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Abstract: We study the sensor and relay nodes’ power scheduling problem for the remote state
estimation in a Wireless Sensor Network (WSN) with relay nodes over a finite period of time given
limited communication energy. We also explain why the optimal infinite time and energy case
does not exist. Previous work applied a predefined threshold for the error covariance gap of two
contiguous nodes in the WSN to adjust the trade-off between energy consumption and estimation
accuracy. However, instead of adjusting the trade-off, we employ an algorithm to find the optimal
sensor and relay nodes’ scheduling strategy that achieves the smallest estimation error within the
given energy limit under our model assumptions. Our core idea is to unify the sensor-to-relay-node
way of error covariance update with the relay-node-to-relay-node way by converting the former way
of the update into the latter, which enables us to compare the average error covariances of different
scheduling sequences with analytical methods and thus finding the strategy with the minimal
estimation error. Examples are utilized to demonstrate the feasibility of converting. Meanwhile,
we prove the optimality of our scheduling algorithm. Finally, we use MATLAB to run our algorithm
and compute the average estimation error covariance of the optimal strategy. By comparing the
average error covariance of our strategy with other strategies, we find that the performance of our
strategy is better than the others in the simulation.

Keywords: state estimation; relay nodes; wireless sensor networks

1. Introduction

Recent years have witnessed a boom of WSNs [1]. In the application of WSNs, sensors’ remote
state estimation plays a key role.To process the estimation, the sensors in WSNs collect the information
of physical phenomena such as temperature and humidity, record them as the “state”, run a preprocess
for the state, and then send the state information as data packets to a remote estimator via a
wireless network. Each procedure of this process has received extensive research from different
perspectives [1–14].

In this work, we study the optimal sending strategy for the sensor and the relay nodes in a WSN.
Different from most previous works that designed sending strategies for the WSN with only a single
sensor [2–8], in this work, the strategy is designed for a WSN with one sensor, one remote estimator,
and extra relay nodes in between. The signal sent from the sensor no longer reaches the estimator
directly, but is passed on by each relay node before finally reaching the estimator. Therefore, we assume
that the sensor and the relay nodes all had the same energy storage for sending signals. The wireless
channels links the sensor, the relay nodes, and the estimator. While being passed on, the signals sent
by the high power are passed on by the relay nodes successfully, whereas the signals sent by the low
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power suffer packet drops. Then, the optimal strategy minimizes the error covariance of the remote
estimator given the fixed amount of energy. Before demonstrating the strategy, we introduce the most
recent works that are related to similar topics and explain the reasons we study this model.

1.1. Motivation and Background

To stop a high packet drop rate from deteriorating the performance of the remote estimator,
relay nodes are added between the sensor and the remote estimator [11–22]. Relay nodes help pass
on signals from the sensor to the final estimator and thus break the long wireless communication
path into shorter sections that have a smaller packet drop rate. This assertion was motivated by the
indication of M.Holland et al. [23] that the larger the distance between the sensor and the estimator, the
larger the packet drop rate would be. A recent study regarding state estimation with relay nodes [24]
emphasized the stability of the system, whereas we focused on finding the optimal strategy.

Our model extended Shi’s model [2]. Shi et al. gave the optimal sending strategy for the WSN
that transmitted signals from the sensor to the estimator directly. In [2], the authors revealed that for a
finite-time and finite-energy sensor data scheduling problem, sending every signal with a high power
that ensures a successful transmission to the remote estimator does not make the best use of the energy.
Under the assumption that sending low power signals will bring packet drops, they deduced that
the optimal choice was to send high power signals mixed with low power signals and make them
distribute as uniformly as possible. In this way, the sending strategy minimizes the average estimation
error covariance of the remote estimator.

As was proposed in Asshad’s survey [22], in the WSNs with relay nodes, nodes with limited
energy need to have a power optimization mechanism. To find the mechanism, in recent years, many
papers considered methods concerning state estimation and sensor scheduling. Y. Yao et al. [25]
studied the method for sensors’ position estimation in an ad hoc WSN with large numbers of sensor
nodes and addressed an energy-efficient method. The authors made full use of distance estimation.
PM. Daflapurkar et al. [26] came up with an energy-saving algorithm for cluster routing in the WSN.
It focused on designing routing paths between nodes rather than node-to-node sensor scheduling
strategies. P. Cheng et al. [24] built three node-to-node data forwarding strategies for state estimation
in the WSN with relay nodes. To adjust the trade-off between the energy consumption and the state
estimation accuracy, the authors designed an online strategy that compared the error covariance gap
between two adjacent nodes to a predefined threshold. R. Zhu et al. [27] used a Markov chain to
characterize the delay of the relay nodes of a multi-hop WSN and obtained the necessary and sufficient
condition under which the estimation error covariance was stable. L. Yao et al. [28] investigated
optimal scheduling for transmission in the WSN with one relay node that was placed in the feedback
loop. Apart from the theoretical analysis, F.A. Aderohunmu et al. [14], M. Maggiorotti et al. [13],
and M.Rossi et al. [12] also developed the real case applications for the power scheduling problem.

