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Abstract: Anomaly detection systems can accurately identify malicious network traffic, providing
network security. With the development of internet technology, network attacks are becoming more
and more sourced and complicated, making it difficult for traditional anomaly detection systems to
effectively analyze and identify abnormal traffic. At present, deep neural network (DNN) technology
achieved great results in terms of anomaly detection, and it can achieve automatic detection. However,
there still exists misclassified traffic in the prediction results of deep neural networks, resulting in
redundant alarm information. This paper designs a two-level anomaly detection system based on deep
neural network and association analysis. We made a comprehensive evaluation of experiments using
DNNs and other neural networks based on publicly available datasets. Through the experiments,
we chose DNN-4 as an important part of our system, which has high precision and accuracy in
identifying malicious traffic. The Apriori algorithm can mine rules between various discretized
features and normal labels, which can be used to filter the classified traffic and reduce the false positive
rate. Finally, we designed an intrusion detection system based on DNN-4 and association rules.
We conducted experiments on the public training set NSL-KDD, which is considered as a modified
dataset for the KDDCup 1999. The results show that our detection system has great precision in
malicious traffic detection, and it achieves the effect of reducing the number of false alarms.

Keywords: network traffic; deep neural networks; Apriori association algorithm; anomaly detection

1. Introduction

The internet processes a large number of users’ private data, which are vulnerable to various
attacks from internal and external intruders [1]. With the development of internet technology, network
attacks are becoming more frequent, and attack modes are becoming more diverse. Cyber attacks
can lead to data breaches and cause huge economic losses. For example, Facebook lost hundreds of
millions of dollars in data breaches due to hacking. In order to cope with increasingly complex network
attacks, more and more security methods [2–7] analyze the characteristics of network traffic from
different angles to establish a flexible and reliable intrusion detection system (IDS). The IDS collects
and analyzes information about several key points in a computer network or computer system, and it
analyzes whether the network system is being attacked. According to the difference in information
sources, the IDS system can be divided into the network-based intrusion detection system (NIDS)
and the host-based intrusion detection system (HIDS). The NIDS collects network behavior through
network devices (switches, routers, and network taps), and it analyzes and identifies hidden attacks
in network traffic. The HIDS uses various log files to detect attacks. Log files are collected by local
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sensors. Logs include sensor logs, system logs, software logs, file systems, disk resources, user account
information, and so on. The IDS is of great significance for ensuring the security of network systems.

The NIDS is widely used, and it needs to collect and analyze a large number of network traffic data.
These data hide the information about whether the detected traffic is benign or malicious. Learning
algorithms can learn effective feature information from these data. According to different learning
algorithms used, the NIDS systems can be divided into NIDS based on traditional machine learning
algorithms and NIDS based on deep learning technology.

1.1. NIDS Based on Traditional Machine Learning

At present, most studies use standard public datasets KDD-Cup 99 and NSL-KDD for research;
meanwhile, a variety of detection schemes were proposed using traditional machine learning algorithms.
Wang et al. [8] proposed a decision tree-based intrusion detection algorithm. In their experiments,
the C4.5 algorithm could achieve great detection accuracy, but there was still a certain error rate.
Subsequently, Farid et al. [9] studied a technique of implementing feature selection from training
datasets to achieve intrusion detection. They used ID3 and C4.5 decision tree algorithms to calculate
the weight values of each feature. The basis for determining weight was the minimum depth of the
feature node in the decision tree. When the feature did not appear in the decision tree, the allocation
weight was zero. Reference [10] designed an intrusion detection algorithm using AdaBoost technology,
which uses a decision tree as a basic classifier. Their detection scheme had a lower false alarm rate and
a higher detection rate, but it could not use incremental learning methods. In Reference [11], intrusion
detection was performed using different machine learning methods. After comparative experiments,
it was found that the performance of the decision tree classifier was better than that of the support
vector machine (SVM) learning algorithm. Reference [12] proposed a two-level classification detection
algorithm, which used naïve Bayes as a basic classifier in the first stage and used nominal-to-binary
filtering and cross-validation for testing in the second stage. Reference [13] further optimized the
two-level detection algorithm. They used balanced nested dichotomy in the first stage and random
forest for prediction classification in the second stage. Because the enhancement of the two-level
algorithm resulted in a higher detection rate and a lower false alarm rate, subsequent academic research
proposed a variety of two-level detection algorithms, including the use of principal component analysis
(PCA) dimensionality reduction, SVM support vector machines, and other related technologies.

