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Abstract: Near real time (NRT) remote sensing derived land surface temperature (Ts) data has an
utmost importance in various applications of natural hazards and disasters. Space-based instrument
MODIS (moderate resolution imaging spectroradiometer) acquired NRT data products of Ts are
made available for the users by LANCE (Land, Atmosphere Near real-time Capability) for Earth
Observing System (EOS) of NASA (National Aeronautics and Space Administration) free of cost.
Such Ts products are swath data with 5 min temporal increments of satellite acquisition, and the
average latency is 60-125 min to be available in public domain. The swath data of Ts requires a
specialized tool, i.e., HEG (HDF-EOS to GeoTIFF conversion tool) to process and make the data
useful for further analysis. However, the file naming convention of the available swath data files in
LANCE is not appropriate to download for an area of interest (AOI) to be processed by HEG. In this
study, we developed a method/algorithm to overcome such issues in identifying the appropriate
swath data files for an AOI that would be able to further processes supported by the HEG. In this
case, we used Terra MODIS acquired NRT swath data of Ts, and further applied it to an existing
framework of forecasting forest fires (as a case study) for the performance evaluation of our processed
Ts. We were successful in selecting appropriate swath data files of Ts for our study area that was
further processed by HEG, and finally were able to generate fire danger map in the existing forecasting
model. Our proposed method/algorithm could be applied on any swath data product available in
LANCE for any location in the world.

Keywords: grid data; moderate resolution imaging spectroradiometer (MODIS); natural hazards and
disasters; NRT; swath data

1. Introduction

Remote sensing data acquired by space-based instruments (i.e., satellite) has an utmost importance
in monitoring a wide variety of natural and man-made phenomena on the Earth. To understand
the processes of the Earth, such instruments have an ability to acquire and provide timely imagery
data for both the atmosphere and land. In which, atmosphere related imagery focuses primarily on
characterizing many geophysical dynamics of the troposphere and stratosphere involving clouds,
aerosols, temperature, precipitation, lighting, radiation balance, and chemistry [1]. Furthermore, land
related imagery products focus primarily on geophysical parameters and processes of the Earth’s
surfaces including land and sea surface temperatures, soil moisture, vegetation, and other land
covers [2]. Moreover, these remotely sensed data would be able to analyze the processes involved in
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the Earth’s interior (e.g., tectonics, gravity, and geomagnetism) although originating from below the
surface [2]. Nevertheless, geophysical parameters and dynamics of atmosphere and land data acquired
by satellites are useful in monitoring hazards and disasters including fires, drought, air quality, ash and
smoke plumes, dust storms, floods, severe storms, shipping, and vegetation [3]. For example, near real
time (NRT) satellite data have been used to monitor and forecast air quality by estimating air pollutants
such as aerosols, carbon monoxide (CO), ozone, nitrogen oxides, and sulfur dioxide in the atmospheric
composition [3–6]. Tracking propagation of such an atmospheric toxic gas like CO due to massive
fires is useful to generate early warnings of such pollution spikes to reduce exposure-risk of people to
poor air quality by limiting outdoor activities at these times [3]. In addition, biophysical parameters
like stress conditions in vegetation and soil moisture have a relation with surface temperature (Ts) [7],
and further involve in causing various natural hazards and disasters including agricultural drought
and wildland/forest fires.

Several studies demonstrated the effective use of Ts in agricultural drought monitoring and
forecasting forest fires by using space-based satellite images. For example, Hazaymeh and Hassan [8]
developed an agricultural drought indicator by using remote sensing-derived agricultural drought
related variables such as, normalized difference vegetation index (NDVI), normalized difference water
index (NDWI), visible and shortwave drought index (VSDI), normalized multiband drought index
(NMDI), moisture stress index (MSI), and land surface temperature (Ts). The study used Moderate
Resolution Imaging Spectroradiometer (MODIS)-derived 8-day composites of Ts over the growing
seasons of 2013–2014 and 2014–2015 in the northwestern part of Jordan, Middle East. In another
study by Hu et al. [9] used both 8-day and 16-day composites of MODIS-based Ts over the period of
January 2011 to June 2018 for agricultural drought monitoring in the Hetao Plain in Inner Mongolia
of Northwest China. Some other studies also used remote sensing based Ts in determining several
biophysical parameters of vegetation, such as deciduous phenology [10], understory grass greening
stage [11], and surface wetness conditions and growing degree days [12].

