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Abstract: Commercial interests in indoor localization have been increasing in the past decade.
The success of many applications relies at least partially on indoor localization that is expected to
provide reliable indoor position information. Wi-Fi received signal strength (RSS)-based indoor
localization techniques have attracted extensive attentions because Wi-Fi access points (APs) are
widely deployed and we can obtain the Wi-Fi RSS measurements without extra hardware cost.
In this paper, we propose a hierarchical classification-based method as a new solution to the indoor
localization problem. Within the developed approach, we first adopt an improved K-Means clustering
algorithm to divide the area of interest into several zones and they are allowed to overlap with
one another to improve the generalization capability of the following indoor positioning process.
To find the localization result, the K-Nearest Neighbor (KNN) algorithm and support vector machine
(SVM) with the one-versus-one strategy are employed. The proposed method is implemented on
a tablet, and its performance is evaluated in real-world environments. Experiment results reveal
that the proposed method offers an improvement of 1.4% to 3.2% in terms of position classification
accuracy and a reduction of 10% to 22% in terms of average positioning error compared with several
benchmark methods.

Keywords: indoor localization; fingerprint positioning; received signal strength; hierarchical
classification

1. Introduction

Indoor localization refers to determining the position of an object in an indoor environment.
It is an essential problem in many applications including search, rescue, and navigation in the
indoor environments, monitoring and surveillance for security and defense purposes and Internet
of Things (IoT) [1]. Unlike outdoor positioning, indoor positioning itself is challenging because
satellite signals cannot be received reliably in indoor environments. Several localization methods have
been developed [2–8] and they mainly involve exploiting the time difference of arrival (TDOA) [2,3],
direction of arrival (DOA) [4,5] and time of arrival (TOA) [6] measurements, as well as ultra-wideband
(UWB) technique [7,8]. However, these schemes require extra hardware not currently available within
common mobile devices such as smartphones and tablets. Moreover, TDOA and TOA-based methods
need precise synchronization among sensors or between the object to be localized and sensors, which
could be practically difficult to achieve. Hence, under the constraints of low-cost deployment, we need
to find different methods to solve the indoor localization problem.

Received signal strength (RSS)-based methods are common alternatives for indoor localization
without requiring additional sensor modules. There have been a variety of techniques proposed for
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indoor positioning using RSS measurements from Wi-Fi [9], RFID [10], BLE [11], and magnetic [12]
devices. Among these methods, Wi-Fi RSS-based indoor localization is of particular interests due to
the following two advantages. Firstly, Wi-Fi access points (APs) have been extensively deployed in
indoor environments; secondly, measuring Wi-Fi RSS is readily available in the current Wi-Fi terminals.
Many regression techniques have become available for Wi-Fi RSS indoor positioning and they include
the distance-based [13,14] and Gaussian Processes (GP)-based techniques [15,16]. In fact, the use of the
standard log-normal model for indoor positioning (see, e.g., [17]) can be considered as a regression
technique as well.

In this work, we shall take a different approach and consider the fingerprint-based indoor
localization method. This is because for many practical applications, it would be sufficient if we
can determine which area the object belongs to. Furthermore, the fingerprint-based approach does
not require the simultaneous detection of at least three APs or knowing the precise locations of APs.
Generally speaking, the deployment of a RSS fingerprinting localization system has two phases, namely
the offline phase and online phase. During the offline phase, Wi-Fi RSS data at various object positions,
also referred to as the reference points (RPs), are collected to build a database. Using RSS measurements
as fingerprints, the object location can be estimated during the online phase. The fingerprint-based
localization is essentially a pattern classification problem. Specifically, the RSS database regards the
RSS measurements of the RPs as their patterns. The newly received RSS measurements are matched
against these patterns to find the position estimates.