1.2. NIDS Based on Deep Learning Technology

Traditional machine learning algorithms can learn local features of network traffic, but they cannot
learn deep features of network traffic. The IDS detection effect based on traditional learning algorithms
has room for improvement. The deep neural network (DNN) is a complex sub-item of machine
learning. It can learn deep feature information in data through multiple hidden layers, including
some hierarchical features and hidden order relationships. In recent years, deep learning technology
achieved significant results in the fields of computer vision [14], medical analysis [15], natural language
processing [16], etc. Network security researchers are beginning to apply deep learning technology to
intrusion detection systems. There exists an order relationship within network traffic, and recurrent
neural networks (RNN) can record previous information and act on the current output.

Therefore, Reference [17] proposed a network intrusion detection architecture based on novel
feature selection model and recurrent neural networks (RNNs). Their architecture included four
steps. The final step was to evaluate various IDS RNN models based on two things. The first task
was a comparison with other IDS classifiers. The second involved measurement memory profilers of
the proposed models. Finally, the results showed that the IDS using RNN had better performance.
Considering the significant achievements of the convolutional neural network (CNN) in the field of
computer vision, Reference [18] studied the performance of CNN technology in intrusion detection.
They modeled network traffic as a time series and used supervised learning methods to model and
analyze Transmission Control Protocol/Internet Protocol (TCP/IP) packets over a predefined time
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frame. The results showed that the performance of the CNN and its variant architectures were
superior to traditional machine learning algorithms. Reference [19] evaluated the effectiveness of
various shallow and deep networks in intrusion detection applications. They trained and evaluated
shallow and deep networks on the KDD-Cup 99 and NSL-KDD datasets in two-class and multi-class
situations, and they obtained that deep networks have better performance than shallow networks in
most experimental environments. Reference [20] proposed a deep learning scheme, called dilated
convolutional autoencoders (DCAEs), for the network intrusion detection model, which combined
the advantages of stacked autoencoders and CNNs. This model could automatically learn essential
features from large-scale and more varied unlabeled raw network traffic data consisting of real-world
traffic from botnets, web-based malware, exploits, APTs (advanced persistent threats), scans, and
normal traffic streams.

Our main contributions can be summarized as follows: we studied how to preprocess network
traffic data in preparation for deep neural networks and association analysis algorithms, in order to
conduct a better analysis. We compared the effects of various neural networks in intrusion detection,
based on public datasets. Finally, we selected DNN-4 with great performance as the main part of this
system. Association analysis was performed on the classified data to filter out normal traffic that is
misclassified as malicious traffic. We found that, after filtering with the association rule, the precision
of intrusion detection showed great improvement. Finally, we designed a novel anomaly detection
system based on a deep neural network and association analysis.

2. Proposed Malicious Network Traffic Detection System

The traditional anomaly detection system performs feature matching detection on network traffic
based on an existing expert knowledge base, which has some drawbacks such as low accuracy and
many false positives. Our system is based on a deep neural network and association analysis. The deep
neural network can mine the deep feature information of network traffic, as well as classify unknown
attack traffic. Because the deep neural network still has a slight false rate, after classification, we filter
the classified traffic through feature matching to remove the normal traffic that is misclassified as
malicious traffic. During the process of feature matching, we use the association rules corresponding
to the “normal” label, which are calculated by the Apriori association algorithm.

The proposed system in this paper mainly consists of three steps. Step one is the preprocessing of
the dataset. Step two is DNN training and classification. Step three is association analysis. The process
of our system is shown in Figure 1. Firstly, we perform preprocessing operations on the raw traffic
data, because traffic data are described by many characteristics, but the input of the DNN model and
Apriori association analysis require different data formats. Secondly, we train the DNN model and use
the trained model to classify network traffic. At the same time, the Apriori association algorithm is
used to mine the association rules between the discretized features and the ‘normal’ label hidden in
the dataset. Subsequently, the mining association rules are applied to match the classified malicious
traffic set and filter out the misclassified normal traffic. Finally, alarm logs are generated, which are
described by some characteristics. Below, we introduce the main technical parts of data preprocessing,
model training, classification, and association analysis in detail.
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2.1. Data Preprocessing

Because the DNN model can only process digital information and the Apriori algorithm is suitable
for mining association rules between discretized features, the corresponding preprocessing operations
are firstly performed before the data are input into the neural network and the association analysis
is performed.

