Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review
Abstract
:1. Introduction
2. Profiles of Potential Harvestable Energy in a Power Grid
3. Magnetic Energy Harvesting Technologies
3.1. Fundamentals of MEH
3.2. Low-Potential MEH
3.3. High-Potential MEH
4. Electric Energy Harvesting
4.1. Fundamentals of EEH
4.2. Direct-Mode EEH
4.3. High-Potential EEH
4.4. Low-Potential EEH
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Li, F. Smart Transmission Grid: Vision and Framework. IEEE Trans. Smart Grid 2010, 1, 168–177. [Google Scholar] [CrossRef]
- Palensky, P.; Kupzog, F. Smart Grids. Annu. Rev. Environ. Resour. 2013, 38, 201–226. [Google Scholar] [CrossRef]
- Yang, F.; Du, L.; Chen, W.; Li, J.; Wang, Y.; Wang, D. Hybrid energy harvesting for condition monitoring sensors in power grids. Energy 2017, 118, 435–445. [Google Scholar] [CrossRef]
- Moghe, R.; Lambert, F.; Divan, D. Smart “Stick-on” Sensors for the Smart Grid. IEEE Trans. Smart Grid 2012, 3, 241–252. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [Google Scholar] [CrossRef]
- Stankovic, J.A. Wireless Sensor Networks. Computer 2008, 41, 92–95. [Google Scholar] [CrossRef]
- Ramadass, Y.K.; Chandrakasan, A.P. A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage. IEEE J. Solid State Circuits 2011, 46, 333–341. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Bogue, R. Energy harvesting and wireless sensors: A review of recent developments. Sens. Rev. 2009, 29, 194–202. [Google Scholar] [CrossRef]
- Peddigari, M.; Kim, G.Y.; Park, C.H. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. Sensors 2019, 19, 2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhu, W.; Jeong, C.K. A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 2017, 7, 32502–32507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.; Jeong, C.K. Biomimetic Porifera Skeletal Structure of Lead-Free PiezocompositeEnergy Harvesters. ACS Appl. Mater. Interfaces 2018, 10, 35539–35546. [Google Scholar] [CrossRef] [PubMed]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Babayo, A.A.; Anisi, M.H.; Ali, I. A Review on energy management schemes in energy harvesting wireless sensor networks. Renew. Sustain. Energy Rev. 2017, 76, 1176–1184. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Cattley, R.; Gu, F.; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [Google Scholar] [CrossRef] [Green Version]
- Annapureddy, V.; Kim, M.; Palneedi, H. Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite. Adv. Energy Mater. 2016, 6, 1601244. [Google Scholar] [CrossRef]
- Annapureddy, V.; Na, S.M.; Hwang, G.T. Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 2018, 11, 818–829. [Google Scholar] [CrossRef]
- Lim, K.W.; Peddigari, M.; Park, C.H. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 2019, 12, 666–674. [Google Scholar] [CrossRef]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF energy harvesting systems: A comprehensive review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Chien, Z.J.; Cho, H.P.; Jwo, C.S.; Chen, S.L.; Lin, Y.L. A study of waste-heat recovery unit for power transformer. In Proceedings of the 2012 International Conference on Advanced Material and Manufacturing Science (ICAMMS), Beijing, China, 20–21 December 2012. [Google Scholar]
- Yang, F.; Du, L.; Wang, Y.C. Thermoelectric and Magnetic Energy Harvesting Methods for Intelligent Sensors. High Volt. Eng. 2015, 41, 3909–3915. [Google Scholar]
- Zhu, M.; Baker, P.C.; Roscoe, N.M.; Judd, M.D.; Fitch, J. Alternative Power Sources for Autonomous Sensors in High Voltage Plant. In Proceedings of the 2009 IEEE Electrical Insulation Conference, Montreal, QC, Canada, 31 May–3 June 2009. [Google Scholar]
- Yuan, S.; Huang, Y.; Zhou, J.; Xu, Q.; Song, C.; Thompson, P. Magnetic Field Energy Harvesting Under Overhead Power Lines. IEEE Trans. Power Electron. 2015, 30, 6191–6202. [Google Scholar] [CrossRef] [Green Version]