In this paper, we focus on indoor localization of an object using sparsely deployed Wi-Fi APs. This
work presents a novel framework that first uses an improved K-Means clustering algorithm to partition
the environment into possibly partially overlapping zones. This greatly simplifies the (offline) training
and (online) localization phases at the cost of increasing the number of required classifiers. When
performing the object position estimation, we use the 1NN algorithm [18] to determine which zone the
object lies in and apply the support vector machine (SVM) [19] to find the exact object location estimate.

The proposed localization technique is different from existing hierarchical classification-based
approaches mainly in the sense that the indoor environment of interest is automatically partitioned
into possibly overlapping zones (see Section 4). This leads to reduced zone classification errors that
could be costly especially for the conventional methods, because in this case, the following RP classifier
would definitely produce erroneous localization output. As a result, the indoor positioning accuracy is
also enhanced. The effectiveness of the new hierarchical classification-based approach was validated in
a real-world hospital. Improvement of 1.7% to 3.2% in classification accuracy over direct applications of
flat classification and improvement of 1.4% to 2.1% in classification accuracy against other hierarchical
localization approaches were observed.

The rest of the paper is organized as follows. Section 2 introduces two types of classification
frameworks and reviews some existing hierarchical localization approaches. A new hierarchical
classification-based indoor localization method, including the improved K-Means clustering algorithm,
SVM and one-versus-one strategy, are presented in Section 3. In Section 4, the experimental results are
given. Section 5 concludes this paper.

2. Related Works

The fundamental assumption underlying the RSS-based indoor localization is that the RSSs at
different RPs exhibit distinguishable patterns, so the fingerprint-based position determination can be
achieved via classification. In this section, two main types of classification frameworks are discussed
and then, we survey existing hierarchical localization approaches.

2.1. Flat Classification and Hierarchical Classification

The flat classification here refers to the standard binary or multi-class classification [20].
This approach directly assigns the newly obtained RSS measurements to a classification label, usually a
known RP location. Figure 1a gives an illustration of such classification, where a, b, c and d represent
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four RPs. It can be seen that the flat classification is a one-level classification system. A flat classifier
divides the input space into segments, each of which corresponds to a category (a RP in the indoor
localization scenario). The KNN algorithm is a typical example of the flat classification methods
and its variants have been used extensively in previous works on RSS-based location estimation.
Microsoft’s RADAR [21] and Pehlavan [22] both used KNN and achieved distance errors of 2.65 m
and 2.8 m respectively. In addition, SVM [23] and neural networks [24] were also used to realize
the flat classification for indoor positioning. However, Sarkar [25] observed that in complex pattern
classification tasks where the number of classes is large and the input space is noisy, the flat classifier
may either be unable to learn correctly the pattern to class mapping or take long time to train. In other
words, the flat classification may not be suitable for fingerprint-based positioning in complex indoor
environments with many RPs.
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Hierarchical classification refers to that the RPs are successively classified at various levels of
a defined dendrogram [26]. Figure 1b gives an example, where again a, b, c and d are RPs. As we
can see, the input consisting of RSS measurements from four RPs is first assigned into one of two
zones, namely {a, b} and {c, d}, at the first level, and then within that zone, a RP location is output
as the final localization result. In hierarchical classification, two different kinds of classifiers need to
trained. Firstly, the “zone classifiers” are in charge of deciding the most likely zone that the object
belongs to. Secondly, the “position classifiers” are in charge of determining the specific RP where
the object is located at. The hierarchical classification follows the well-known divide-and-conquer
(DAC) principle, which aims at decomposing the input space into several subspaces to enhance the
learning and generalization capability. In the indoor localization problem, the hierarchy concept can
be instantiated by dividing the indoor environment into several zones. Further division within zones
can be applied if applicable. The hierarchical classification reduces the number of considered RPs
when classifying a new measurement, thus reducing the running time as well. Therefore, for large
environments or scenarios with a large number of RPs, hierarchical classification is preferred. In the
next section, we shall review some previous studies on hierarchical indoor localization.