In forecasting forest fires, several studies in literature demonstrated the development of remote
sensing (RS)-based models that used different MODIS-derived dynamic variables including Ts.
For example, Chowdhury and Hassan [13] used MODIS-derived 8-day composites of Ts, NMDI,
and NDVI, and daily precipitable water (PW) to forecast at daily scale for the fire seasons of 2009–2011
period. Another study by Abdollahi et al. [14] introduced MODIS-derived daily Ts in their model in
addition to the same three MODIS-derived variables (i.e., NMDI, NDVI, and PW) that were used in
the model of Chowdhury and Hassan [13] during the fire seasons of 2009–2011. Furthermore, Ahmed
et al. [15] improvised the models to forecast at 4-day timescale during fire seasons of 2015–2017 period
by using MODIS-derived daily Ts, NDVI, and NDWI variables, and a human-caused static fire danger
(SFD) map. In general, in developing forest fires forecasting models to forecast at various timescales
(i.e., daily, 4-day, and 8-day), the studies employed standard data products of MODIS for deriving
several variables including Ts and various biophysical-related indexes (derived primarily from surface
reflectance data).

Although standard data products are internally consistent and well calibrated to support science
that served the purposes of those studies; however, the data are made available to public domain after
8–40 h (i.e., not as NRT) upon acquisition of the images by MODIS sensors [16]. Acquiring such a
delayed standard data product may not be appropriate for time-critical environmental applications
including monitoring and forecasting natural hazards and disasters, where NRT data is the primary
requirement. Interestingly, we could acquire NRT data products available in LANCE (Land, Atmosphere
Near real-time Capability for Earth Observing System) of NASA (National Aeronautics and Space
Administration) at free of cost, which become available in the public domain within 2.5 h of satellite
observation [17]. Moreover, MODIS NRT products in LANCE including Ts are available to the public
even earlier, where the average latency is 60–125 min [18].
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LANCE had been providing MODIS NRT data to support public uses through LANCE-MODIS
online hypertext transfer protocol secure (https) sites. For the better availability of MODIS NRT data to
the users, LANCE-MODIS has two servers, i.e., NRT3 and NRT4 [19]. Although NRT data products
might be downloaded from the both servers (i.e., through https sites); however, NASA recommends to
use the main server NRT3. The backup server NRT4 would be useful to download data in the events
of non-availability of the main server (i.e., NRT3) for any reason [19]. Nevertheless, for deriving the Ts
variable to be used in various time-sensitive applications like natural hazards and disasters, the MODIS
NRT in LANCE provides ‘Land Surface Temperature/Emissivity 5-Min L2 1 km’ Swath Data products
(i.e., MOD11_L2 from Terra and MYD11_L2 from Aqua) with 5 min temporal increments of satellite
acquisition [20].

The MODIS instruments on board the Terra (EOS AM) satellite pass over the equator (i.e.,
0◦ latitude) at approximately 10:30 am and 10:30 pm daily, and Aqua (EOS PM) passes over the
equator at approximately 1:30 pm and 1:30 am [21]. Its sun-synchronous orbit allows it to pass over
the same area on the Earth in every 24-h period [21]. However, such a repeating sun synchronous
orbit acquires the same areas with the same scan angle on the ground every 233 paths (i.e., 16 days).
In addition, data might be available covering an area of interest (AOI) on the ground much more
frequently (e.g., daily to 3 days), however these are acquired from different overlapping paths with
different scan angles (see Figure 1). Nevertheless, the number of overpasses increasing towards the
higher latitudes due to overlapping orbits, and the maximum overlapping occurs in the areas close
to the poles. Therefore, due to the Earth’s rotation and overlapping overpasses, multiple swath data
coverage might be available or required to cover an AOI (even for a very small geographic area) for a
day in the higher latitudes. MODIS swath data products are available as each 5-min data that covers
an area of 2330 km width and approximately 2100 km along track distance considering each satellite
moves at the speed of about 7 km per second. In such cases, there are possibilities of getting multiple
swath data files covering a much larger geographical area, or data gaps might be found among the
swath coverages for an AOI.