2.1.1. Data Preprocessing Corresponding to DNN Models

The data preprocessing methods affect the training of the model and the classification effect
of the model. There are different preprocessing methods for different datasets, because each data
preprocessing method has its own limitations. Intrusion detection is a classification task. Before
entering the DNN model, we mainly use numerical methods, one-hot coding, and three standardized
processing methods for the network traffic dataset. We introduce them separately below.

Numerical method: The network traffic data usually contain some character-type characteristics,
such as the protocol type (TCP, UDP, ICMP) of the network traffic, the network service type of the
target host, and the state of the network connection (normal or error). These character-type attribute
values cannot be directly input into the DNN model; thus, they need to be converted into numeric
forms. For example, the network protocol type includes three discretized attribute values: TCP, UDP,
and ICMP. We digitize it into 1, 2, and 3 to conform to the input format of the DNN model.

One-hot encoding: The optimization algorithm used in DNN model training is calculated based
on the metric in the vector space. One-hot encoding allows the non-partially ordered relationship
variables to maintain their characteristics and reach the point. The distance is equidistant. For example,
in the numerical process, TCP, UDP, and ICMP are converted to 1, 2, and 3. Although they conform
to the input format of the model, there is still a certain size or order relationship. In reality, the three
feature values have no ordering relationship or size relationship. Therefore, it needs to be subjected to
one-hot encoding processing as 001, 010, and 100. One-hot encoding expands the characteristics of the
data to a certain extent, i.e., the value of each feature after processing is only 0 or 1, which is more
conducive to the calculation of the distance between features or calculation of similarity.

Standardization: Standardization can eliminate the differences between various features and
accelerate the convergence of neural network weight parameters. For example, the network traffic
data have the following two characteristics: (1) the byte number of the data from the source host to the
target host is between 0 and 1,379,963,888, and (2) the number of failed login attempts is set to [0, 5].
These two features have different dimensions and orders of magnitude. If used directly, one of the
features will have a greater impact on the effect of the network model and the other feature will have
a smaller impact. Through the standardization process, different feature variables can conform to a
standard normal distribution, i.e., the mean value is 0 and the standard deviation is 1, such that the
prediction effect of the neural network model will be controlled by multiple feature variables of the
same size. The standardized formula is shown in Equation (1), where µ is the average of all sample
data and σ is the standard deviation of all sample data.

x∗ =
x− µ
σ

(1)

2.1.2. Data Preprocessing Corresponding to Apriori Association Algorithm

Apriori is mainly used to calculate the association rules between discretized features. Therefore,
we delete a large number of continuous features included in the network traffic features. Only the
discretized features and label features are saved for subsequent association rule mining. The processed
results are shown in Table 1.
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Table 1. The results of data preprocessing of the Apriori association algorithm.

Land Logged_in Protocol_type Service . . . Label

land logged_in UDP aol . . . Attack
no_land no_logged_in TCP auth . . . Normal

2.2. DNN Training and Classification

DNN is a deep learning model, which consists of an input layer, many hidden layers, and an
output layer. The DNN model can learn the abstract high-dimensional feature representation of the
network traffic data by passing the network traffic data into the hidden layer, which can adapt to the
changing network environment, and the detection effect is better than the traditional IDS system based
on rule matching. Current research [21] shows that a deep neural network composed of fully connected
layers is sufficient to perform well on various publicly available datasets, and it can achieve great
recognition accuracy with a short training time. DNN can be expressed as a mapping relationship O:
Rm
× Rn, where m represents the size of an input item, x = x1, x2, . . . , xm-1, xm, and n indicates the size

of an output item O(x). We use a four-layer deep neural network DNN consisting of fully connected
layers that perform well in detection. Based on the preprocessing method proposed in this paper, our
input layer uses 122 neurons instead of 41.

We chose the best network structure from DNN-3, DNN-4, DNN-5, and DNN-6 for training an
IDS model with NSL-KDD. Finally, the structure of our DNN model was as shown in Table 2.