2.2. Existing Hierarchical Localization Techniques

The central problem of the hierarchical classification for indoor localization is how to form zones.
The most common approach is to cluster the RPs. Bai [27] and Altintas [28] used the K-Means algorithm
to cluster RPs, which automatically divides the entire area of interest into zones. They used the
mean values of the RSS measurements to characterize each RP and perform area partition. In [27],
it was indicated that using K-Means clustering could reduce the computation load and [28] showed
that the clustered KNN algorithm outperforms the standard KNN method when the number of the
nearest neighbors to be clustered is selected properly. Zhou [29] applied the Fuzzy C-Means (FCM)
algorithm [30] to the mean values of the RSSs in order to cluster RPs into zones. In [31] and [32], Noelia



Sensors 2020, 20, 1067 4 of 15

and Ahmad proposed to use the AP visibility to cluster RPs when the number of RPs is large. The
visibility of an AP at a RP is defined as the ratio of samples actually measured to the total number of
samples intended to be collected.

In the aforementioned studies, only a single attribute was employed to characterize a RP (either RSS
mean value or AP visibility). During the establishment of the fingerprint database, usually multiple
RSSs are collected at a RP. Due to the co-channel interference, multi-path effect and the absorption of
wireless signals due to, e.g., walls and pedestrians, the RSS samples at a RP can fluctuate greatly and
may not follow a Gaussian distribution. Therefore, exploring only the RSS mean value to characterize
each RP will lose high-order statistical information in the raw data, and thus the results obtained may
not be reliable. Figure 2 shows a histogram of the RSS measurements from two RPs that were collected
in our experiment. From Figure 2a, we can see that for this particular RP, the RSS measurements are
clustered and span a small range. Thus, it could be reasonable to use the RSS mean value to characterize
this RP. However, the RSS measurements obtained at a different RP, as shown in Figure 2b, spread a
wider range and appear to have a multi-mode distribution. As a result, using only the RSS mean value
to represent this RP would lose much of the available statistical information. In [31] and [32], the AP
visibility was employed as the attribute of a RP for clustering. But this leads to increased classification
difficulty when classifying the measurements into zones, which reduces the accuracy of positioning.
We shall elaborate this point more in Section 4.
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Figure 2. Histograms of 50 RSS samples collected at two different RPs: (a) RSS measurements are
clustered and span a small range and it is reasonable to characterize this RP by RSS mean value; (b) RSS
measurements spread a wider range and appear to have multiple model distribution and it is not
reliable to characterize this RP by RSS mean value.

3. System Model

In this section, we present a new hierarchical classification framework for Wi-Fi RSS-based indoor
positioning, which again contains the offline training phase and online localization phase. The block
diagram of the entire system is shown in Figure 3. For the offline phase, we propose an improved
K-Means algorithm to cluster RPs. The RPs are allowed to be included in more than one clusters, i.e., the
obtained clusters can overlap with one another. We then train the 1NN method as the zone classifier
and SVMs as the RP position classifier. On the localization stage, newly received RSS measurements
are input into the hierarchical localization system to generate the online positioning result.

3.1. Hierarchical Classification with Cluster Overlap

Within the conventional hierarchical classification structure, as shown in Figure 1b, zones are
non-overlapping, which means that a RP can only belong to a single zone. But the RSS samples at a RP
may be clustered into more than one zones. As a result, exiting hierarchical classification techniques use
one attribute only to represent one RP to address this problem. However, in this case, a classification
error in the zone level could be quite costly, as this means the result produced by the position classifier
would be erroneous as well.
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Figure 3. Proposed hierarchical indoor localization system.