Although the Ts swath data files are made available to the public by LANCE in 60–125 min,
it is not possible to identify and download an exact 5-min swath data file for any geographical area
on the Earth since there are no coordinate information included in the data file naming convention.
We could, of course, download all swath data files for a day, or few swath data files for an estimated
few hours’ time period of the overpasses that potentially could cover the extent of an AOI. However,
such daily coverage using multiple swath data could have gaps among themselves to cover an AOI or
be excessively extended over the globe. NASA provided swath data processing tool HEG (HDF-EOS
to GeoTIFF conversion tool) fails to perform reformatting, re-projecting, stitching/mosaicking, and
subsetting operations for an AOI in cases any spatial data-gap occurs between swath data files, or the
combined coverage is excessively extended over the globe. Therefore, we set our objective in this study
to develop a method/algorithm to overcome such issues in identifying the appropriate swath data
files by minimizing the number of required files for an AOI that would be able to further processes
supported by the HEG. In this case, we planned to use Terra MODIS acquired NRT Swath Data of Ts,
and further applied it to an existing framework of forecasting forest fires (as a case study) to understand
the performance of the processed Ts.
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temperature (Ts) data, and cloud-contaminated or bad-quality pixels were declared here as ‘no data’. 

Figure 1. Terra MODIS acquired Land Surface Temperature/Emissivity 5-Min L2 1 km Swath Data
showing overlap of three data files of Ts (bounded by green thin curved outlines of the rectangles).
The overlapping swath data covering a larger geographic extent for a given AOI of Alberta, Canada
(rectangle in red bold outline) that were acquired on 24 August 2019 (source: NASA EARTHDATA).
The yellowish green and green to cyan colours in each swath frame were the available land surface
temperature (Ts) data, and cloud-contaminated or bad-quality pixels were declared here as ‘no data’.

2. Study Area

Our study areas were four AOIs in the four quadrants over the globe, such as northwestern
(NW), northeastern (NE), southeastern (SE), and southwestern (SW) hemispheres (see Figure 2a) to
evaluate the capacity of our proposed algorithm for downloading the MODIS acquired daily swath
data of Ts from LANCE server. The MOD11_L2 daily swath data of Ts were further reformat, re-project,
stitch/mosaic, and subset by HEG. The geographic coordinates of each AOI in each quadrant are shown
in Table 1.

Table 1. Coordinates of the extents of four AOIs that were used to evaluate our proposed algorithm in
selecting appropriate swath data files.

Area of Interest ULX * ULY * LRX * LRY *

NW (northwestern hemisphere) −120 61 −109 48
NE (northeastern hemisphere) 109 61 121 48
SE (southeastern hemisphere) 110 −20 120 −30

SW (southwestern hemisphere) −70 −20 −60 −30

* ULX: upper left X; ULY: upper left Y; LRX: lower right X; and LRY: lower right Y coordinates.
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Figure 2. Study areas in the four AOIs located in the NW, NE, SE, and SW hemispheres in the globe (a);
and processed Ts swath data were used in the forest landcover of Alberta located at the NW AOI to
forecast forest fire danger conditions (b).

For the evaluation of the daily processed swath data of Ts to be used in an existing framework of
forecasting forest fire danger conditions, we used the forested areas in the northern part of Alberta,
which is the AOI of the northwestern (NW) hemisphere (see Figure 2b). Among the 21 natural
subregions exists in Alberta, we considered four ecological subregions of forest coverage, such as
evergreen broadleaf, deciduous broadleaf, evergreen needleleaf, and deciduous needleleaf forests.
The subregions in Alberta were categorized based on the differences in vegetation, climate, elevation
and physiography [22]. The area experienced about 377 to 535 mm precipitation and −3.6 to 1.1 ◦C
mean annual temperature, and elevated from 162 to 3596 m above msl (mean sea level) [14,15,22].
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3. Materials