- Roscoe, N.M.; Judd, M.D. Harvesting Energy from Magnetic Fields to Power Condition Monitoring Sensors. IEEE Sens. J. 2013, 13, 2263–2270. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Huang, Y.; Zhou, J.; Xu, Q.; Song, C.; Yuan, G. A High-Efficiency Helical Core for Magnetic Field Energy Harvesting. IEEE Trans. Power Electron. 2017, 32, 5365–5376. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Lu, J.; Li, F.; Hashimoto, S.; Lin, Z. A non-intrusive magnetic energy scavanger for renewable power generation state monitoring. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016. [Google Scholar]
- Wright, S.W.; Kiziroglou, M.E.; Spasic, S.; Radosevic, N.; Yeatman, E.M. Inductive Energy Harvesting From Current-Carrying Structures. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cepnik, C.; Wallrabe, U. A flat high performance micro energy harvester based on a serpentine coil with a single winding. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011. [Google Scholar]
- Dos Santos, M.P. Energy harvesting using magnetic induction considering different core materials. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference, Montevideo, Uruguay, 12–15 May 2014. [Google Scholar]
- Hosseinimehr, T.; Tabesh, A. Magnetic Field Energy Harvesting from AC Lines for Powering Wireless Sensor Nodes in Smart Grids. IEEE Trans. Ind. Electron. 2016, 63, 4947–4954. [Google Scholar] [CrossRef]
- Najafi, S.A.A.; Ali, A.A.; Sozer, Y. Energy Harvesting from Overhead Transmission Line Magnetic fields. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (IEEE Energy Conversion Congress and Exposition, Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Du, L.; Wang, C.; Li, X.; Yang, L.; Mi, Y.; Sun, C. A Novel Power Supply of Online Monitoring Systems for Power Transmission Lines. IEEE Trans. Ind. Electron. 2010, 57, 2889–2895. [Google Scholar]
- Qian, Z. Power supply method based on special coil of active electronic transformer. Gaodianya Jishu High Volt. Eng. 2008, 34, 260–263. [Google Scholar]
- Xin, S.; Xiao, L.; Zhang, G.; Dai, S.; Zhu, Z.; Zhai, J. Relationship between maximum power and secondary windings of floating power supply. Dianli Xitong Zidonghua Autom. Electr. Power Syst. 2010, 34, 85–89. [Google Scholar]
- Liu, Z.Z. Research on self-excitation power supply from high voltage side of electronic current transformers. Gaoya Dianqi High Volt. Appar. 2006, 42, 55–57. [Google Scholar]
- Xiong, L.; He, Y.Z.; Song, D.J.; Liu, Y.; He, W.; Zhang, Z.L. Design on power supply for the transmission line on-line monitoring equipment. Gaodianya Jishu High Volt. Eng. 2010, 36, 2252–2257. [Google Scholar]
- Li, F.; Zhu, X.; Ji, K.; Zang, J. The Power Supply of Opticelectric Current Transducer. High Volt. Eng. 2002, 28, 46–47. [Google Scholar]
- Guo, J.; Liang, K.; Dong, L. Research of the High Potential Circuit Power Supply for Active Electronic Current Transformer. Mod. Electron. Tech. 2008, 31, 20–22. [Google Scholar]
- Hu, B.; Zhou, Y.; Zhong, X.; Wu, G.; Peng, H. Research and Design of the High Potential Circuit Power Supply for Electronic Current Transformer. Electrotech. Appl. 2006, 25, 99–102. [Google Scholar]
- Zhang, X.; Zhang, Q.; Zhang, Y. Solutions of Power Supplies for High Voltage Circuit of Hybrid Optical Current Transformer. High Volt. Eng. 2002, 28, 14–15. [Google Scholar]
- Li, Q. Lighting over-voltage analysis of 110 kV transmission line capacitor step-down power system. Dianwang Jishu Power Syst. Technol. 2015, 39, 2058–2063. [Google Scholar]
- Zhao, X.; Keutel, T.; Baldauf, M.; Kanoun, O. Energy harvesting for overhead power line monitoring. In Proceedings of the International Multi-Conference on Systems, Signals & Devices, Chemnitz, Germany, 20–23 March 2012. [Google Scholar]
- Keutel, T.; Motl, T.; Bdiri, S.; Viehweger, C.; Kanoun, O. Robust power supply for wireless sensors using the electrostatic field of parts under high voltage. In Proceedings of the 2012 International Conference on Smart Grid Technology, Economics and Policies (SG-TEP), Nuremberg, Germany, 3–4 December 2012. [Google Scholar]
- Moghe, R.; Iyer, A.; Lambert, F.C.; Divan, D. A Low-Cost Electric Field Energy Harvester for an MV/HV Asset-Monitoring Smart Sensor. IEEE Trans. Ind. Appl. 2015, 51, 1828–1836. [Google Scholar] [CrossRef]
- Moghe, R.; Iyer, A.R.; Lambert, F.C.; Divan, D. A Low-Cost Wireless Voltage Sensor for Monitoring MV/HV Utility Assets. IEEE Trans. Smart Grid 2014, 5, 2009. [Google Scholar] [CrossRef]
