webber, M.E. Clustering analysis of residential electricity demand profiles. Appl. Energ. 2014, 135, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.; Duarte, J.M.; Duarte, F.J.; Vale, Z. A data-mining-based methodology to support MV electricity customers’ characterization. Energy Build. 2015, 91, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Al-Jarrah, O.Y.; Al-Hammadi, Y.; Yoo, P.D.; Muhaidat, S. Multi-layered clustering for power consumption profiling in smart grids. IEEE Access 2017, 5, 18459–18468. [Google Scholar] [CrossRef]
- Cai, H.; Shen, S.; Lin, Q.; Li, X.; Xiao, H. Predicting the energy consumption of residential buildings for regional electricity supply-side and demand-side management. IEEE Access 2019, 7, 30386–30397. [Google Scholar] [CrossRef]
- Nordahl, C.; Boeva, V.; Grahn, H.; Netz, M.P. Profiling of Household Residents’ Electricity Consumption Behavior Using Clustering Analysis. In Proceedings of the International Conference on Computational Science, Faro, Portugal, 12–14 June 2019; pp. 779–786. [Google Scholar]
- Park, K.-J.; Son, S.-Y. A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access 2019, 7, 59048–59058. [Google Scholar] [CrossRef]
- Räsänen, T.; Voukantsis, D.; Niska, H.; Karatzas, K.; Kolehmainen, M. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Appl. Energ. 2010, 87, 3538–3545. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S. A shape-based clustering method for pattern recognition of residential electricity consumption. J. Clean. Prod. 2019, 212, 475–488. [Google Scholar] [CrossRef]
- EERE. DOE Buildings Performance Database, Sample Residential Data. Available online: https://openei.org/datasets/dataset/doe-buildings-performance-database-sample-residential-data (accessed on 9 September 2019).
- Georges Hebrail, A.B. Individual Household Electric Power Consumption Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption (accessed on 13 August 2019).
- Eekhout, I.; de Boer, R.M.; Twisk, J.W.; de Vet, H.C.; Heymans, M.W. Missing data: A systematic review of how they are reported and handled. Epidemiology 2012, 23, 729–732. [Google Scholar] [CrossRef]
- Jain, Y.K.; Bhandare, S.K. Min max normalization based data perturbation method for privacy protection. IJCCT 2011, 2, 45–50. [Google Scholar]
- Chiroma, H.; Abdullahi, U.A.; AlArood, A.A.; Gabralla, L.A.; Rana, N.; Shuib, L.; Hashem, I.A.T.; Gbenga, D.E.; Abubakar, A.I.; Zeki, A.M. Progress on Artificial Neural Networks for Big Data Analytics: A Survey. IEEE Access 2019, 7, 70535–70551. [Google Scholar] [CrossRef]
- Zeng, K.; Yu, J.; Wang, R.; Li, C.; Tao, D. Coupled deep autoencoder for single image super-resolution. IEEE Trans. Cybern. 2015, 47, 27–37. [Google Scholar] [CrossRef]
- Cho, K. Boltzmann machines and denoising autoencoders for image denoising. arXiv 2013, arXiv:1301.3468. [Google Scholar]
- Gondara, L. Medical image denoising using convolutional denoising autoencoders. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12 December 2016; pp. 241–246. [Google Scholar]
- Ribeiro, M.; Lazzaretti, A.E.; Lopes, H.S. A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recognit. Lett. 2018, 105, 13–22. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Muhammad, K.; Haq, I.U.; Baik, S.W. Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments. Future Gener. Comput. Syst. 2019, 96, 386–397. [Google Scholar] [CrossRef]
- Ul Haq, I.; Ullah, A.; Muhammad, K.; Lee, M.Y.; Baik, S.W. Personalized Movie Summarization Using Deep CNN-Assisted Facial Expression Recognition. Complexity 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Deelers, S.; Auwatanamongkol, S. Enhancing K-means algorithm with initial cluster centers derived from data partitioning along the data axis with the highest variance. IJCS 2007, 2, 247–252. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. In Proceedings of the ACM Sigmod Record, Philadelphia, PA, USA, 1–3 June 1999; pp. 49–60. [Google Scholar]
- Forest, F.; Lebbah, M.; Azzag, H.; Lacaille, J. Deep Embedded SOM: Joint Representation Learning and Self-Organization. Available online: http://florentfo.rest/files/ESANN-2019-DeepEmbeddedSOM-full-paper.pdf (accessed on 10 August 2019).