In the proposed hierarchical classification structure, zones are allowed to overlap. For illustration
purpose, an example is shown in Figure 4. It can be seen that RP c belongs to two zones {a, b, c} and
{c, d}. In other words, the two zones are overlapped in the position space. Since the zones could be
overlapped, we refer to this classification framework the hierarchical classification with cluster overlap.
This scheme can reduce zone-level classification errors, which can be better understood by noting that
in Figure 4, if RP c is the true localization output, no matter whether the zone classifier outputs {a, b, c}
or {c, d}, this intermediate decision is always correct. With this observation in mind, we can use a
simple zone classifier while adopting more complex classification techniques in the remaining levels.
On the other hand, because the zones can be overlapped, we can use all RSS samples for RP clustering,
so that more statistical information in the RSS raw data can be utilized.
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3.2. Offline Training Phase

The offline phase accomplishes three tasks: clustering RPs, training the zone classifiers and
training the position classifiers. In the developed system, we use the improved K-Means algorithm to
cluster RPs, 1NN algorithm as the zone classifier, and SVM as the position classifier.

3.2.1. Area Partition

The area of interest is automatically divided into zones using an improved K-Means clustering
algorithm. Suppose there are n RPs in the indoor environment. Let mi, i = 1, . . . , n, denote the number
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of RSS measurements collected at the i-th RP. Furthermore, suppose there are N APs installed. Thus,
we can express the RSS measurements obtained at the i-th RP as

RSSi, j =
[
rss1

i, j, . . . , rssN
i, j

]
, i = 1, . . . , n; j = 1, . . . , mi. (1)

Clearly, RSSi, j is a 1×N row vector. The entire RSS database can be represented as

RSS database =
{{

RSS1,1, . . . , RSS1,m1

}
, . . . ,

{
RSSn,1, . . . , RSSn,mn

}}
. (2)

The improved K-Means clustering algorithm achieves the purpose of clustering RPs by exploiting
the available RSS measurements from all RPs. Specifically, this method first uses the standard K-Means
algorithm to assign the RSS measurements to K clusters C = c1, . . . , cK and at the same time, find
their centroids µC = µc1 , . . . ,µcK . Here, µck is also a 1×N vector and each entry is the mean value of a
particular AP’s RSS measurements in cluster ck. That is, it can be mathematically expressed as

µck =
[
rss1

µck
, . . . , rssN

µck

]
. (3)

Next, we determine which clusters a RP belongs to by calculating the ratio of the number of RSSs from
this RP in each cluster to the total number of RSSs collected at this RP. Suppose that in cluster ck, there
are numi

k RSS measurements from the i-th RP. We then calculate the ratio numi
k/mi. If it is greater than

a threshold p, we have that cluster ck contains significant amount of RSSs from the i-th RP, so the i-th
RP is assigned to cluster ck. This process is repeated for each RP. The value of p is user-defined and it
controls the size of the overlapping area. The smaller the value of p is, the more zones will overlap.
The improved K-Means algorithm is summarized in Algorithm 1.

Algorithm 1: Improved K-Means clustering algorithm

Input: RSS database in (2), threshold p
Output: RP’s cluster labels C = c1, . . . , cK, K cluster centers µC = µc1 , . . . ,µcK

1. Initialize K centroid points.
2. Calculate the Euclidean distance between the RSS measurements and cluster centroids using

di, j,k =
∣∣∣∣∣∣RSSi, j − µck

∣∣∣∣∣∣
2

3. Assign the RSS measurements to the cluster whose centroid is the closest
4. When all RSS measurements are assigned, re-calculate the cluster centroids
5. Iterate step 2, 3 and 4 until convergence
6. Output the cluster centers µC = µc1 , . . . ,µcK

7. Compute numi
k, i = 1, . . . , n, k = 1, . . . , K

8. If
numi

k
mi

> p, assign the i-th RP to cluster ck

9. When all RPs are assigned, terminate.

This clustering method uses all the RSS measurements for clustering and the final clustering
results are expressed in terms of each RP belonging to at least one clusters, which accomplishes the
area partition. It is worth mentioning that the value of p should satisfy

p ∈
(

0,
1
K

]
. (4)
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The justification for the lower limit of p is straightforward. In words, p > 0 means when the
number of RSS measurements from RPi in a cluster ck is zero, the RPi should not be included in zone ck.
The justification for the upper limit of p in (4) is as follows. It can be shown that