Table 2. The architecture of DNN-4.

Layers Type Output Shape Number of Units Activation
Function

Input (None, 122) 122
0–1 Fully connected (None, 256) 256 ReLU
1–2 Dropout (0.01)
2–3 Fully connected (None, 256) 256 ReLU
3–4 Dropout (0.01)
4–5 Fully connected (None, 256) 256 ReLU
5–6 Dropout (0.01)
6–7 Fully connected (None, 256) 256 ReLU
7–8 Dropout (0.01)

Output (None, 1 or 5)

We can adjust the number of neurons in the output layer according to the network traffic, i.e., into
two categories or five categories. When the model only classifies network traffic into normal traffic
and malicious traffic, the final output layer uses one neuron. When the model needs to classify the
network traffic into five types (Normal, Prob, Dos, U2R, and R2L), the output layer uses five neurons.
The loss function (cross-entropy loss function) used in the two classifications is shown in Equation (2).
When the classification is multi-class, the loss function in Equation (3) is used, where n is the number
of samples, and m is the number of categories, which is a multi-output loss function.

loss = −
n∑

i=1

ŷi log yi + (1− ŷi) log(1− ŷi) (2)

loss = −
n∑

i=1

ŷi1 log yi1 + ŷi2 log yi2 + L + ŷim log yim (3)

During the training process, we use the stochastic gradient descent algorithm (SGD) to iteratively
update the weight parameters of each layer so as to continuously improve the accuracy of the model
prediction. The model training process of binary classification is shown in Figure 2.
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2.3. Association Analysis

As one of the earliest methods used in intrusion detection, the association analysis algorithm is of
great significance. Previous research applied association analysis methods to the automatic expansion
of intrusion detection rule bases, i.e., the current association analysis methods are mostly used in
misuse detection methods. The association analysis method can be used to calculate the rules that
meet the requirements according to the set support and confidence, as well as shorten the discovery
cycle of the rules. The Apriori algorithm can mine the inherent relationship between variables. Based
on this idea, we use the Apriori algorithm to mine the inherent relationship between the discretized
characteristics of network traffic and the “normal” label (association rules), then use this rule to perform
feature matching on the network traffic classified by the DNN model, in order to filter out the normal
traffic that is misclassified.

The Apriori algorithm is a classic association analysis algorithm. Its main function is to mine the
relationships between different variables and summarize useful rule information. The steps for mining
association rules using the Apriori algorithm are as follows:

Step 1: Calculate frequent item sets
When the number of variables (items) in the calculated set is greater than 0:

Build a list of candidate sets of k variables.
Examine the data to determine whether each item set is a frequent item set (the support of the item set
is greater than the set minimum support of 0.5).
If the item set is frequent, keep the item set and build a list of candidate sets consisting of k + 1 items.

This is shown in Equation (4).

{Variable A, Variable B, Variable C . . .} (4)

Step 2: Construct association rules, i.e., based on all the frequent item sets that were mined,
construct rules with a confidence level greater than 80% and related to the “normal” label, as shown in
Equation (5). {

Frequent item− set E
}
⇒

{
Frequent item− set F(include′′Normal′′variable)

}
(5)

After mining the association rules related to the “normal” label based on the Apriori algorithm,
we use the association rule consisting of the frequent item set E, which has the most variables with the
highest credibility, as the feature matching rule in the process of eliminating false positives, which can
guarantee the maximum efficiency of filtering out normal traffic that is misclassified as malicious traffic.

After the false positives are eliminated, we generate alarm logs for network traffic which is
predicted as malicious.
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3. Experimental Results and Analysis

The proposed system was mainly tested on the existing public dataset NSL-KDD. Firstly, we
compared the single DNN model with other learning models in the datasets NSL-KDD and CICIDS
2017. It can be known from experiments that the DNN model was one of the learning models that
performed well. Finally, we tested the system of combining neural networks with association analysis
on the dataset NSL-KDD, and we found that it is more precise than malicious traffic detection using a
single DNN. This chapter introduces the experimental steps in detail.

3.1. NSL-KDD Dataset Preprocessing

The NSL-KDD [22] dataset is widely used in intrusion detection game data provided by Lincoln
Labs. The training set contains 125,973 network traffic records, and the test set contains 22,544 network
traffic records. Each connection in the dataset is described with 41 characteristics, as shown in Table 3.