We used LANCE NRT MOD11_L2 data product of land surface temperature (Ts) acquired by
Terra MODIS. This product was used to assess the capacity of our proposed algorithm to download
and further processing of the daily NRT swath data for any location in the world. For assessing
the usability of the processed Ts as a variable to an existing framework of forecast forest fire danger
conditions, we additionally used LANCE NRT MOD09GA gridded product for deriving NDVI and
NDWI variables that were required for the framework. Furthermore, we used MODIS-derived yearly
land cover data product (i.e., MOD12Q1) for the identification of forest areas in the study area; and
a human-caused SFD map [14] for generating a final forecast map of forest fire danger conditions.
A summary of the data used in this study is shown in Table 2.

Table 2. Brief description of the datasets used in this study.

Data Product Satellite/Sensor Source Description Purpose of Use

MOD11_L2 (raster) Terra MODIS NASA’s Land,
Atmosphere
Near-real-time
Capability for EOS
(LANCE):
NRT3/NRT4

Land Surface Temperature
and Emissivity 5-min L2
Swath imagery (v006) at 1
km spatial resolution.

Preparing daily Ts
image to generate
composite for an
intended period.

MOD09GA (raster) Terra MODIS

Surface Reflectance Daily
L2G Global imagery (v006)
Bands 1 to 7 at 500 m
spatial resolution.

Calculating daily
NDVI and NDWI
images.

MOD12Q1 (raster) Terra+Aqua
MODIS NASA’s Earthdata

Land Cover Type Yearly
L3 Global SIN Grid at 500
m spatial resolution.

To identify intended
forest vegetation
coverage.

SFD map (raster) - Abdollahi et al. [14]
SFD derived from 500 m
buffered road network of
Alberta.

As a variable in
generating the final FD
map.

Boundary (vector) - Government of Alberta Provincial boundary of
Alberta

For defining the study
area.

4. Methods

Figure 3a shows the conceptual diagram to download and processes of Terra MODIS NRT swath
data of Ts from the NASA’s LANCE server using our proposed algorithm. Furthermore, the processed
Ts data was used in generating a forecast map of forest fire danger conditions using an existing model
for the next 4 days [15], as a case study (see Figure 3b). Details on the processing steps are described in
the following subsections.

4.1. Download Mechanism and Processing of NRT MOD11_L2 Swath Data to Derive Daily Ts

We downloaded all metadata files for a day from LANCE NRT3/NRT4 server, which were
associated with the MOD11_L2 data files of the day. Here, each metadata file was about 19 kilobytes
in size that were associated with each 5-min data between 00:00 and 23:55; and therefore, the total
size of the files was only about 5 megabytes for each AOI. Note that each 5-min swath data file had a
corresponding metadata file of the same name with an extension of *.met in the server. The metadata file
naming convention for the swath product of a filename MOD11_L2.A2019266.1720.006.NRT. hdf.met
(for example) indicated the following:

MOD11_L2—product short name
A2019266—Julian date of acquisition (A-YYYYDDD)
1720—hours and minutes of acquisition (HHMM)
006—collection version
NRT—type of data (i.e., near real time)
hdf—data format (i.e., HDF-EOS)
met—type of file (i.e., metadata for MOD11_L2.A2019266.1720.006.NRT.hdf)
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Figure 3. Conceptual diagram of download and processing of Terra MODIS NRT swath data of Ts from
LANCE (a), and further use of the processed Ts in generating a 4-day forecast map of forest fire danger
conditions (b).

It was not possible to identify any geographic location on the earth from such file naming
convention. However, each metadata file contained four-corner coordinates for both longitude (lon)
and latitude (lat) in the lines 183 and 189 respectively that provide the extent of data coverage by each
swath data file. Therefore, swath data files were possible to identify for an AOI by using the range of
lon and lat coordinates available in the associated metadata file that intersect with the extent of an AOI.
Such a way, we identified only a small number of required metadata files (e.g., two to four metadata
files in each day for our study areas that represented swath data covering an AOI). The mathematical
expression for such identification of Terra MODIS swath data file with the descending node (i.e.,
satellite starts data acquisition from the north towards south) is shown as follows (Equation (1)).((