- Kohonen, T.; Honkela, T. Kohonen network. Scholarpedia 2007, 2, 1568. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intel. 1979, 1, 224–227. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. JASA 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Ding, C.; He, X. Cluster merging and splitting in hierarchical clustering algorithms. In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi TERRSA, Maebashi, Japan, 9–12 December 2002; pp. 139–146. [Google Scholar]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec. 1996, 25, 103–114. [Google Scholar] [CrossRef]
- Carpenter, G.A.; Grossberg, S.; Rosen, D.B. Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 1991, 4, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Bação, F.; Lobo, V.; Painho, M. Self-organizing maps as substitutes for k-means clustering. In Proceedings of the International Conference on Computational Science, Heidelberg, Berlin, 22 May 2005; pp. 476–483. [Google Scholar]
Algorithm | Silhouette | CH | DB | Time (Seconds) | Input Clusters/ Retrieved Clusters | Clusters Initialization Required/Not Required |
k-means | 0.55 | 683,580.737 | 0.55 | 7.12 | 4/4 | Required |
Ward | 0.48 | 580,575.728 | 0.55 | 1421.99 | 4/4 | Required |
Average Linkage | 0.95 | 690.038 | 0.33 | 687.23 | 4/4 | Required |
Optics | 0.17 | 27,847.348 | 59.03 | 10479.69 | -/6 | Not Required |
Birch | - | - | - | 4.57 | -/1 | Not Required |
Fuzzy ART | - | - | - | 13065.65 | -/1 | Not Required |
Proposed Method (1D SOM) | 0.58 | 690916.65 | 0.49 | 301.20 | 4/4 | Required Maximum |
Proposed Method (2D SOM) | 0.55 | 661626.140 | 0.54 | 211.05 | 4/4 | Required Maximum |
Algorithm | Silhouette | CH | DB | Time (Seconds) | Input Clusters/ Retrieved Clusters | Cluster Initialization Required/Not Required |
k-means | 0.2011 | 84.1566 | 1.49 | 0.13 | 4/4 | Required |
Ward | 0.1643 | 335.12 | 1.63 | 0.15 | 4/4 | Required |
Average Linkage | 0.227 | 5.27 | 0.44 | 0.18 | 4/4 | Required |
Optics | - | - | - | 1.21 | -/1 | Not Required |
Birch | - | - | - | 0.025 | -/1 | Not Required |
Fuzzy ART | 0.06 | 83.987 | 3.530 | 89.91 | -/14 | Not Required |
Proposed Method (1D SOM) | 0.2412 | 85.2139 | 1.49 | 241.05 | 4/4 | Required Maximum |
Proposed Method (2D SOM) | 0. 1994 | 60.5528 | 2.21 | 274.64 | 4/4 | Required Maximum |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Haydarov, K.; Ul Haq, I.; Muhammad, K.; Rho, S.; Lee, M.; Baik, S.W. Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors 2020, 20, 873. https://doi.org/10.3390/s20030873
Ullah A, Haydarov K, Ul Haq I, Muhammad K, Rho S, Lee M, Baik SW. Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors. 2020; 20(3):873. https://doi.org/10.3390/s20030873
Chicago/Turabian StyleUllah, Amin, Kilichbek Haydarov, Ijaz Ul Haq, Khan Muhammad, Seungmin Rho, Miyoung Lee, and Sung Wook Baik. 2020. "Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data" Sensors 20, no. 3: 873. https://doi.org/10.3390/s20030873
APA StyleUllah, A., Haydarov, K., Ul Haq, I., Muhammad, K., Rho, S., Lee, M., & Baik, S. W. (2020). Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors, 20(3), 873. https://doi.org/10.3390/s20030873