Compared to previous works, our model adds relay nodes in the model of [2], and the way the
relay nodes update their state is the same as the local processing and forwarding strategy in [24].
However, different from the work of P. Cheng et al.in [24], we design an offline strategy that controls
whether to send a signal or not for each relay node at each time step. Hence instead of a predefined
threshold that adjusts the trade-off of energy and state estimation performance, we find an optimal
offline sensor scheduling algorithm that achieves the smallest average estimation error covariance
with limited energy. The detailed introduction of the problem we solve and the assumptions we adopt
for our model are demonstrated as follows.

We considered the sensor power scheduling problem based on the relay system shown in Figure 1.
The state information was preprocessed in the dashed line box, and the preprocessed data was sent
to Relay Node 1 via a wireless channel that suffered packet drops. Then, the data packets were
passed on from one relay node to the next through the wireless channel until they finally reached the
remote estimator. For simplicity, we first analyzed the case when there were only two relay nodes in
the system. Each relay node’s behavior was a combination of the sensor and the remote estimator.
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It received data packets as the estimator did, and sent the packets to the next node as the sensor does.
As assumed previously, we only considered the energy distributed to send data and did not address
the energy requirements for other functions such as detecting signals in the air, receiving the signals,
and preprocessing them. Furthermore, the total amount of energy every relay node used for sending
signals was equivalent to that of the sensor. Our goal was to find the optimal sending strategy to
minimize the accumulation of the average estimation error of the remote estimator. To achieve this goal
with the model and the assumptions we made above, we developed a scheduling strategy called the
“converted table” method. The challenge was that the error covariance of the remote estimator was the
result of two kinds of updates: the sensor-to-relay-node kind and the relay-node-to-relay-node kind.
We were able to find the optimal scheduling methods for both kinds of updates, respectively, but when
they were combined to produce one error covariance for the estimator, it would be hard to compare
two scheduling strategies by subtracting one’s covariance formula representation from another as
L. Shi et al. [2] did. Therefore, we used the “converted table” to change the sensor-to-relay-node update
to the relay-node-to-relay-node update. Then, with the majorization theory [29], we were able to prove
that the overall optimal scheduling strategy for the sensor and relay nodes was the combination of
the optimal sensor-to-relay-node scheduling with the optimal relay-node-to-relay-node scheduling.
We also discussed the case when the total amount of energy and the time horizon were not infinite and
explained that there would be no way for the states or the error estimations of the nodes to obtain an
optimal strategy. Therefore, we only focused on the finite-time and finite-energy case and developed
algorithms within the scope of our assumptions.

Figure 1. System structure diagram. The dashed-line arrows mark a network with packet drops.

1.2. Main Contributions

1. We found an optimal scheduling algorithm for our model. We proposed an original method called
the “converted table” method to obtain the optimal sending sequences for the sensor and the
relay nodes. This method not only reduced the estimator’s average error covariance effectively,
but also spared us from the cumbersome exhaustive computation for searching for the optimal
strategy.

2. We analyzed the reason why the infinite-time case did not exist in our model.
3. We ran simulations for our algorithm and compared its sending sequences’ average error

covariance with error generated by other sending strategies. The result of the comparison
was empirical proof of the optimality of our algorithm.

1.3. Organization

The remainder of the paper is organized as follows. First, Section 2 introduces the optimal sensor
and relay nodes’ data scheduling scheme for the finite-time and limited energy case. Furthermore,
it gives the proof for the scheme’s optimality. Then, Section 3 explains the non-existence of the
scheduling for the infinite-time and energy case. Next, Section 4 shows the simulation result, which
compares our optimal strategy with other strategies. Conclusions and consideration for future work
are added in Section 5.

1.4. Notations

R is the set of real numbers. Rn is the set of n-dimensional vectors. Z+ is the set of non-negative
integers. k ∈ Z+ is the time index. Sn is the set of n by n matrices. For X ∈ Sn, X > 0 (and X ≥ 0)
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implies that X is positive definite (and positive semi-definite), and it is represented as X ∈ Sn
++ (and

X ∈ Sn
+). X′ indicates the transposition of the matrix X. I = X0 implies the identity matrix. E[X] is

the expectation of a random variable X, and E[X|Y ] denotes the conditional expectation of X given
the event Y . Pr[Y ] indicates the probability of the event Y . Tr(X) indicates the trace of the matrix X.
For functions h : Sn

+ → Sn
+, we let hk(X) = h(hk−1(X)) with h0(X) = X.