((LRX ≤ lon3) AND (LRX ≥ lon4)) OR
((ULX ≤ lon3) AND (ULX ≥ lon4))

)
AND

(
((LRY ≤ lat2) AND (LRY ≥ lat3)) OR
((ULY ≤ lat2) AND (ULY ≥ lat3))

))
(1)

where, the extent of an AOI was between (ULX, ULY) and (LRX, LRY), the four lon coordinates
(i.e., X) in line 183 of a metadata file were lon1, lon2, lon3, and lon4, and the four lat coordinates
(i.e., Y) in line 189 were lat1, lat2, lat3, and lat4. Here, lon1, lon2, lon3, and lon4 represented the
longitudinal coordinates of the upper-left (UL), upper-right (UR), lower-right (LR), and lower-left
(LL) corners of each swath data coverage respectively, and lat1, lat2, lat3, and lat4 represented the
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latitudinal coordinates of the upper-left (UL), upper-right (UR), lower-right (LR), and lower-left (LL)
corners respectively.

Once a limited number of metadata files had been selected for each AOI by using our
proposed algorithm, the remaining metadata files were removed. Next, the corresponding
MOD11_L2 swath data file (e.g., MOD11_L2.A2019266.1720.006.NRT.hdf) of each selected metadata
file (e.g., MOD11_L2.A2019266.1720.006.NRT.hdf.met) was downloaded from NRT3/NRT4 server.
The downloaded files were further processed by the HEG tool (a swath data processing tool of NASA)
to derive a projected daily surface temperature (Ts) image of an AOI with a spatial resolution size of
1000 m.

4.2. Preparation of 4-Day Composite of the Swath Data-Derived Daily Ts

We prepared a 4-day composite of daily Ts images with the planning of using it as a variable in an
existing forecast model of forest fire danger conditions [15], as a case study. To prepare such a 4-day
composite of Ts image, we used four daily Ts images derived from swath data using our proposed
algorithm described in the previous Section 4.1. In generating such a composite image, we stacked
the four daily Ts images, and calculated arithmetic mean (average) of the values in the four layers
of the stack to derive value for each pixel. In this case, we considered only cloud-free good quality
pixels with the assumption of having low forest fire danger conditions in the cloud-contaminated
pixels [15]. Furthermore, we resampled the 4-day composite Ts image from 1000 m to 500 m for being
consisted with the spatial-resolution of the other variables (i.e., NDVI and NDWI) to be used in the
forecast model.

4.3. Using the NRT Daily Ts Data and Other NRT Variables to Forecast Forest Fire Danger (A Case Study)

We followed an existing framework documented in Ahmed et al. [15] to forecast forest fire
danger conditions for the next 4 days by using our processed Terra MODIS NRT swath data derived
Ts variable (described in the previous Section 4.1). In addition, we used other required variables
(i.e., NDVI and NDWI) that were calculated from Terra MODIS NRT gridded data (MOD09GA).
Unlike NRT swath data, the MODIS grid data (i.e., MOD09GA) available at LANCE (NRT3/NRT4)
were rather simple to select and download for a desired AOI. The MOD09GA grid data file
naming convention for a file MOD09GA.A2019266.h11v03.006.NRT.hdf (for example) indicated
the followings: MOD09GA—product short name; A2019266—Julian date of acquisition (A-YYYYDDD);
h11v03—MODIS sinusoidal grid tile measures at approximately 10◦ × 10◦; 006—collection version;
NRT—type of data (i.e., near real time); and hdf —data format (i.e., HDF-EOS). Here, it was easy to
identify the number of tiles required to cover the spatial extent of a desired AOI, because the coordinates
of each sinusoidal grid tile are known, and each tile could be identified by the combination of horizontal
(h) and vertical (v) numbers available online (see Figure 4) [23]. Once the tiles are known for an AOI,
the MOD09GA grid data files required for an AOI could be selected for download from NRT3/NRT4,
because the ‘h’ and ‘v’ information are included in the file names. Moreover, a downloaded daily grid
data (i.e., MOD09GA) for an AOI could be further processed by the MODIS Reprojection Tool (MRT,
a NASA tool) for deriving a daily surface reflectance image (includes bands 1 to 7) of an AOI with a
spatial resolution of 500 m. Nevertheless, the processes of generating a forest fire danger map using
the existing framework are briefly described below.
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Figure 4. MODIS sinusoidal tile grid consisting of 460 non-overlapping tiles, and each tile covers
approximately 10◦ × 10◦.

