Safe Navigation Distance Between Marine Routes and Aquaculture Farms in South Korea Using Gaussian Mixture Model
Abstract
:1. Instruction
2. Materials and Methods
2.1. Study Area
2.2. Map Overlay Development
2.3. Estimation of the Lateral Distance
2.4. Application of the Gaussian Mixture Model (GMM).
2.5. Estimation of the Goodness-of-Fit Using the Kolmogorov–Smirnov Test
2.6. Estimation of the Annual Frequency of Aquaculture Farm Damages
2.7. Description of the Installation of the Interconnected Location Sensors (IoUT)
3. Results
3.1. Selecting the High-Risk Area
3.2. Lateral Distances in Areas A and B
3.3. Model Selection and Parameters of GMM in Area A and B
3.4. Goodness of KS Test in Area A and B
3.5. Annual Frequency of Damage and the Return Period for the Aquaculture Farms in Areas A and B.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture. Food and Agricultural Organization of the United Nations; FAO publishing: Roma, Italy, 2016. [Google Scholar]
- Subasinghe, R.P. Epidemiological approach to aquatic animal health management:opportunities and challenges for developing countries to increase aquatic production through aquaculture. Prev. Vet. Med. 2005, 67, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Menicou, M.; Vassiliou, V. Prospective energy needs in Mediterranean offshore aquaculture: Renewable and sustainable energy solutions. Renew. Sust. Energ. Rev. 2010, 14, 3084–3091. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Maigne, L.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- KOSTAT. Fishery Production Trend, Korea Statistics. 2017. Available online: http://kosis.kr/index (accessed on 15 June 2018).
- Yoo, S.L.; Jeong, J.C. A study on marking nautical charts with aquaculture farms for prevention of marine accidents. Mar. Policy Res. 2017, 32, 23–41. [Google Scholar]
- Meaden, G.J.; Aguilar-Manjarrez, J.; Corner, R.; O’Hagan, A.; Cardia, F. Marine spatial planning for enhanced fisheries and aquaculture sustainability: Its application in the Near East. Environ. Sci. 2016, 604, 1–89. [Google Scholar]
- Gentry, R.R.; Lester, S.E.; Kappel, C.V.; White, C.; Bell, T.W.; Stevens, J.; Gaines, S.D. Offshore aquaculture: Spatial planning principles for sustainable development. Ecol. Evol. 2017, 7, 733–743. [Google Scholar] [CrossRef]
- Lester, S.E.; Stevens, J.M.; Gentry, R.; Kappel, C.; Bell, T.; Costello, C.; Gaines, S.; Kiefer, D.; Maue, C.; Rensel, J.; et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 2018, 9, 945. [Google Scholar] [CrossRef] [Green Version]
- Maritime New Zealand. Guidelines for Aquaculture Management Areas and Marine Farms; Maritime New Zealand: Wellington, New Zealand, 2005; pp. 1–19. [Google Scholar]
- United Arab Emirates Ministry of Climate Change and Environment. UAE Aquaculture Guide; United Arab Emirates Ministry of Climate Change & Environment Publishing: Dubai, UAE, 2017; pp. 1–132.
- IALA Guideline. G1121–Navigational Safety Within Marine Spatial Planning. International Association of Marine Aids to Navigation and Lighthouse Authorities. 2017. Available online: https://www.iala-aism.org/product/g1121-navigational-safety-within-marine-spatial-planning/ (accessed on 21 August 2018).
- İstikbal, C.; Erkan, N. A contemporary analysis on fish farms and the safety of navigation. Aquat. Res. 2018, 1, 18–25. [Google Scholar] [CrossRef]
- Wawruch, R.; Stupak, T. Modelling of safety distance between ships’ route and wind farm. Arch. Transp. 2011, 23, 413–420. [Google Scholar] [CrossRef]
- Bekker, J.F.; Schmid, J.P. Planning the safe transit of a ship through a mapped minefield. OriON 2006, 22, 1–18. [Google Scholar] [CrossRef]
- Kim, C.S.; Jeong, J.S.; Park, S.H. A study on remote monitoring system for protecting aquaculture farms. J. Kor. Soc. Mar. Environ. Saf. 2004, 10, 55–60. [Google Scholar]
- Nam, T.G.; Yim, J.B.; Ahn, Y.S. A study on the fishery detection system for protection of an aquaculture farm. J. Kor. Soc. Mar. Environ. Saf. 2004, 10, 49–53. [Google Scholar]
- Yim, J.B.; Nam, T. Implementation of unmanned aquaculture security system. J. Kor. Soc. Mar. Environ. Saf. 2007, 13, 61–67. [Google Scholar]
- Jo, M.H. Measuring the quantities of aquaculture farming facilities for seaweed, ear shell and fish using high resolution aerial images. J. Kor. Assoc. Geogr. Inf. Stud. 2011, 14, 147–161. [Google Scholar] [CrossRef]