2. Optimal Sensor and Relay Nodes’ Power Scheduling

Our goal was to find the optimal sensor and relay nodes’ sending strategy for the system shown
in Figure 1. To follow the precedent, we set the state information as xk and the preprocessed data x̂s

k.
The dashed arrows imply the wireless communication paths the signals take. We will first demonstrate
the sending strategy that optimizes the scheduling for the model without the relay nodes and then
generalize this strategy to find the optimal scheduling for the model with the relay nodes.

2.1. The No-Relay-Node Case

This case is equivalent to the case that analyzes the transmission between the sensor and Relay
Node 1. Assume that this model is built as a dynamic discrete linear time-invariant system shown
as follows: {

xk+1 = Axk + wk

yk = Cxk + vk
(1)

where k ∈ Z+. xk ∈ Rn is the system state at time k and yk ∈ Rm is the sensor’s measurement of the
system state. wk ∈ Rn and vk ∈ Rm are zero-mean i.i.d. Gaussian noises with covariances Q ≥ 0 and
R > 0, respectively. Here, we assume that the pair (A, C) is observable and (A,

√
Q) is controllable.

At time k, the sensor’s measurements of the system states are represented as Yk = {y1, · · · , yk}.
Then, in the preprocessor shown in Fig.1, the sensor with sufficient computation ability uses Yk to
generate a minimum mean squared error estimate (MMSE) x̂s

k = E[xk|Yk] with the corresponding
error covariance Ps

k = E[(xk − x̂s
k)(xk − x̂s

k)
′|Yk]. By the standard Kalman filtering [17], if we define the

function h: Sn
+ → Sn

+ as h(X) = AXA′ + Q and g̃: Sn
+ → Sn

+ as g̃(X) = X− XC′[CXC′ + R]−1CX just
like the definition shown in [3], then the estimation error covariance Ps

k converges to a constant value
P̄ exponentially fast, and we denote it as limk→∞Ps

k = P̄, where P̄ is the unique positive semi-definite
solution of g̃ ◦ h(X̄) = X. Therefore, for simplicity, we assume that for ∀k ∈ Z+, Ps

k = P̄. To generalize
the model without relay nodes into the model with relay nodes in Figure 1, in the following, we mark
the sensor as the zeroth node and Relay Node 1 the first node; thus, we use Pk,i to represent the error
covariance generated at the ith node at time k, and x̂s

k is also marked as x̂s
k,0. In the precedents where

there are no relay nodes, the initial error covariance of the remote estimator is the same as the sensor’s.
Without this initial error covariance, the remote estimator cannot update its estimation of the sensor
locally according to its a priori knowledge of the sensor under a packet drop. Therefore, when there
are relay nodes, we assume the initial error covariance of the relay nodes is the same as the estimator,
which enables local updates, i.e., P0,i = P0,0 = P̄.

Lemma 1 ([8]). The function h(P̄) defined above has the following property:

P̄ ≤ h(P̄) ≤ h2(P̄) ≤ · · · ≤ hk(P̄) ≤ · · · , ∀k ∈ Z+.

Note that for ∀k ∈ Z+, we have hk(P̄) ≥ 0, so Tr[hk(P̄)] ≥ 0.
To calculate the average error covariance, first we define the scheduling variable of the ith node

λk,i as follows:

λk,i =

{
1, if a high power is sent at time k

0, if a low power is sent at time k.
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Let T ∈ Z+ be the time horizon, then the ith node’s scheduling sequence is θi = (λ1,i · · · , λT,i).
Besides, as was assumed in [2], we also assume that at time k,

Packet drop rate αk =

{
0, if λk,i = 1

α, if λk,i = 0.

Therefore at the Relay Node 1, that is the 1th node’s state estimate x̂k,1 and the error covariance
Pk,1 are updated as follows:

(x̂k,1, Pk,1) =

{
(Ax̂k−1,1, h(Pk−1,1)), if the packet drops

(x̂s
k, Pk,1), if the packet arrives.

(2)

where P0,1 = P0,0 = P̄.
Thus, the average error covariance of the state updates in the following way [16]:

E[Pk+1,0] = (1− αk)P0,0 + αkh(E[Pk,0]). (3)

Then, we use the trace of the average expected estimation error covariance to evaluate the system
performance, just as the authors in [2,3,17,18] did, i.e.,

J[i](θ) = 1/T
T

∑
k=1

E[Pk,i(θ)]. (4)

The goal of the optimal sensor scheduling problem is to optimize the following problem:

Problem 1.
min

θ
Tr(J[1](θ))

s.t.
T

∑
k=1

λk,0 = m

where m indicates the times that the high power is sent. Though our final goal was different, it was still necessary
to work out this problem first. Problem 1 can be solved as a dual problem of Problem 3.1 from [18]. In that paper,
the problem was proposed from the perspective of an attacker. However, it can be modified into the optimal sensor
power scheduling. For clarity, we transformed the format of the solution of Problem 3.1 in [18] into the solution
of our power scheduling problem shown as follows.