K∑
k=1

numi
k

mi
= 1

numi
k ≥ 0

numi
k ≤ mi

. (5)

In order to ensure that the RP would be clustered into at least one zone, it is required that

max
k

numi
k

mi
> p, k = 1, . . . , K. (6)

Therefore, for all n RPs, to guarantee that each RP is clustered into at least one zone, the value of p
should also fulfill

min
i

max
k

numi
k

mi
> p, i = 1, . . . , n, k = 1, . . . , K. (7)

Because numi
k cannot be obtained before the clustering algorithm is terminated, p should be set

to a value such that (7) is satisfied even in the worst case. This value can be found via solving the
following minmax optimization problem

min max
k

xk
mi

, k = 1, . . . , K subject to xk ≥ 0xk ≤ mi

K∑
k=1

xk
mi

= 1 (8)

The solution can be found to be

x1

mi
=

x2

mi
=, . . . ,

xK

mi
=

1
K

. (9)

The upper limit for p is now verified.

3.2.2. Zone Classifier

In the developed indoor localization system, we use the 1NN algorithm, a special case of the KNN
method with K = 1, as the zone classifier. KNN is one of the simplest machine learning algorithms. It
classifies an object using a voting mechanism which selects the most voted class among the k neighbors
closest to the object. The KNN was used in RADAR which is widely recognized as one of the pioneering
works in the field of Wi-Fi indoor localization and usually considered as a baseline to evaluate new
indoor Wi-Fi localization systems [31]. We use 1NN as the zone classifier for the following reasons:
(1) The presence of zone overlap means that RSS data in different zones could the same, which is not
appropriate for the classification models that require pre-training. (2) The classification difficulty of the
first level is relatively low, especially under the overlapped area partition. Therefore, 1NN would be
sufficient for the first-level zone classification.

We use the RSS measurement cluster centers as the first level database and use the 1NN to classify
the zones. When a new set of RSS measurements are obtained, we calculate the Euclidean distance
between these measurements and each cluster center µc1 , . . . ,µcK . The cluster ck with the closest center
µck is selected as the zone for the newly collected RSS measurements.

3.2.3. Position Classifier

We proceed to train position classifiers for each zone for position determination. The SVM is used
as the position classifier to distinguish RPs in a zone through exploiting all the RSS measurements. The
basic form of SVM is implemented for binary classification problem for linearly separable datasets. For
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the nonlinear case, the kernel trick maps the feature space to make the data linearly separable in the
high-dimensional space, enabling the SVM to handle nonlinear classification problems. For multi-class
classification, a number of SVM-based binary classifiers are required to distinguish multiple classes.
The one-versus-all [33] method and the one-versus-one method [34] are two commonly adopted
techniques to solve multi-class classification problems using binary classifiers. In [23], the authors
proved that the one-versus-one method performs better in indoor localization. So, in our system, we
use the one-versus-one SVM to solve the position classification problem. In a N-class problem, the use
of the one-versus-one strategy requires training N(N − 1)/2 binary SVM classifiers to discriminate
all RP pairs. The final decision is selected to be the RP with the highest number of votes. However,
the one-versus-one approach may result in regions of the position space which are ambiguously labeled
as shown in Figure 5. Among the N(N − 1)/2 votes, if two or more labels receive the largest votes
at the same time, there will be localization ambiguity. In our system, if the localization ambiguity
occurs, the selected zone would be taken as the positioning result. We call this operation “back to
zone”. In other words, in this case, we choose to enlarge the positioning area to obtain a more reliable
localization result. This method is a compromise between the positioning accuracy and reliability.
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Figure 5. Ambiguities in the one-versus-one approach. The green area represents the ambiguous part.