Firstly, we downloaded daily MOD09GA grid data tiles from LANCE NRT3 server for our NW
study area using 10 to 12 and 03 for h and v respectively (i.e., h10v03, h11v03 and h12v03). Once these
three tiles were downloaded, we used the MRT tool to derive a projected daily surface reflectance
image at 500 m spatial resolution by mosaic and subset operations. Next, three bands, such as band 1
(red), band 2 (near infrared, nir), and band 7 (shortwave infrared 3, swir3) were used to calculate daily
NDVI and NDWI images for the study area. Such daily NDVI and NDWI images were generated for
the previous four days. Furthermore, 4-day composite images of NDVI and NDWI variables were
generated with the daily NDVI and NDWI images respectively created for the previous four days.
In generating the composite images, we calculated the variable-specific maximum values for each
pixel in the images in each composite during the composition period. Furthermore, we performed
subset operation on these two composite images (i.e., NDVI and NDWI) and the 4-day composite of Ts
(generated in the previous Section 4.2). For the subset, we used locations of forest classes available
in MOD12Q1 thematic data and the provincial boundary of Alberta to derive data of the calculated
variables in forested regions only.

Secondly, we generated thematic maps of variable-specific forest fire danger conditions for the
next 4 days. In preparing those maps, we calculated the variable-specific average value for the study
area (i.e., the ‘Global Mean’ of each Ts, NDVI and NDWI composite for the previous 4 days). Once the
global mean values were calculated for each variable, we prepared variable-specific thematic maps
containing two fire danger (FD) classes (i.e., ‘high’ and ‘low’) over the forested areas using the criteria
documented in Ahmed et al. [15].

Finally, we prepared an integrated fire danger (IFD) map with the variable-specific danger
conditions by considering same weightage for each variable. The resulted IFD map was consisted
of four FD classes, such as very high (VH), high (H), moderate (M), and low (L) depending on the
total number of variables occurred in the ‘high’ danger class. Next, we generated a final forest fire
danger (FFD) map to forecast forest fire danger conditions for the next four days. To derive the FFD
map, we additionally integrated a static fire danger (SFD) map with ‘high’ and ‘low’ danger classes
describing the influence of human-caused ignition source (adopted from Abdollahi et al. [14]). During
the operation, four FD classes in the IFD map were reassigned to four classes in the FFD map depending
on the danger conditions available in the SFD map. For example, we assigned a higher danger class
(i.e., H to VH, M to H, and L to M), where the corresponding pixels in the SFD map demonstrated
‘high’ danger class. However, categories remained unchanged in case of ‘low’ danger class.



Sensors 2020, 20, 984 10 of 16

5. Results and Discussion

5.1. Daily Ts Image from MOD11_L2 Swath Data

Daily Ts image was generated for each AOI of our study area from multiple daily MOD11_L2
swath data using our proposed algorithm. For each AOI, we generated four different daily Ts images.
Ts images were generated for the following days: (i) 24–27 August 2019 (day of year, DOY 236 to 239)
for NW; (ii) 29 September–2 October 2019 (DOY 272 to 275) for NE; (iii) 30 September–3 October 2019
(DOY 273 to 276) for SW; and (iv) 29 September–2 October 2019 (DOY 272 to 275) for SE. Among the
generated daily Ts images for NW, NE, SW, and SE locations, we are presenting daily Ts images of 24
August 2019 (Figure 5a), 2 October 2019 (Figure 5b), 30 September 2019 (Figure 5c), and 2 October 2019
(Figure 5d) respectively, as example outputs. The daily Ts images located in the northern hemisphere
(NW and NE coverages) were having much more cloud-contaminated pixels (declared as no-data in
Figure 5) in the land areas. Although, these dates were considered under the window of forest fires
season; however, fires are less pronounced around such late season in northern latitudes, which is
probably because of the presence of excessive cloud coverage.