Theorem 1. (1) If m < (1/2)T, the optimal solution for Problem 1 is the following sequence of θ.

(0 · · · 0)︸ ︷︷ ︸
l

(1 0 · · · 0)︸ ︷︷ ︸
p

...... (1 0 · · · 0)︸ ︷︷ ︸
p︸ ︷︷ ︸

mp+m+l−T

(1 0 · · · 0)︸ ︷︷ ︸
p+1

...... (1 0 · · · 0)︸ ︷︷ ︸
p+1︸ ︷︷ ︸

T−l−mp

where p = d T−l−m
m e and l = p− 1 or p (dxe is defined as the smallest integer that is larger than x).

(2) If m ≥ (1/2)T, an optimal solution for Problem 2.1 is to make sure that the left side and the right side
of every zero in θ is one. For instance, if T = 10, m = 7, then the sequences in Table 1 are two examples of the
optimal scheduling.
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Table 1. Two optimal scheduling sequences for Theorem 1.

1 1 0 1 0 1 1 1 0 1

1 0 1 1 1 1 0 1 0 1

Proof of Theorem 1. First, we will show this problem is virtually the dual problem of Problem 3.1 [18]
(in [18], the optimal scheduling for the n > (1/2)T case had a minor mistake, and here, we use the
corrected format). Problem 3.1 in [18] studied the case when a perfect wireless network suffered from
u times of DoS attack over a time window T. It was assumed that if there was no DoS attack, the sensor
data packet would arrive at the remote estimator successfully; but if the attacker launched an attack,
the packet would drop with probability α∗. Then, the author denoted γk = 0 or 1 as the attacker’s
decision variable at time k, i.e.,

γk =

{
1, if an attack is launched at time k

0, otherwise,

Packet drop rateα∗k =

{
0, ifγk = 0

α∗, ifγk = 1.

By comparing the definitions of γk and α∗k with the definitions of λk and αk, we can see that if
we let m = T − u and change γk = 1 into λk = 0, as well as γk = 0 into λk = 1, then the solution to
Problem 3.1 in [18] is exactly the solution to Problem 1, which completes the proof.

2.2. The Case with Relay Nodes

In this part, we first show how the model in Figure 1 updates its state and error covariance. Next,
we introduce the optimal scheduling for this model using the “converted table” method when the
packet drop rate is one. Then, we show the way of generalizing this scheduling method for the α = 1
case into the 0 < α ≤ 1 case using an algorithm, which generates the optimal scheduling for our model
with relay nodes.

First of all, due to the assumption we made in the Introduction part, the way that the relay nodes
receive data packets is the same as the estimator does, and the way they send the packets to the next
node is the same as the sensor does. Furthermore, whether the node is sending low or high power,
the definition of the scheduling variable λk and the value of the packet drop rate remain unchanged in
the relaying process. Therefore, the only difference between the relay nodes and the sensor is the way
they update the estimation. For the relay nodes, the state estimation x̂k,i and the error covariance Pk,i
are updated as follows [24]:

(x̂k,i+1, Pk,i+1) =

{
(x̂s

k,i, Pk,i), if the packet arrives

(Ax̂k,i, h(Pk,i)), otherwise.
(5)

where P0,i = P0,0 = P̄, for ∀i ∈ [2, n− 1].

Remark 1. In fact, k refers to the kth signal the sensor has sent, so in this update, k does not change with the
increase of i. The reason we call k the “time step” is to follow tradition of previous work such as [18]. Therefore,
we can ignore the time delay caused by transmitting data from one node to another and apply (5) to describe the
updates between relay nodes.
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Besides, according to (5), we obtain the expression of the expectation for the node’s error
covariance when zero is sent at time k:

E[Pk,i+1] = (1− α)E[Pk,i] + αh(E[Pk,i]). (6)

Thus:

E[Pk,i+1]−E[Pk,i] = α{h(E[Pk,i])−E[Pk,i]} ≥ 0. (7)

Hence, we can see that for relay nodes, when the high power is sent, the average error covariance
of the following node does not change; and when the low power is sent, the average error covariance
increases, as is shown in (7). Now, we consider two cases while searching for the optimal scheduling,
that is the α = 1 case and the 0 < α < 1 case, which is an extension of the α = 1 case.

2.2.1. Case 1: The Optimal Scheduling When α = 1

Now, we show how to minimize the average error covariance of the estimator in Figure 1, that is
how to solve the following problem:

Problem 2.
min

θ
Tr(J[n](θ))

s.t.
T

∑
k=1

λk,i = m, i = 0, 1 · · · , n− 1.

where λk,i refers to the ith node’s scheduling variable and J[n] is the estimator’s average error covariance when
there are n− 1 relay nodes functioning between the final estimator and the sensor (for example, in Figure 1, we
have n = 3) Next, we use a simple example to show the “converted table” method that helps solve this problem.