3.3. Online Phase

In the online localization phase, we cascade the trained zone and position classifiers, forming a
complete hierarchical localization system. When new RSS measurements are input into the system for
position determination, the system first uses the 1NN zone classifier to determine the zone where the
target is located. After determining the zone, the system inputs the RSS measurements into the SVM
position classifier corresponding to the particular zone to obtain the estimated position of the target.

4. Experiments and Results

In order to evaluate the proposed hierarchical classification scheme in a real-world environment,
we conducted a measurement campaign in a hospital in Wenling, Zhejiang, China. Since the patients
in this hospital are most elderly, the accuracy in both zone classification and position determination
plays a vital role in emergency handling. As shown in Figure 6, the test environment is a 36 m × 26.8 m
rectangular floor where 4 Wi-Fi APs were deployed. There are ten rooms in this floor, and they are
numbered from 1 to 10. When collecting the Wi-Fi RSS measurements, we selected 108 RPs and used a
tablet to collect 50 RSSs for each RP. The Wi-Fi RSS detection range of our tablet is from −5 dBm to
−95 dBm. For some RPs, less than 4 RSS measurements were obtained. To address this problem, we set
the RSSs of the undetected APs to be −100 dBm.
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In our offline training phase, the RSS database was divided into two parts, with 50 percent of
the measurements put into the training dataset and the remaining data being in the test dataset. The
performance of our method is compared with several baseline algorithms, including SVM, KNN,
multilayer neural network (NN), K-Means [27], Visibility [31], and FCM [29]. As mentioned in Section 2,
FCM evaluates the probability of a measurement belonging to a certain zone using a fuzzy algorithm,
which could be considered as a hierarchical classification method. We improved the original FCM
technique by adjusting its membership degree threshold to allow one RP to be clustered into multiple
clustering categories (i.e., zone overlap is allowed).

For the benchmark methods and the proposed algorithm, four performance metrics are considered
for comparison. They include the zone classification error rate, position classification accuracy, average
positioning error and running time. The zone classification error rate is the percentage of the number of
test RSS measurements assigned to zones that do not contain their true RPs. The position classification
accuracy gives the percentage of test RSS measurements assigned to the correct RPs. The average
positioning error is the average distance between the selected RPs for the test RSS measurements and
their true RPs.

4.1. Area Division Result

Since the experimental environment is a rectangle and 4 Wi-Fi APs have been installed priorly, it
can be naturally divided into 4 parts, which makes our choice of K in Algorithm 1 to be 4. Results of
the improved K-Means clustering method are depicted in Figure 7, where four zones are depicted in
red, yellow, green and blue. The soft labelling nature of our algorithm is reflected by the existence of
4 overlapped areas with 22 RPs, which reduces the difficulty of zone classification and propagates
more information rather than errors to the position classification level.
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Figure 7. Area partition result. In total, 4 zones are formed after clustering, which are depicted in red,
yellow, green and blue. In total, 22 RPs denoted by red triangles are located in the overlap regions.

The step that evaluates numi
k/mi > p in Algorithm 1 is a hard-thresholding process and the value

of p determines the size of the overlapped areas. When the numbers of RSS measurements from a RP
in all clustering categories are less than p, the RP would be left out. Therefore, in order to ensure that
all the RPs are assigned into at least one zone, the value of p must be in the suggested range given in
Equation (4).