Table 3. The characteristics of NSL-KDD, which include four parts.

No Characteristic

1 Basic characteristics of TCP connection (9 types, 1–9)
2 TCP connection content characteristics (13 types, 10–22)
3 Statistical characteristics of time-based network traffic (9 types in total, 23–31)
4 Statistical characteristics of host-based network traffic (10 in total, 32–41)

The features of each network traffic record include a total of 42 features, including three character
discretized features, six numeric discretized features, 32 numeric continuous features, and one category
label. In addition to normal or attack, the type of anomaly can also be further divided into four
categories: Probe (scan and detect), Dos (denial of service attack), U2R (illegal access), and R2L
(unauthorized remote access); thus, this dataset can be tested in two or five categories. The test set
contained some attack types that did not appear in the training set so that the generalization ability of
the intrusion detection system could be tested. The information on each network traffic in the dataset
was saved in CSV format. The following is a description of the initial traffic in the dataset:

{2, tcp, smtp, SF, 1684, 363, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
0.00, 104, 66, 0.63, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, normal},

Where the first 41 items of each traffic includes characteristic information, and the last item
includes category label information.

3.1.1. Data Preprocessing Corresponding to the DNN Model

We used the pandas model to read the data information from the CSV file, and then numerically
processed, one-hot encoded, and standardized the data. The final processed data are shown below,
where each traffic used 122 features as input to the DNN model.

{−0.1555340871−0.0219881116 −0.0968959693 −0.0176238573 −0.0591039397 −0.0194592491
−0.1135211665 −0.1439989462 −0.8903726296 −0.016493558 −0.0494534133 −0.0126377698 ...}

3.1.2. Data Preprocessing Corresponding to Apriori Algorithm

After reading the traffic information from the CSV file using the pandas model, the continuous
features in the data were deleted, and only the discretized features and label information of the network
traffic were kept, as shown in Table 4.
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Table 4. The results of data preprocessing corresponding to the Apriori algorithm.

Land Logged_in Root_shell Su_attempted Is_host_login Is_guest_login Protocol_type Service Flag Label

no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp ftp_data SF normal
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login udp other SF normal
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp private S0 attack
no_land logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp http SF normal
no_land logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp http SF normal
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp private REJ attack
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp private S0 attack
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp private S0 attack
no_land no_logged_in no_root_shell no_su_attempted no_is_host_login no_is_guest_login tcp remote_job S0 attack
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3.2. Training and Prediction of DNN

3.2.1. Evaluation Metrics

The metrics such as accuracy, precision, recall, and f-score are often used to measure the
performance of data mining algorithms on a minority class. In addition, the true positive (TP) can be
expressed as an attack occurring with an alarm raised, the false positive (FP) can be expressed as no
attack occurring with an alarm raised, the true negative (TN) can be expressed as no attack occurring
with no alarm raised, and the false negative (FN) can be expressed as an attack occurring with no
alarm raised. The accuracy, precision, recall, and f-score can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− Score =
Precision×Recall
Precision + Recall

(9)

3.2.2. Comparison of Different Neural Networks

We used the DNN model composed of a fully connected layer and dropout layer as a neural
network model for intrusion detection. During training, the loss functions “binary_crossentropy” and
“category_crossentropy” were used for the second and fifth classifications, respectively, in “Keras”.
The “SGD” optimizer was used as the ultimate optimizer, and the batch size was set to 32. Considering
that the number of different hidden layers affects the classification effect of the DNN, we trained DNN
models with three, four, five, and six hidden layers and performed binary-class and five-class detection
comparison analysis on the test set, as shown in Tables 5 and 6.

Table 5. Effects of different DNNs on binary classification, based on NSL-KDD test set.
RNN—recurrent neural network; CNN—convolution neural network; RF—random forest;
SVM—support vector machine.