Example 1. Table 2 lists a strategy that is randomly chosen for each node in Figure 1 at every time step when
T = 6 and m = 2. With the assumption α = 1, we can obtain the error covariances accordingly in Table 3.

Table 2. Strategy of each node at each time step.

Time k 1 2 3 4 5 6

θ0 0 0 1 0 1 0
θ1 0 0 1 0 1 0
θ2 0 0 1 0 1 0

Table 3. Error covariance of the strategy in Table 2.

Time k 1 2 3 4 5 6

Pk,1 h(P̄) h2(P̄) P̄ h(P̄) P̄ h(P̄)
Pk,2 h2(P̄) h3(P̄) P̄ h2(P̄) P̄ h2(P̄)
Pk,3 h3(P̄) h4(P̄) P̄ h3(P̄) P̄ h3(P̄)

Now, we can verify that in terms of the states’ error covariances, Table 2 equals Table 4 because they have
the same Pk,i, i ≥ 0.
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Table 4. “Converted table” for Table 2.

Time k 1 2 3 4 5 6

θ−2 1
θ−1 1 0 1 1
θ0 0 0 1 0 1 0
θ1 0 0 1 0 1 0
θ2 0 0 1 0 1 0

Note that in Table 4, we no longer need to consider the update of (2) in θ0’s scheduling
sequence, because the way of the sensor-to-relay-node update is converted into the way of the
relay-node-to-relay-node update. Then, there is only one way of updating the left in this new table,
since states updated by (2) are converted to states updated by (5) by replacing the sensor with a
different number of imaginary relay nodes that use imaginary strategies θ−2 and θ−1. We used these
auxiliaries because with only one way left to update the error covariance, we are now able to find the
optimal sending strategy for our system. In the following, we give the definition of imaginary relay
nodes and imaginary strategies.

Definition 1. Imaginary relay nodes refer to nodes that do not exist physically, but are come up with to reduce
the two ways of updating error covariances of nodes’ states into one. Their sending strategies, labeled as θi, i < 0,
are constructed to make sure after replacing the updating strategy of (2) with that of (5) that the physically-existed
nodes hold the unchanged error covariances.

Our goal is to achieve the minimum Tr[J[n](θ)]. To solve this problem, we first assume that in θ0,
the high power signal oneis distributed as uniformly as possible and then find the optimal θ1, · · · , θn−1

under this θ0 condition. Next, we prove that this θ0, θ1, · · · , θn−1 combination is optimal. By Example 1,
we have unified the way the error covariance evolves (This method now works when α = 1. A more
practical way that applies to 0 < α < 1 will be given later.). T× J[n](θ) is the sum of Pk,n, and the value
of each Pk,n only depends on the total number of zeros in the kth column of the converted table above
since ones do not change its value. For each column, the starting error covariance is P̄, and for further
analysis, we also need the following lemma:

Lemma 2 ([15]). Let λmin(A′A) be the minimal eigenvalue of A′A, then when λmin(A′A) ≥ 1 and t ≥ 0,
we have:

Tr(ht+2(P̄)− ht+1(P̄)) ≥ Tr(ht+1(P̄)− ht(P̄)),

which leads to the following corollary:

Corollary 1. When λmin(A′A) ≥ 1, the node should send the m ones (high power signals) at the m time steps
that have the m largest error covariances.

From Lemma 2 and Corollary 1, we can obtain our core theorem:

Theorem 2. When we have λmin(A′A) ≥ 1 and α = 1, the optimal offline strategy for each node is to make
the sensor send θ0, which takes the form of the optimal sequences in Theorem 1, and make the rest of the relay
nodes follow the strategy in Corollary 1.

Proof of Theorem 2. To prove that the combination of Theorem 2 and Corollary 1 gives the optimal
strategy, first we set up four sets, A, A′, B, and B′, where A′ is the complement of A and B′ is the
complement of B. Then, if the scheduling sequence θ0 follows Theorem 2, we put it in the set A and
represent their relationship as θ0 ∈ A; otherwise, we put θ0 in A′ and get θ0 ∈ A′. Next, if θi follows
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Corollary 1, we put it in set B and represent it as θi ∈ B, i ≥ 1; or else, we put it in set B′ and get
θi ∈ B′, i ≥ 1. From Lemma 2, we learn that when θ0 is fixed, the combination of θ0 ∈ A (or θ0 ∈ A′)
and θi ∈ B, i ≥ 1 is better than that of θ0 ∈ A (or θ0 ∈ A′) and θi ∈ B′, i ≥ 1. Therefore, we only need
to compare the combination of θ0 ∈ A and θi ∈ B, i ≥ 1 (or θi ∈ B′, i ≥ 1) versus the combination of
θ0 ∈ A′ and θ0 ∈ B, i ≥ 1 (or θi ∈ B′, i ≥ 1) when each θi, i ≥ 1 in B (or B′) is fixed.