5.2. Four-Day Composite of Ts

The 4-day Ts composite images were prepared for each of the AOI that comprised of the daily Ts
images derived from NRT swath data presented in the previous subsection (see Section 5.1). The 4-day
composites of Ts for NW, NE, SW, and SE locations were comprised of daily Ts images of DOY 236 to
239 (see Figure 6a), 272 to 275 (see Figure 6b), 273 to 276 (see Figure 6c), and 272 to 275 (see Figure 6d)
in 2019 respectively. Since our objective was to prepare an FFD map only for the forested areas,
we generated a cropped 4-day composite of Ts image (see Figure 6a) covering the vegetation in our
NW study area. The remaining areas were declared as ‘no data’ and assigned as transparent (white
areas in Figure 6a). Note that we did not apply any vegetation coverage or administrative boundary
layer for the remaining AOIs (i.e., NE, SW and SE), and thus the 4-day Ts composite images of those
areas were having data for the entire AOI (see Figure 6b–d). However, ‘no data’ areas in those images
(see Figure 6b–d) were due to the presence of cloud-contaminant pixels or not good-quality pixels.

5.3. Daily NRT Swath Data-derived Ts and Other NRT Variables to Forecast Forest Fire Danger Conditions

The existing 4-day scale forecasting model of forest fire danger conditions used four variables
including three dynamic variables such as, Ts, NDVI and NDWI, and a static variable, i.e., an SFD
map. In our study, we used the dynamic variables that were derived from NRT MODIS data, such as,
NRT swath data (MOD11_L2) for Ts and NRT gridded data (MOD09GA) for calculating NDVI and
NDWI. We were able to produce an FFD map at NRT (on 28 August 2019) by using 4-day composites
of each dynamic variable acquired from an NRT source for a period of previous four days (i.e.,
24–27 August 2019) to forecast for the next four days (i.e., 28–31 August 2019). The FFD map of the
forested areas in our NW study location were having four FD categories, such as VH, H, M, and L
(see Figure 7). Note that we could not validate the FFD map since no NRT fire occurrence data was
available. Furthermore, the existing model that we used to forecast forest fire danger conditions by
integrating our proposed algorithm of deriving Ts image from NRT swath data had already been
validated and documented a very good accuracy [15].



Sensors 2020, 20, 984 11 of 16
Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 

 

 

Figure 5. Daily Ts images in Kelvin (K) for the four different AOIs. Each Ts image was derived from 

the mosaic, reprojection, and subset operations on multiple swath data (i.e., MOD11_L2) for a day in 

2019. For example, (a) northwestern hemisphere (NW): DOY 236; (b) northeastern hemisphere (NE): 

DOY 275; (c) southwestern hemisphere (SW): DOY 273; and (d) southeastern hemisphere (SE): DOY 

275. Only cloud-free good pixels are shown here and remaining declared as ‘no data’. 

Figure 5. Daily Ts images in Kelvin (K) for the four different AOIs. Each Ts image was derived from
the mosaic, reprojection, and subset operations on multiple swath data (i.e., MOD11_L2) for a day in
2019. For example, (a) northwestern hemisphere (NW): DOY 236; (b) northeastern hemisphere (NE):
DOY 275; (c) southwestern hemisphere (SW): DOY 273; and (d) southeastern hemisphere (SE): DOY
275. Only cloud-free good pixels are shown here and remaining declared as ‘no data’.
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Figure 6. 4-day composites of Ts derived from four daily Ts images of each AOI. The dates of daily Ts
images spanning over a four-day composition period were: (a) NW: DOY 236 to 239 (24–27 August
2019); (b) NE: DOY 272 to 275 (29 September–2 October 2019); (c) SW: DOY 273 to 276 (30 September–3
October 2019); and (d) SE: DOY 272 to 275 (29 September–2 October 2019).
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Figure 7. An FFD map was generated using NRT swath data of Ts variable that was derived by
applying our proposed algorithm, and NRT gridded data for calculating NDVI and NDWI variables.