Figure 8a plots the total number of RPs in the four formed zones as a function of p. When p is
small, the total number of RPs in four generated zones would be larger than the true RP number
because the RPs in the overlap regions are counted more than once. With the increase of p, more RPs
become left out, and the total number of RPs in the four zones decreases accordingly. When p is greater
than 0.5, the total number of RPs in the four zones is less than the number of original RPs, indicating
that there must be some RPs not assigned to any zones.
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In Figure 8b, we plot the position classification accuracy of the proposed localization method as a
function of p. It can be seen that the position classification accuracy deteriorates marginally when p is
less than 0.2 but significant performance degradation occurs after p increases over 0.5. The underlying
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reason is that when p is small, the increase in its value reduces slightly the size of the overlapped areas
only, which would not greatly enlarge the zone classification error rate and as a result, the position
classification accuracy does not decrease evidently. On the other hand, when p is sufficiently large,
a few RPs would start to be left out. This increases the zone classification error rate and leads to
degraded position classification accuracy.

4.2. Zone Classification Accuracy

An error in the zone classification stage will be propagated to and even amplified at a later stage
under the hierarchical classification structure, which makes the accuracy of zone classification a very
important performance indicator. We use 1NN as the zone classifier to compare the zone classification
error rates of four hierarchical classification methods in consideration and the results are shown in
Table 1. As we can see, the FCM has the best performance with a zone classification error rate of 1%,
followed by our proposed method with an error rate of 2.25%. FCM and the proposed method are both
hierarchical classification approaches with zone overlap. This implies that allowing zone overlap when
forming clusters using RSS measurements can effectively reduce the difficulty of the zone classification.

Table 1. Zone classification error rate comparison.

Method Proposed FCM Visibility K-MEANS

Zone Classification Error Rate 2.25% 1% 9.07% 3.08%

With the hierarchical classification with overlap, the accuracy of zone classification improves
with the increase in the overlap regions. When the overlap region is large as the test environment,
the number of zones reduces to one and the zone classification error rate will become zero, which
renders the hierarchical classification meaningless. Actually, when the overlap regions are too large,
the efficiency of the hierarchical classification will dramatically decrease as well (see Section 4.3). In
FCM, there are 70 RPs in the overlap regions, compared to 22 RPs in our method. This manifests as a
higher zone classification accuracy of FCM. In the subsequent experiments, we shall further investigate
the effect of overlap area size on the position classification accuracy and average positioning error.

4.3. Positioning Accuracy

In our experiment, the direct use of KNN, multilayer NN and SVM for flat classification-based
object position estimation are selected as the benchmarks for performance evaluation. Specifically,
the multilayer NN has 8 fully-connected hidden layers with 10, 18, 27, 35, 22, 16, 15 and 22 neurons,
respectively, and they adopt the tanh activation function. The cross-entropy loss is employed in the
training process, where 85% of the training data is used for optimizing the connection weights while
the remaining 15% is applied for cross validation to avoid overfitting. In addition, we simulate three
hierarchical localization methods, namely K-Means [27], Visibility [31] and FCM [29]. Similar to the
proposed technique, they adopt 1NN as the zone classifier and SVM as the position classifier. But they
have different zone classification schemes (see Section 2 for a survey). We conduct 5 randomized
experiments, each with different RSS raw data selected to generate the training set and test set.

The averaged positioning performance results of the methods in consideration are summarized
in Table 2. The results reveal that the positioning performance of our method is better compared
with other methods, reaching the highest position classification accuracy of 64.97% and the lowest
average positioning error of around 1.29 m. Even though the improvement in terms of the position
classification accuracy appears to be small (only 1.4%–3.2%), the proposed technique leads to at least
10% decrease in the average positioning error over other hierarchical classification-based methods
while it offers at least 15% reduction in the average positioning error compared with flat-classification
algorithms. The reason behind is that with improvement in the position classification accuracy, more
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RSS measurements would be assigned to their true RPs, which would greatly decrease the average
positioning error as in this case, we have more cases with a positioning error of 0 m.

Table 2. Positioning performance comparison.