The differences between the combination of θ0 ∈ A and θi ∈ B, i ≥ 1 and the combination of
θ0 ∈ A′ and θi ∈ B, i ≥ 1 are:
I. θ0 ∈ A′ will bring more zeros into the imaginary nodes’ scheduling θi, i < 0;
II. the number of zeros of θ0 ∈ A at each time step (i.e., the zeros of each column in the “converted
table”) is the most evenly distributed among all possible scheduling sequences.

Therefore,

(i) when we use θ0 ∈ A and θi ∈ B, i ≥ 0 to schedule the total communication energy in a time
period at a length of t, we can assume that after applying the “converted table”, we get n1,j zeros
(including the ones in θi, i < 0) in each column of the table, and ∑t

j=1 n1,j = N1;
(ii) when we use θ0 ∈ A′ for the scheduling and keep all the other conditions the same as those in (i),

we will get n2,j zeros in each column, and ∑t
j=1 n2,j = N2;

(iii) according to the previous analysis in I and II, we have N1 < N2 and:

t

∑
j=1

∣∣n1,j − N1/t
∣∣ < t

∑
j=1

∣∣n2,j − N2/t
∣∣ ;

(iv) if we set f (x) = Tr(hx(P̄)), then f (x) is convex since we can verify that:

f (x3)− f (x2)

x3 − x2
≥ f (x2)− f (x1)

x2 − x1
(8)

for x3 > x2 > x1, ∀xi ∈ N. Note that though f (x) is not continuous, its domain consists of discrete
points that constitute a closed set. Therefore, on such a set, f (x) is still convex.

(v) Then, the optimization of the combination of θ0 ∈ A and θi ∈ B, i ≥ 1 can be proven by using the
following lemma on majorization theory:

Lemma 3 ([4,29,30]). For x = (x1, x2, · · · , xn) ∈ Rn, y = (y1, y2, · · · , yn) ∈ Rn, we rearrange the order of
the elements and put the ith largest element as x[i], i.e.,{

x[1] ≥ x[2] ≥ · · · ≥ x[n]
y[1] ≥ y[2] ≥ · · · ≥ y[n].

(9)

if the following conditions hold, 
k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k = 1, 2, · · · , n− 1

n

∑
i=1

x[i] =
n

∑
i=1

y[i].

(10)

then x is majorized by y.
What is more, x is majorized by y if and only if for all convex functions φ: R→ R,

n

∑
i=1

φ(xi) ≤
n

∑
i=1

φ(yi). (11)
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When φ is non-decreasing, (10) can be relaxed into:

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k = 1, 2, · · · , n. (12)

(vi) if N1 = N2 and ∑t
j=1 |n1,j − N1/t| < ∑t

j=1 |n2,j − N2/t|, then it is easy to verify that n1,i and n2,i
have the relationship just as x[i] and y[i] in (10); but since what we have is N1 < N2, n1,i and n2,i actually
follow (12). Because f (x) = Tr(hx(P̄)) is convex, from (12) in (v) we get:

t

∑
i=1

f (n1,i) ≤
t

∑
i=1

f (n2,i), (13)

which implies the relationship of the two sets of strategies’ error covariance and thus completes
the proof.

Remark 2. The case of comparing the combination θ0 ∈ A and θi ∈ B′, i ≥ 1 and the combination θ0 ∈ A′
and θi ∈ B′, i ≥ 1 is the same and thus omitted.

2.2.2. Case 2: The Optimal Scheduling Algorithm When 0 < α < 1

When 0 < α < 1, the sensor and the relay nodes no longer share the same error covariance update
equation. Hence, if we still want to use the “converted table” method, we need to modify θi, i < 0 in
the converted table. First, we use Table 5 to indicate how the error covariance of each node evolves at
different time step (when there are two relay nodes).

Table 5. Error covariance of each node at each time step.

Time k 0 1 2 · · · T

Node 0 (sensor) P0,0 P1,0 P2,0 · · · PT,0
Relay Node 1 P0,1 P1,1 P2,1 · · · PT,1
Relay Node 2 P0,2 P1,2 P2,2 · · · PT,2

Node 3 (estimator) P0,3 P1,3 P2,3 · · · PT,3

Remark 3. The reason we list the k = 0 column is to help develop the algorithm to decide the number of
imaginary zeros, and the reasons and details will be discussed in the algorithms we are going to use.