- Zangl, H.; Bretterklieber, T.; Brasseur, G. A Feasibility Study on Autonomous Online Condition Monitoring of High-Voltage Overhead Power Lines. IEEE Trans. Instrum. Meas. 2009, 58, 1789–1796. [Google Scholar] [CrossRef]
- Rodríguez, J.C.; Holmes, D.G.; McGrath, B.P.; Wilkinson, R.H. Maximum energy harvesting from medium voltage electric-field energy using power line insulators. In Proceedings of the 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 28 September–1 October 2014. [Google Scholar]
- Rodriguez, J.C.; Holmes, D.G.; McGrath, B.P.; Teixeira, C. Energy Harvesting from Medium Voltage Electric Fields using Pulsed Flyback Conversion. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference, Hefei, China, 22–26 May 2016. [Google Scholar]
- Kang, S.; Kim, J.; Yang, S.; Yun, T.; Kim, H. Electric field energy harvesting under actual three-phase 765 kV power transmission lines for wireless sensor node. Electron. Lett. 2017, 53, 1135–1136. [Google Scholar] [CrossRef]
- Pehlivanoglu, E.B.; Ozger, M.; Cetinkaya, O.; Akan, O.B. Harvesting-Throughput Trade-Off for Wireless-Powered Smart Grid IoT Applications: An Experimental Study. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Cetinkaya, O.; Akan, O.B. Electric-Field Energy Harvesting From Lighting Elements for Battery-Less Internet of Things. IEEE Access 2017, 5, 7423–7434. [Google Scholar] [CrossRef]
- Honda, M.; Sakurai, T.; Takamiya, M. Wireless Temperature and Illuminance Sensor Nodes With Energy Harvesting from Insulating Cover of Power Cords for Building Energy Management System. In Proceedings of the 2015 IEEE Pes Asia-Pacific Power and Energy Engineering Conference (Asia-Pacific Power and Energy Engineering Conference, Brisbane, Australia, 15–18 November 2015. [Google Scholar]
- Vendik, I.B.; Steblevska, I.; Gerasimov, V.A.; Dudnikov, S.Y.; Selivanov, L.M.; Uhov, A.A. Energy harvesting for wireless sensors from power lines electric field. In Proceedings of the 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 20–22 September 2017. [Google Scholar]
- Gulati, M. CapHarvester: A stick-on capacitive energy harvester using stray electric field from AC power lines. IMWUT 2018, 2, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Park, K.; Choi, D.; Gong, S. Stray electric field energy harvesting technology using MEMS switch from insulated AC power lines. Electron. Lett. 2014, 50, 1236–1238. [Google Scholar] [CrossRef]
- Chang, K.S.; Kang, S.M.; Park, K.J.; Shin, S.H.; Kim, H.S.; Kim, H.S. Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid. J. Electr. Eng. Technol. 2012, 7, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Yang, S.; Kim, H. Non-intrusive voltage measurement of ac power lines for smart grid system based on electric field energy harvesting. Electron. Lett. 2017, 53, 181–183. [Google Scholar] [CrossRef]
- Menéndez, O.; Kouro, S.; Pérez, M.; Auat Cheein, F. Mechatronized maximum power point tracking for electric field energy harvesting sensor. AEU Int. J. Electron. Commun. 2019, 110, 152830. [Google Scholar] [CrossRef]
- Rodriguez, J.C.; Holmes, D.G.; McGrath, B.; Wilkinson, R.H. A Self-Triggered Pulsed-Mode Flyback Converter for Electric-Field Energy Harvesting. IEEE J. Emerg. Sel. Topics Power Electron. 2018, 6, 377–386. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wen, Y.; Zhang, F.; Yang, C. A Management Circuit with Upconversion Oscillation Technology for Electric-Field Energy Harvesting. IEEE Trans. Power Electron. 2016, 31, 5515–5523. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Du, L.; Yu, H.; Huang, P. Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review. Sensors 2020, 20, 1496. https://doi.org/10.3390/s20051496
Yang F, Du L, Yu H, Huang P. Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review. Sensors. 2020; 20(5):1496. https://doi.org/10.3390/s20051496
Chicago/Turabian StyleYang, Feng, Lin Du, Huizong Yu, and Peilin Huang. 2020. "Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review" Sensors 20, no. 5: 1496. https://doi.org/10.3390/s20051496
APA StyleYang, F., Du, L., Yu, H., & Huang, P. (2020). Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review. Sensors, 20(5), 1496. https://doi.org/10.3390/s20051496