Method Position
ClassificationAccuracy

Average Positioning
Error

90th Percentile on the
Positioning Error

KNN 61.76% 1.67 m 6.58 m
NN 63.05% 1.53 m 6.62 m

SVM 63.24% 1.52 m 6.65 m
Proposed (1NN+SVM) 64.97% 1.29 m 6.33 m
K-Means (1NN+SVM) 62.83% 1.54 m 6.51 m
Visibility (1NN+SVM) 63.49% 1.46 m 6.45 m

FCM (1NN+SVM) 63.45% 1.44 m 6.42 m

Another observation is that the performance of the multiplayer NN is inferior to those of the
proposed method and even SVM. The underlying reasons could be as follows. (1) The amount of RSS
measurements collected for the experiment may not be sufficient for the training of the multilayer NN
to converge to a local optimum with good generalization capability. (2). The hierarchical nature of the
indoor localization problem is not explored by the multilayer NN but it is explicitly accounted for
in the development of the proposed method. Increasing the volume of the training dataset could be
useful to obtain a multilayer NN with significantly enhanced performance and this would be subject to
future measurement campaign and experiments.

It is worth mentioning that the zone classification error rate of the FCM-based method is the
lowest among the considered techniques (see Table 1), but its positioning performance is not the best.
This is because (1) it generates regions with large overlap and this improves the accuracy of zone
classification, but also makes the zone classification result unable to provide sufficient information for
the following position determination; and (2) FCM still uses the mean values of the RSS measurements
to characterize each RP, so it fails to explore the high-order statistical information in the raw data.

In Figure 9, the cumulative probability distributions (CDFs) of the positioning errors from the
benchmark methods and the proposed technique are depicted. Note that the values of the CDF curves
at the positioning error of 0m correspond to the position classification accuracy. Again, the enhanced
localization performance of the proposed algorithm over the existing techniques is evident.
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Figure 9. CDFs of the positioning errors from the benchmark and proposed localization techniques in
consideration: (a) comparison with the flat classification methods; (b) comparison with the hierarchical
classification methods.

4.4. Running Time

The running time is a key performance metric for an online system. We evaluate the running
time of all the considered algorithms in the previous subsection. The obtained results are shown in
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Table 3. Our test environment has 108 RPs. A direct use of SVM with the one-versus-one strategy
requires 108× 107/2 = 5778 SVM binary classifiers, or equivalently a running time of 5.1 s. Compared
with other methods, KNN and NN have the smallest running time, where the running time of
KNN is only 0.08 s. However, due to the difficulty in finding efficient classification hyperplanes,
their indoor positioning performance is inferior to the proposed technique. With the help of the
hierarchical classification, the running time for one localization operation is reduced to less than 1 s,
among which the K-Means requires the smallest amount. Due to the overlapped regions, the test
environment is virtually expanded, and the running time is slightly longer than that of the hierarchical
classification without zone overlap, as expected. However, our method still needs 0.77 s only in
addition to significantly improved positioning accuracy, which achieves a better balance between the
computational efficiency and performance.

Table 3. Running time comparison.

Method SVM Proposed
(1NN+SVM)

K-Means
(1NN+SVM)

Visibility
(1NN+SVM)

FCM
(1NN+SVM) KNN NN

Running
Time 5.1s 0.77s 0.72s 0.82s 0.97s 0.08s 0.22s

5. Conclusions

In this paper, we presented a novel framework for the Wi-Fi RSS-based indoor localization based on
hierarchical classification. Different from existing methods, we proposed to avoid disjoint partitioning
and split the indoor environment into zones with possible overlap. In order to construct the category
hierarchy, we proposed an improved algorithm based on the K-Means algorithm, which automatically
divided the indoor region into overlapped zones according to the clustered RSS measurements. The
1NN and SVM were adopted to realize the zone and position classifications to establish the whole
indoor localization procedure. The proposed method has been implemented on a tablet and evaluated
in a real-world hospital under practical conditions with people moving around and simultaneous
operations of electrical devices. The experimental results reveal that compared with the existing
flat classification methods and hierarchical classification methods, our method has greatly reduced
computation load and improved localization accuracy.
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