From (7), we see the expectation of the relay nodes’ error covariance increases with i monotonically,
and from (3), we can also deduce that the sensor’s error covariance expectation increases with k
monotonically. Hence, if we convert the sensor’s expectation of error covariance into the relay nodes’
by approximation and unify the two kinds of updates, which is shown in Algorithm 1 in detail, then the
converted value is unique and still represents the relative magnitude of the original error covariance.
We are able to use this kind of “converting” because we do not require the exact value of the error
covariance while searching for the optimal strategy; instead, we only need to compare the relative
magnitudes of different strategies and obtain the strategy that generates the smallest magnitude.
In Algorithm 1, we will use the converted approximation to compare the number of zeros added in
θi, i < 0. After this approximation, the optimization of the 0 < α < 1 case is exactly the same as the
α = 1 case. Therefore, finally, we can get the optimal strategy using the method from Section 2.2.1.
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Algorithm 1 Optimal Offline Scheduling

Require:
1: The time horizon, T;
2: The total amount of the times of the high power sent by each node, m;

Ensure:
3: The optimal sensor and relay nodes’ power scheduling θ∗ = (θ∗0 , · · · , θ∗i , · · · , θ∗n−1) that minimizes

Tr[J[n](θ)] at the remote estimator;
4: At time k = 0 and node i = 0, set P0,0 = P̄, and we have E[P0,0] = P̄,E[Pmark

0,0 ] = P̄;
5:
6: while i 6= n do
7: i = i + 1
8: E[Pmark

0,i+1] = (1− α)E[Pmark
0,i ] + αh(E[Pmark

0,i ]).
9: end while

10: while k 6= T do
11: k = k + 1
12: E[Pk+1,0] = (1− αk)P̄ + αkh(E[Pk,0]).;
13: For each E[Pk,0], find i ∈ [0, n] such that E[Pmark

0,i ] ≤ E[Pk,0] < E[Pmark
0,i+1];

14: if E[Pmark
1,i ] = E[Pk,1] then

15: ek,1 = i;
16: else
17: ek,1 = i + 0.5;
18: end if
19: end while
20: Set Si = {e1,i, · · · , eT,i}, i ∈ [0, n].
21: while i 6= n do
22: i = i + 1
23: Find the θ∗i = (λ∗1,i, · · · , λ∗T,i), i ∈ [0, n − 1] that minimizes ∑k=T

k=1 Pk,i+1 (the minimization is

shown in Algorithm 2);
24: end while
25: At time k = T, we obtain θ∗.
26: return θ∗

We show our method in Algorithm 1 as a summary. To validate this algorithm, there are several
points requiring further illustration. Line 8 computes the expectations of the error covariances E[Pmark

1,i ]

for a sequence that is comprised of T zeros. Line 12 computes the expectations of the error covariances
E[Pk,1] for the optimal sequence whose ones and zeros are distributed as uniformly as possible as is
described in Theorem 1, and these expectations are updated by (3). Line 10 to Line 19 give us the
number of imaginary nodes we should add at different time steps k, i.e., ek,1, to get the “converted
table”. This conversion is achieved by comparing E[Pk,1] and E[Pmark

1,i ]. For each E[Pk,1], Line 13
finds i ∈ [0, n] such that E[Pmark

0,i ] ≤ E[Pk,1] < E[Pmark
0,i+1], and i is the imaginary number of zeros from

θi-s,i < 0 added in the corresponding Time k column in the above tables. i only measures how the
error covariances are rounded after the conversion. The reason for using Line 14 to Line 18 will be
explained afterwards. Line 20 counts the total number of zeros each node has emitted until time k,
including those from imaginary nodes. Line 21 to 24 are valid due to the fact that when 0 < α < 1, the
conclusions of Lemma 2 and Corollary 1 still hold, because from (6) and (7), we have:

Tr(E[Pk,i+2]−E[Pk,i+1])− Tr(E[Pk,i+1]−E[Pk,i])

=Tr(α{h(E[Pk,i+1])−E[Pk,i+1]})− Tr(α{h(E[Pk,i])−E[Pk,i]})
=αTr(h(E[Pk,i+1])− h(E[Pk,i])− Tr(E[Pk,i+1]−E[Pk,i]))

=αTr(A(E[Pk,i+1]−E[Pk,i])A′)− Tr(E[Pk,i+1]−E[Pk,i])

=αTr((A′A− I)(E[Pk,i+1]−E[Pk,i])).

(14)
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Thus, the rest of the analysis is the same as the case when α = 1, and that is why we can use
Line 21 to Line 24 in our strategy when 0 < α < 1. Line 23 is shown in Algorithm 2 in detail. What is
more, now we explain the reason for using Line 14 to Line 18. Line 17 helps discriminate ek,i, because
in this way, if there exists E[Pk1,0] and E[Pk2,0] (k1 6= k2) that fall in the same [E[Pmark

0,i ],E[Pmark
0,i+1]] range,

then the one that happens to equal E[Pmark
0,i ] will get the priority to have its ek,i enter the set S[m] in

Algorithm 2.

Algorithm 2 Line 23 in Algorithm 1.

