Vehicle Trajectory Prediction Method Based on License Plate Information Obtained from Video-Imaging Detectors in Urban Road Environment
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Trip Chain Building Based on Vehicle License Plate Information Obtained from Video-Imaging Detectors
3.1.1. Preparations for the Trip Chain Building
3.1.2. Trip Chain Optimization and Division Based on Vehicle License Plate
3.2. Vehicle Trajectory Prediction Model Based on Turning State Transition Matrix
4. Experiments and Discussion
4.1. Results of Trip Chain Building and Compensation
4.2. Trajectory Prediction Results and Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.X.; Mao, J.L.; Qi, X.D.; Yuan, P.S.; Jin, C.Q. Cloned Vehicle Behavior Analysis Framework. In Proceedings of the APWeb and WAIM Joint International Conference on Web and Big Data, Macau, China, 23–25 July 2018; pp. 223–231. [Google Scholar]
- Shen, M.S.; Liu, D.R.; Shann, S.H. Outlier detection from vehicle trajectories to discover roaming events. Inf. Sci. 2015, 294, 242–254. [Google Scholar] [CrossRef]
- Kong, X.J.; Xu, Z.Z.; Shen, G.J.; Wang, J.Z.; Yang, Q.Y.; Zhang, B.S. Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Gener. Comput. Syst. 2016, 61, 97–107. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zheng, Y.; Yi, X.W.; Ukkusuri, S.V. Citywide traffic volume estimation using trajectory data. IEEE Trans. Knowl. Data Eng. 2016, 29, 272–285. [Google Scholar] [CrossRef]
- Yu, J.; Lu, P.Z.; Han, J.M.; Lu, J.F. Detecting Regularities of Traffic Signal Timing Using GPS Trajectories. Ieice Trans. Inf. Syst. 2018, 101, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lu, P.Z. Learning traffic signal phase and timing information from low-sampling rate taxi GPS trajectories. Knowl. Based Syst. 2016, 110, 275–292. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, J.; Han, J.M. Traffic Signals Timing Cycle Length Learning: Using Taxi Gps Trajectories. In Proceedings of the 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China, 15–18 July 2018; pp. 13–18. [Google Scholar]
- Zhao, Y.; Zheng, J.F.; Wong, W.; Wang, X.M.; Meng, Y.; Liu, H.X. Various methods for queue length and traffic volume estimation using probe vehicle trajectories. Transp. Res. Part C Emerg. Technol. 2019, 107, 70–91. [Google Scholar] [CrossRef] [Green Version]
- Ye, N.; Wang, Z.Q.; Malekian, R.; Zhang, Y.Y.; Wang, R.C. A method of vehicle route prediction based on social network analysis. J. Sens. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y.G.; Ma, W.J. GPS-data-driven dynamic destination prediction for on-demand one-way carsharing system. Iet. Intell. Transp. Syst. 2018, 12, 1291–1299. [Google Scholar] [CrossRef]
- Ye, N.; Zhang, Y.Y.; Wang, R.C.; Malekian, R. Vehicle trajectory prediction based on Hidden Markov Model. Ksii. Trans. Internet Inf. Syst. 2016, 10, 3150–3170. [Google Scholar]
- Wang, X.; Jiang, X.H.; Chen, L.F.; Wu, Y. KVLMM: A Trajectory Prediction Method Based on a Variable-Order Markov Model With Kernel Smoothing. IEEE Access 2018, 6, 25200–25208. [Google Scholar] [CrossRef]
- Oliveira, L.; Schneider, D.; Souza, J.D.; Shen, W.M. Mobile Device Detection Through WiFi Probe Request Analysis. IEEE Access 2019, 7, 98579–98588. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Gu, S.H.; Yu, T.; Xu, X.L. APS-PBW: The Analysis and Prediction System of Customer Flow Data Based on WIFI Probes. In Proceedings of the International Conference on Knowledge Science, Changchun, China, 17–19 August 2018; pp. 477–488. [Google Scholar]
- Traunmueller, M.W.; Johnson, N.; Malik, A.; Kontokosta, C.E. Digital footprints: Using WiFi probe and locational data to analyze human mobility trajectories in cities. Comput. Environ. Urban Syst. 2018, 72, 4–12. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Z.; Zhao, Y.; Huang, R.; Li, S.; Pan, G. Discovering People’s Life Patterns from Anonymized WiFi Scanlists. In Proceedings of the 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014; pp. 276–283. [Google Scholar]
- Chen, X.X.; Wan, X.; Ding, F.; Li, Q.; McCarthy, C.; Cheng, Y.; Ran, B. Data-Driven Prediction System of Dynamic People-Flow in Large Urban Network Using Cellular Probe Data. J. Adv. Transp. 2019, 2019, 1–12. [Google Scholar]
- Zhao, Z.B.; Zhang, P.; Huang, H.Z.; Zhang, X. User mobility modeling based on mobile traffic data collected in real cellular networks. In Proceedings of the 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, Australia, 13–15 December 2017; pp. 1–6. [Google Scholar]
- Rao, W.M.; Wu, Y.J.; Xia, J.X.; Ou, J.S.; Kluger, R. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Transp. Res. Part C Emerg. Technol. 2018, 95, 29–46. [Google Scholar] [CrossRef]
- Ruan, S.B.; Wang, F.J.; Ma, D.F.; Jin, S.; Wang, D.H. Vehicle trajectory extraction algorithm based on license plate recognition data. J. Zhejiang Univ. 2018, 52, 836–844. [Google Scholar]
- Yu, H.Y.; Yang, S.; Wu, Z.H. Vehicle trajectory reconstruction from automatic license plate reader data. Int. J. Distrib. Sens. Netw. 2018, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.F.; Luo, X.Q.; Jin, S.; Guo, W.W.; Wang, D.H. Estimating maximum queue length for traffic lane groups using travel times from video-imaging data. IEEE Intell. Transp. Syst. Mag. 2018, 10, 123–134. [Google Scholar] [CrossRef]
- Luo, X.Q.; Ma, D.F.; Jin, S.; Guo, W.W.; Wang, D.H. Queue Length Estimation for Signalized Intersections Using License Plate Recognition Data. IEEE Intell. Transp. Syst. Mag. 2019, 11, 209–220. [Google Scholar] [CrossRef]
- Bozyiğit, A.; Alankuş, G.; Nasiboğlu, E. Public transport route planning, Modified dijkstra’s algorithm. In Proceedings of the International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 502–505. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, H.; Rai, L.; Zhang, S. Vehicle Trajectory Prediction Method Based on License Plate Information Obtained from Video-Imaging Detectors in Urban Road Environment. Sensors 2020, 20, 1258. https://doi.org/10.3390/s20051258
Zhang Z, Liu H, Rai L, Zhang S. Vehicle Trajectory Prediction Method Based on License Plate Information Obtained from Video-Imaging Detectors in Urban Road Environment. Sensors. 2020; 20(5):1258. https://doi.org/10.3390/s20051258
Chicago/Turabian StyleZhang, Zheng, Haiqing Liu, Laxmisha Rai, and Siyi Zhang. 2020. "Vehicle Trajectory Prediction Method Based on License Plate Information Obtained from Video-Imaging Detectors in Urban Road Environment" Sensors 20, no. 5: 1258. https://doi.org/10.3390/s20051258
APA StyleZhang, Z., Liu, H., Rai, L., & Zhang, S. (2020). Vehicle Trajectory Prediction Method Based on License Plate Information Obtained from Video-Imaging Detectors in Urban Road Environment. Sensors, 20(5), 1258. https://doi.org/10.3390/s20051258