- Park, J.H.; Suh, Y.C. GIS-based suitable site selection for aquaculture using scope for growth of styela clava. J. Kor. Assoc. Geogr. Inf. Stud. 2013, 16, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.R.; Kim, H.H.; Kim, W.H.; Ryu, D.H.; Gang, S.M.; Choung, Y.J. Development of a prototype system for aquaculture facility auto detection using KOMPSAT-3 satellite imagery. J. Kor. Assoc. Geogr. Inf. Stud. 2016, 19, 63–75. [Google Scholar] [CrossRef]
- James, M.; Mendo, T.; Jones, E. AIS data to inform small scale fisheries management and marine spatial planning. Mar. Policy 2018, 91, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Domingo, M. An overview of the internet of underwater things. J. Netw. Comput. Appl. 2012, 35, 1879–1890. [Google Scholar] [CrossRef]
- Han, S.; Kang, Y.; Park, K.; Jang, M. Design of environment monitoring system for aquaculture farms. In Proceedings of the 2007 Frontiers in the Convergence of Bioscience and Information Technologies, Jeju City, Korea, 11–13 October 2007; pp. 889–893. [Google Scholar]
- Zhu, X.; Li, D.; He, D.; Wang, J.; Ma, D.; Li, F. A remote wireless system for water quality online monitoring in intensive fish culture. Comput. Electron. Agric. 2010, 71, S3–S9. [Google Scholar] [CrossRef]
- Chen, J.H.; Sung, W.T.; Lin, G.Y. Automated monitoring system for the fish farm aquaculture environment. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 October 2015; pp. 1161–1166. [Google Scholar]
- Hassan, W.; Føre, M.; Urke, H.A.; Kristensen, T.; Ulvund, J.B.; Alfredsen, J.A. System for Real-time Positioning and Monitoring of Fish in Commercial Marine Farms Based on Acoustic Telemetry and Internet of Fish (IoF). In Proceedings of the 29th International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019. [Google Scholar]
- Yoo, S.L. A Study on the Estimation of Optimal Probability Distribution in the Ship Fairway. Ph.D. Thesis, Mokpo National Maritime University, Mokpo, Korea, 2016. [Google Scholar]
- Yoo, S.L.; Jung, C.Y. A study on the improvement of recommended route in the vicinity of Wando island using support vector machine. J. Kor. Nav. Port Res. 2017, 41, 445–450. [Google Scholar]
- Mokpo Regional Office of Ocean and Fisheries (MROOF). Notification on Safety of Navigation (Recommended Route) Near Wando Port. 2018. Available online: http://mokpo.mof.go.kr/index.do (accessed on 15 June 2018).
- Harati-Mokhtari, A.; Wall, A.; Brooks, P.; Wang, J. Automatic identification system: Data reliability and human error implications. J. Nav. 2007, 60, 373–389. [Google Scholar] [CrossRef]
- Park, N.K.; Choi, H.R.; Lee, C.S.; Kang, M.H.; Yang, J.W. Port management information system towards privatization. In Proceedings of the International Association of Maritime Economists, Limassol, Cyprus, 23–25 June 2005; pp. 1–13. [Google Scholar]
- ITU-2014. List of Ship Stations and Maritime Mobile Service Identity Assignments: List V; International Telecommunication Union publishing: Geneva, Switzerland, 2014. [Google Scholar]
- Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; pp. 28–31. [Google Scholar]
- KaewTraKulPong, P.; Bowden, R. An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-Based Surveillance Systems; Springer Publishing: Boston, MA, USA, 2002. [Google Scholar]
- Yoo, S.L.; Jeong, J.Y.; Yim, J.B. Estimating suitable probability distribution function for multimodal traffic distribution function. J. Kor. Soc. Mar. Environ. Saf. 2015, 21, 253–258. [Google Scholar] [CrossRef]
- Rasmussen, C.E. The infinite Gaussian mixture model. In Proceedings of the Advances in neural information processing systems, Denver, CO, USA, 29 November–4 December 2000; pp. 554–560. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B. 1977, 39, 1–22. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the second International Symposium on Information Theory, Budapest, Hungary, 2–8 September 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 2, 461–464. [Google Scholar] [CrossRef]
- Massey Jr, F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Ellis, J.; Forsman, B.; Huffmeier, J.; Johansson, J. Methodology for Assessing Risks to Ship Traffic from Offshore Wind Farms. Vattenfall Rep. 2016. Available online: https://corporate.vattenfall.se/globalassets/sverige/om-vattenfall/om-oss/var-verksamhet/vindkraft/kriegers-flak/5-kriegers-flak-risk-assessment_11335732.pdf (accessed on 15 June 2018).