Require:
1: The time horizon, T;
2: The total amount of the times of the high power sent by each node, m;

Ensure:
3: Find the θ∗i = (λ∗1,i, · · · , λ∗T,i), i ∈ [0, n− 1] that minimizes ∑k=T

k=1 Pk,i+1;
4: Choose the m smallest ek,i, k ∈ [1, T] in Si, and put them in a new set S[m].
5:
6: for k=1:T do
7: if ek,i ∈ S[m] then
8: λ∗k,i+1 = 1
9: ek,i+1 = ek,i

10: else
11: λ∗k,i+1 = 0
12: ek,i+1 = ek,i + 1
13: end if
14: end for
15: return θ∗i

In summary, the correctness of our algorithms is described in the following way: Algorithm 2
is the core of Algorithm 1, and the majorization theory supports Algorithm 2. We can consider
Algorithm 1 as the combination of the converted table method that converted the 0 < α < 1 case into
the α = 1 case and the sending strategy that is applied to the α = 1 case in Section 2.2.1.

3. The Infinite Time and Energy Case

Now, we know that the updates of error covariances in our system can all be converted into the
form described by (6), so a clearer discussion on the non-existence of optimization for the infinite
time and infinite energy budget case for our system can be conveyed. Opposite to our conclusion,
the authors found the optimal sensor scheduling strategy for the infinite case in the WSN with no
relay nodes by using the steady-state analysis of the Markov chain in [7]. The reason is that we use
(6) to update the error covariance, whereas they used (3). As a result, their states of the average
error covariances were recurrent, yet our control for the nodes can only bring transient states for the
covariance because the error covariance will only grow larger and never reduce. Hence, in our model,
we cannot use any scheduling sequence that forms an optimal distribution or any distribution for the
error covariance as a final stable state. Therefore, in this work, we only discuss the finite time and
finite energy case.

4. Illustrative Examples

Here, we give the example for our models and algorithms. Assume the system parameters are
defined as follows:

A =

(
2 0.6

0.5 2

)
, P =

(
0 0
0 0

)
,

Q =

(
0.3 0.3
0.3 0.3

)
, C =

(
1 2

)
,
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R = 1, T = 6, m = 2, n = 3, α = 0.9,

where m is the times of high power signals one node can send in Problem 2 and n is the number of
nodes. Note that according to the previous theorems, A has to satisfy λmin(A′A) ≥ 1. Then, with our
algorithm, we get the optimal sensor and relay nodes’ scheduling sequences θ0, θ1, and θ2, respectively,
in Table 6.

Table 6. Strategy of the sensor and two relay nodes in 6 time steps.

Time k 1 2 3 4 5 6

θ0 0 0 1 0 1 0
θ1 0 1 0 0 0 1
θ2 1 0 0 1 0 0

To show that our strategy is better than others, we first compared the error covariance of our
strategy to the error covariances from another 10 randomly generated strategies. The results of the
simulations are shown in Figure 2, and the implications of the labels are listed below:

The Ordinal Number of the Simulation

Tr
ac

e
of

J [3
](

θ)

Figure 2. Comparing the error covariance of our strategy with the random strategies.

1. The y-axis refers to Tr[J[n](θ)], and the x-axis implies the ordinal number of time the
simulation runs.

2. The circled line is the expected value of the average trace of the error covariance generated by our
optimal strategy, and the dashed line that goes across it is the average value.

3. The star-marked line is the value of the 10 average traces of the error covariance generated by
random strategies, and the dashed line is their average value.

Next, we compared our optimal strategy with the strategy that every node was sending signals
using their optimal stationary strategy mentioned in [2], i.e., the nodes all sent high power signals as
uniformly as possible. Then, we obtained the following result in Figure 3:
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The Ordinal Number of the Simulation

Tr
ac

e
of

J [3
](

θ)

Figure 3. Comparing the error covariance of our strategy with the optimal stationary strategy.

The labels in Figure 3 are are as follows:

1. The y-axis, the x-axis, and the circled line are the same as these in Figure 2.
2. The dashed cyan line is the value of the average trace of the error covariance generated by the

optimal stationary strategy.

From Figure 2, we can see that in this experiment, our strategy was always better than other
strategies, which were picked randomly, and the trace of the average value of the error covariance of
our strategy was also smaller. In Figure 3, we can see that the trace of the error covariance of the remote
estimator was a fixed value when the sensor and the relay nodes all applied the optimal stationary
scheduling to send the signals. The trace of the average value of the error covariance of our strategy
was smaller than the optimal stationary strategy, so our strategy was better.

5. Conclusions and Future Work

We discussed the relay node structure for the sensor and relay nodes power scheduling problem
that aims to optimize the remote state estimation under the communication energy constraint over a
finite time horizon. We came up with the optimal scheduling strategy under the condition λmin(A′A) ≥
1 and proved the optimality of our scheduling strategy. Examples and simulations were provided
to show that this strategy had better performance than other strategies. In the future, we will try to
extend our algorithm to an online strategy that could adjust its scheduling due to feedback from the
remote estimator. Furthermore, it would be interesting to consider the case when the relay nodes
cannot only pass on information to the next node, but also send signals to its farther neighbors.
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