Model Accuracy Precision Recall F-score

DNN-3 79.76% 0.91 0.72 0.80

DNN-4 82.74% 0.88 0.81 0.84

DNN-5 81.33% 0.92 0.74 0.82

DNN-6 80.56% 0.90 0.74 0.81

RNN 77% 0.95 0.63 0.76

CNN4 80% 0.96 0.67 0.79

RF 77% 0.95 0.63 0.76

SVM 78% 0.91 0.68 0.77

In our system, the most important measures were accuracy and precision, having a low false
positive rate. Therefore, we firstly paid attention to precision, which can be expressed as the ratio of
samples with correct predictions to the total number of samples predicted. From Table 5, we can find
that DNN-4 achieved the highest accuracy of 82.74%, despite its precision being 0.88, which was lower
than others; this can be raised via the eliminating process. From Table 6, the results show that the
DNN-4 model could also reach the highest accuracy rate of 77.03%. As for different attack types, such
as Dos, Probe, R2L, and U2R, the precision of DNN-4 was similar to that of DNN-5, while DNN-6 also
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had a great effect. However, as the number of layers increased, the prediction accuracy rate did not
improve. For example, for the DNN models with five layers and six layers, the prediction accuracy
was 76.22% and 75.99%. Because each layer of DNN consists of fully connected layers, if there are too
many layers, there will be a large number of weight parameters that need to be adjusted, increasing the
difficulty of training. On the other hand, models such as SVM and random forest had lower accuracy.
Based on our data preprocessing method, DNN-4 was better than the other models. Therefore, we
finally adopted a DNN structure with four hidden layers for intrusion detection classification.

Table 6. Effects of different models on multi-class classification, based on NSL-KDD test set.

Model DNN-3 DNN-4 DNN-5 DNN-6 RNN CNN4 RF SVM
Accuracy 76.84% 77.03% 76.22% 75.99% 71.34% 73.58% 46.73% 72.13%

Normal
Precision 0.71 0.72 0.70 0.70 0.66 0.66 0.63 0.67
Recall 0.94 0.94 0.94 0.94 0.84 0.95 0.97 0.86

F1-score 0.81 0.81 0.80 0.80 0.74 0.78 0.77 0.75

Dos
Precision 0.91 0.88 0.91 0.91 0.80 0.96 0.00 0.81
Recall 0.85 0.86 0.83 0.82 0.84 0.76 0.00 0.84

F1-score 0.88 0.87 0.87 0.86 0.82 0.85 0.00 0.83

Probe
Precision 0.71 0.72 0.70 0.69 0.71 0.61 0.25 0.72
Recall 0.75 0.75 0.74 0.76 0.67 0.65 0.48 0.65

F1-score 0.73 0.73 0.72 0.72 0.69 0.63 0.33 0.69

R2L
Precision 0.00 0.27 0.31 0.42 0.19 0.95 0.00 0.07
Recall 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00

F1-score 0.00 0.00 0.01 0.01 0.00 0.11 0.00 0.00

U2R
Precision 0.50 0.62 0.67 0.80 0.28 0.00 0.00 0.21
Recall 0.10 0.07 0.09 0.12 0.07 0.00 0.00 0.15

F1-score 0.17 0.13 0.16 0.21 0.12 0.00 0.00 0.17

We also carried out comparison experiments with other learning models using dataset CICIDS
2017 [23]. It can be found that DNN-4 was also among the best-performing models, as shown in Table 7.
The accuracy of DNN-4 was above 95%.

Table 7. Comparison of the effects of different models based on CICIDS 2017 dataset.

Model DNN-3 DNN-4 DNN-5 DNN-6 RNN CNN4 RF

SSH

Accuracy 99.17% 99.03% 98.61% 97.72% 97.36% 96.89% 99.98%
Precision 0.93 0.81 0.72 0.50 0.00 0.00 1.00

Recall 0.50 0.85 0.98 0.24 0.00 0.00 1.00
F1-score 0.65 0.83 0.83 0.32 0.00 0.00 1.00

FTP

Accuracy 99.17% 99.03% 98.61% 97.72% 97.36% 96.89% 99.98%
Precision 0.94 0.80 0.73 0.94 0.88 0.00 1.00

Recall 1.00 0.98 0.79 0.50 0.31 0.00 1.00
F1-score 0.97 0.88 0.76 0.65 0.46 0.00 1.00

Web

Accuracy 98.22% 98.68% 97.34% 89.01% 98.64% 98.69% 99.96%
Precision 0.16 0.00 0.32 0.09 0.49 0.00 1.00