- Ahmad, I.; Chang, K. Mission critical user priority-based random access scheme for collision resolution in coexisting PS-LTE and LTE-M networks. IEEE Access 2019, 7, 115505–115517. [Google Scholar] [CrossRef]
- Jo, S.W.; Shim, W.S. LTE-Maritime: High-Speed Maritime Wireless Communication Based on LTE Technology. IEEE Access 2019, 7, 53172–53181. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. Available online: http://ilpubs.stanford.edu:8090/778/ (accessed on 30 August 2018).
- Rawson, A.; Rogers, E. Assessing the impacts to vessel traffic from offshore wind farms in the Thames Estuary. Sci. J. Marit. Univ. Szczec. 2015, 43, 1159. [Google Scholar]
- NYSERDA. New York State Offshore Wind Master Plan Shipping and Navigation Study. 2017. Available online: https://www.nyserda.ny.gov/All-Programs/Programs/Offshore-Wind/Offshore-Wind-in-New-York-State-Overview/NYS-Offshore-Wind-Master-Plan (accessed on 15 June 2018).
- Willmann, R.; Insull, R. Integrated coastal fisheries management. Ocean Coast Manag. 1993, 21, 285–302. [Google Scholar] [CrossRef]
- Morales-Nim, B.; Grau, A.; Palmera, M. Managing coastal zone fisheries: A Mediterranean case study. Ocean Coast Manag. 2010, 53, 99–106. [Google Scholar] [CrossRef]
- Mostafa, S.; Xiangmin, X.; Ming, Y.; Nusrat, J. Towards sustainable development of coastal fisheries resources in Bangladesh: An analysis of the legal and institutional framework. Turk. J. Fish. Aquat. Sc. 2017, 17, 831–839. [Google Scholar]
- Bone, J.; Clavelle, T.; Ferreira, J.; Grant, J.; Landner, I.; Immink, A.; Stoner, J.; Taylor, N. Best Practices for Aquaculture Management Guidance for Implementing the Ecosystem Approach in Indonesia and Beyond. Conservation International, Sustainable Fisheries Partnership, University of California Santa Barbara. 2018. Available online: https://www.sustainablefish.org/Publications (accessed on 30 October 2019).
Acceptance | The Time Between Collisions (Years) |
---|---|
Acceptable | > 100 |
Further analysis necessary | 50–100 |
Not acceptable | < 50 |
Number of Mixture Components | BIC for Area A | BIC for Area B |
---|---|---|
2 | 55,115 | 55,803 |
3 | 55,129 | 55,821 |
4 | 55,163 | 55,844 |
5 | 55,186 | 55,858 |
Parameters of GMM for Area A | Parameters of GMM for Area B | |
---|---|---|
Location parameter | = 371.4 | = 307.9 |
= 406.7 | = 439.1 | |
Scale parameter | = 121.6 | = 98.9 |
= 122.1 | = 109.3 | |
Mixture parameter | = 0.45 | = 0.37 |
= 0.55 | = 0.63 |
Critical Value | p-Value | Significance Level | ||
---|---|---|---|---|
area A | 0.01 | 0.02 | 0.75 | 0.05 |
area B | 0.01 | 0.02 | 0.78 | 0.05 |
Distance from the Traffic Route to the Aquaculture Farms | Probability | Annual Frequency of Damage | Return Period |
---|---|---|---|
735 m | 2.59 × 10−3 | 11.4 | 0.1 years |
800 m | 4.45 × 10−4 | 1.9 | 0.5 years |
850 m | 9.61 × 10−5 | 0.4 | 2.4 years |
900 m | 1.77 × 10−5 | 0.07 | 12.8 years |
950 m | 2.80 × 10−6 | 0.01 | 80.9 years |
1000 m | 3.76 × 10−7 | 0.002 | 601.1 years |
Distance from the Traffic Route to the Aquaculture Farms | Probability | Annual Frequency of Damage | Return Period |
---|---|---|---|
980 m | 3.81 × 10−6 | 0.017 | 59.5 years |
1000 m | 1.95 × 10−6 | 0.009 | 116.0 years |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-L.; Jeong, J.-C. Safe Navigation Distance Between Marine Routes and Aquaculture Farms in South Korea Using Gaussian Mixture Model. Sensors 2020, 20, 1246. https://doi.org/10.3390/s20051246
Yoo S-L, Jeong J-C. Safe Navigation Distance Between Marine Routes and Aquaculture Farms in South Korea Using Gaussian Mixture Model. Sensors. 2020; 20(5):1246. https://doi.org/10.3390/s20051246
Chicago/Turabian StyleYoo, Sang-Lok, and Jong-Chul Jeong. 2020. "Safe Navigation Distance Between Marine Routes and Aquaculture Farms in South Korea Using Gaussian Mixture Model" Sensors 20, no. 5: 1246. https://doi.org/10.3390/s20051246
APA StyleYoo, S. -L., & Jeong, J. -C. (2020). Safe Navigation Distance Between Marine Routes and Aquaculture Farms in South Korea Using Gaussian Mixture Model. Sensors, 20(5), 1246. https://doi.org/10.3390/s20051246