In the scope of this manuscript, it was not possible to provide a detailed validation of the
proposed NRT model. Although there were two potential sources of reference data available for
such a detailed validation; however, we could not use those for the following two reasons. Firstly,
the most reliable database on fire occurrences in Canada is known as the Canadian National Fire
Database (CNFDB). Such data is synthesized by the Government of Canada, and available for the
public to download (see https://cwfis.cfs.nrcan.gc.ca/datamart for details; accessed on 7 February
2020). However, the database usually includes the historical fire occurrences until one to three years
back from the on-going or recent fire season. Therefore, it was not possible to derive any NRT fire
occurrence data that would be useful for detailed validation of our NRT model generated FFD maps.
Secondly, another possibility of validating the FFD maps was to use the active fire spot images of
the MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite). NASA’s fire information for
resource management system (FIRMS) distributes such NRT active fire data within 3 h of satellite
observation (see https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms for details;
accessed on 7 February 2020). However, validating with such data products is having some limitations,
e.g., the confidence value of the products varies from 0 to 100%, and the data might produce false
alarms (i.e., actual forest fires do not occur in the areas) over bright/reflective surfaces [15,24–28].
Hence, using a dataset with such a variable confidence level and possibility of having false alarms was
not appropriate to validate the FFD maps generated by our NRT model.

It would be worth noting that the MODIS-derived Ts data and other required variables to
forecast forest fire danger conditions were successfully used in previous studies [13–15]. Despite their
reasonable performances against ground observed data, they did not have the capacity to be used as
operational prototypes. This was due to the fact that they employed historical remote sensing data,
and that made them possible to perform detailed validations mostly based on the historical CNFDB.
In this study, we used NRT data to make it an operational model as discussed before. The framework of
this NRT model was very much similar to the validated and published framework of Ahmed et al. [15].
The major differences were that we proposed methods/algorithms of using the MODIS-acquired NRT
swath and grid data to develop an operational NRT model, where FFD maps were generated as a case
study. Besides, we plan to implement this proposed NRT model in the upcoming fire season of 2020

https://cwfis.cfs.nrcan.gc.ca/datamart
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
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spanning between May and September in Alberta, Canada, which would further facilitate the detailed
validation in future.

In developing such operational model based on NRT MODIS-derived variables, the major
challenge was to use NRT swath data of Ts. Therefore, we presented the outcomes of derived daily Ts
images from NRT swath data by using our proposed algorithm. Furthermore, we showed the usability
of the derived NRT Ts image in forecasting forest fire danger conditions, as a case study, for the NW
study area. Note that we did not generate FFD maps for other three locations (i.e., NE, SE, and SW) in
this study. However, we generated daily Ts images (see Section 5.1) and Ts composites (see Section 5.2)
for those three locations to evaluate the effectiveness of the proposed algorithm.

6. Conclusions

In this study, we presented an algorithm/method that would be able to identify appropriate
MODIS NRT swath data files required for an AOI by minimizing the number of files supported by the
HEG tool to process it. In this case, we used Terra MODIS acquired NRT swath data of Ts, and further
applied it to an existing framework of forecasting forest fires to assess performance of the processed
Ts. In addition, we used Terra MODIS acquired NRT gridded data for calculating other variables (i.e.,
NDVI and NDWI) that were required for the existing model. Using those Terra MODIS acquired
NRT data in the existing forest fires forecasting model, we were successful to generate a final danger
map (FFD) to forecast for the next four days. Outcomes in this study showed a promising future
in developing remote sensing based NRT forecasting models not only for forest fires but also for
other natural hazards and disasters related to Ts. Theoretically, other remotely sensed products in
LANCE available as Terra MODIS NRT swath data could be downloaded, processed, and applied
in other applications by using our proposed method. Moreover, Aqua MODIS NRT swath data
could be downloaded and processed by using the proposed method that would be useful in various
applications. However, we suggest evaluating the method before final adoption for any operational
purposes. This proposed NRT model to forecast forest fire danger conditions would be helpful for the
fire managers to initiate immediate protocols to evaluate and manage large fire occurrences. Besides,
the local governments, industries including oil sand, local and indigenous communities, etc. located in
the heart of boreal forested areas would benefit by becoming resilient to forest fires as a result of using
this model.
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