Recall 0.08 0.00 0.91 0.84 0.83 0.00 0.97
F1-score 0.01 0.00 0.47 0.17 0.62 0.00 0.99

Bot

Accuracy 96.94% 99.33% 99.01% 99.01% 99.01% 99.01% 99.91%
Precision 0.11 0.68 0.00 0.00 0.00 1.00 0.99

Recall 0.28 0.61 0.00 0.00 0.00 0.01 0.94
F1-score 0.15 0.65 0.00 0.00 0.00 0.02 0.97

DDOS

Accuracy 98.44% 98.72% 98.08% 98.56% 95.18% 75.23% 99.98%
Precision 0.98 0.98 0.97 0.98 0.93 0.70 1.00

Recall 1.00 1.00 1.00 1.00 0.99 1.00 1.00
F1-score 0.99 0.99 0.98 0.98 0.96 0.82 1.00

PortScan

Accuracy 97.43% 95.25% 98.77% 98.43% 87.64% 64.29% 99.99%
Precision 0.96 0.92 0.96 0.97 0.82 0.61 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1-score 0.98 0.96 0.98 0.99 0.90 0.76 1.00
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3.3. Mining Association Rules

After the network traffic data were pre-processed correspondingly, we used the Apriori algorithm to
calculate the association rule corresponding to “normal” to prepare for the next step of eliminating false
positives. Each network traffic record in the dataset NSL-KDD had a total of nine discretized features,
including “protocol_type”, “service”, “flag”, “land”, “logged_in”, “root_shell”, “su_attempted”,
“is_hot_login”, and “is_guest_login”. The Apriori algorithm is suitable for mining association rules
between discretized variables (features). We firstly calculated the frequent item sets with the support
of more than 0.5 in various combinations of these nine discretized features and label features. Some of
the calculated frequent item sets can be seen in Table 8.

Table 8. Some of the calculated frequent item sets.

No Item-set

1 {“normal”, “no_land”}
2 {“no_root_shell”, “normal”}
3 {“normal”, “no_su_attempted”}
4 {“normal”, “SF”}
5 {“no_is_host_login”, “normal”}
6 {“no_is_guest_login”, “normal”}

After calculating all the frequent item sets that met the minimum support threshold, we constructed
rules with a greater than 80% confidence level related to the “normal” label based on the existing
frequent item sets; these rules are shown in Table 9.

Table 9. Calculated association rules.

No Association Rules

1 {“SF”} => {“normal”} conf: 0.845
2 {“no_land”, “no_su_attempted”, “SF”} => {“normal”} conf: 0.845
3 {“no_land”, “no_root_shell”, “no_su_attempted”, “SF”} => {“normal”} conf: 0.845
4 {“SF”, “no_is_host_login”, “no_su_attempted”, “no_root_shell”, “no_land”} => {“normal”} conf: 0.845

It can be seen from the above table that there were multiple association rules related to the “normal”
tag with credibility of more than 80%. For example, the first association rule can be interpreted as if the
network traffic has the characteristic “SF”, which can be inferred as normal traffic; the reliability for this
rule was 84.5%. Because we needed to use the mining association rules to perform feature matching,
so as to filter classified network traffic and reduce the rate of false positives, for the most effective
filtering, we only used the fourth rule for feature matching, because its predecessor set contained
multiple features to achieve stricter feature matching for filtering.

3.4. Evaluation Results of Elimination

The goal of our system was to have high precision and low false alarms. Firstly, we used the
four-layer DNN model to predict the test set to categorize the normal traffic set and the malicious
traffic set, and then we used “normal” association rules to perform feature matching on the malicious
traffic set to filter out the misclassified normal traffic, before finally determining the malicious network
traffic information and output of the alarm logs.

3.4.1. Binary Classification

Considering that intrusion detection mainly features a binary classification (i.e., attack or normal),
our experiments showed that the “normal” rule had a better result when using a filter based on binary
classification. The comparison of before and after filtering is shown in Table 10. According to Table 10,
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before the filtering was performed, the DNN-4 model predicted that the number of malicious traffic
items was 11,753. After filtering using the “normal” association rule, the number of malicious traffic
items was 7500, and 4253 traffic items were successfully filtered out. The corresponding precision
rate for malicious traffic increased from 0.88 to 0.99. We found that the association rules could also
be applied to DNN-3, DNN-5, and DNN-6, indicating that our system successfully filtered out most
of the misclassified normal traffic using the association rules, meaning that it would generate fewer
false alarms.

Table 10. Result of two classifications before and after filtering, based on the NSL-KDD test set.

Method Precision Recall F-score Number of Alarm Raised

(Before filtering) DNN-3 0.91 0.72 0.80 10,141

(After filtering) DNN-3 0.99 0.55 0.71 7165

(Before filtering) DNN-4 0.88 0.70 0.80 11,753

(After filtering) DNN-4 0.99 0.54 0.70 7500

(Before filtering) DNN-5 0.92 0.74 0.82 10,342

(After filtering) DNN-5 0.99 0.56 0.72 7300

(Before filtering) DNN-6 0.90 0.74 0.81 10,523

(After filtering) DNN-6 0.99 0.56 0.72 7301

3.4.2. Multi-class Classification

In the five-category classification experiments, we found that DNN-4 had higher accuracy on the
NSL-KDD test-set, as can be seen from the result in Section 3.2. The comparison of before and after
filtering is shown in Table 11. From this table, we can find that the number of malicious traffic items
before filtering was 9863, and the number of malicious traffic items after filtering was 7336. Most of
the filtered traffic was misclassified. The precision for Dos and Probe increased from 0.88 to 0.91 and
from 0.72 to 0.89, respectively. Meanwhile, the precision of U2R was unchanged. This means that our
system could still reduce false alarm rates in the case of multiple classifications.

Table 11. Result of five classifications before and after filtering, based on the NSL-KDD test set.

Label Precision Recall F-score Number of
Alarm Raised

Before filtering

Normal 0.72 0.94 0.81

9863
Dos 0.88 0.86 0.87

Probe 0.72 0.75 0.73
R2L 0.27 0.00 0.00
U2R 0.62 0.07 0.13

After filtering

Normal 0.63 0.99 0.77

7336
Dos 0.91 0.73 0.81

Probe 0.89 0.49 0.63
R2L 0.30 0.00 0.00
U2R 0.62 0.07 0.13

From the results of binary classification and multi-class classification, it can be seen that the
application of association analysis after classification had a great effect, especially for binary classification.
This also means that the combination of association analysis and other classifiers can help reduce the
number of false alarms generated by the IDS system. After classifying network traffic and eliminating
false positives (filtering), we describe the malicious traffic information and generate corresponding
alarm logs in Table 12.
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Table 12. Some of the generated alarms.

Protocol_type Service Flag Urgent Hot Count Prediction

tcp private REJ 0 0 255 Dos
tcp private REJ 0 0 255 Dos
tcp private REJ 0 0 255 Dos
tcp telnet S0 0 0 235 Dos
tcp private REJ 0 0 255 Dos
tcp ldap REJ 0 0 255 R2L
tcp pop_3 S0 0 0 255 Dos
tcp courier REJ 0 0 255 Dos
tcp discard RSTO 0 0 255 Dos
tcp http RSTR 0 0 241 Dos
tcp private REJ 0 0 255 Probe
tcp private S0 0 0 255 Dos
tcp mtp REJ 0 0 255 Dos
tcp telnet S0 0 0 91 Dos
tcp iso_tsap REJ 0 0 255 Dos
tcp private REJ 0 0 255 Dos
tcp other REJ 0 0 255 Probe
tcp telnet REJ 0 0 106 Probe
tcp private REJ 0 0 255 Dos
tcp smtp S0 0 0 255 Dos

4. Conclusions

We used deep neural network and association analysis technology to design an anomaly detection
system. The system can detect, classify, and generate alarms for abnormal traffic in the network, with a
lower false alarm rate. Based on the dataset NSL-KDD, we tested the binary classification of network
traffic. The results showed that filtering using association rules could effectively improve the detection
precision of the system. Moreover, our detection system also had a good detection effect in a multi-class
experimental environment. This two-level detection system that classifies and then filters network
traffic has higher precision and fewer false positives in terms of detection results. This indicates that
the application of association analysis and a deep neural network has a good effect. The structure of
the deep neural network still has a lot of room for optimization, and increasing the precision rate while
maintaining recall rate remains a challenge, which can be addressed in future work.
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