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Abstract: Deep Learning (DL) is the state-of-the-art machine learning technology, which shows
superior performance in computer vision, bioinformatics, natural language processing, and other
areas. Especially as a modern image processing technology, DL has been successfully applied in
various tasks, such as object detection, semantic segmentation, and scene analysis. However, with the
increase of dense scenes in reality, due to severe occlusions, and small size of objects, the analysis of
dense scenes becomes particularly challenging. To overcome these problems, DL recently has been
increasingly applied to dense scenes and has begun to be used in dense agricultural scenes. The
purpose of this review is to explore the applications of DL for dense scenes analysis in agriculture. In
order to better elaborate the topic, we first describe the types of dense scenes in agriculture, as well
as the challenges. Next, we introduce various popular deep neural networks used in these dense
scenes. Then, the applications of these structures in various agricultural tasks are comprehensively
introduced in this review, including recognition and classification, detection, counting and yield
estimation. Finally, the surveyed DL applications, limitations and the future work for analysis of
dense images in agriculture are summarized.

Keywords: deep learning; dense scenes; agricultural application; computer vision

1. Introduction

Nowadays, smart agriculture [1] has become increasingly popular because it can adjust various
agricultural management measures accurately according to the specific conditions of each unit of
agricultural operation. In order to optimize the input of agricultural production links, almost all
the management models in agriculture are based on the models of high-density planting and mass
production, thus achieving the goal of obtaining the maximum economic and environmental benefits.
However, in actual production and life, it is inevitable to produce a lot of dense images. It is worth
taking note that the complexity of the problem increases exponentially with the number of objects and
the interaction of the objects. Especially, the pattern of batch production and high-density planting
determines the high density of agricultural scenes, and high density makes it difficult to meet the
actual demand, such as detection, counting or yield estimation of agricultural products.

In recent years, due to the tremendous progress and popularity of image acquisition equipment,
the image has become a huge amount of data and easy to obtain, which makes image analysis very
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meaningful and challenging [2]. With the significant reduction of computer hardware cost and the
significant improvement of GPU computing power, the computer vision task has become an important
area of machine learning and artificial intelligence. In general, machine learning combined with
high-performance computing guarantees the ability to process large amounts of image data effectively.

Early solutions to computer vision tasks depended on traditional machine learning methods, i.e.,
feature-based manual method. Common features include Deformable Part-Based Model (DPM) [3],
Histogram of Oriented Gradient (HOG) [4] and Scales-Invariant Feature Transformation (SIFT) [5],
Speeded Up Robust Features (SURF) [6] and Haar-like features [7]. They were usually combined with
classifiers such as Support Vector Machine (SVM) to classify each image pixel. Although the traditional
methods are easy to understand and many improvements have been done to them, most of them
are verified in low and medium density images and they usually need to be changed according to
the specific situations [8,9]. Moreover, most traditional methods either ignore the problems in dense
scenes, namely, there is no discussion on dense scenes, or use simple heuristic methods based on shape
and size, these methods are very ineffective in natural environments with severe occlusion and large
scale changes [10]. Therefore, traditional machine learning methods are not appropriate for dense
images. It has been demonstrated that in many applications, features extracted by deep learning are
more effective than these hand-crafted feature [11]. Moreover, deep learning solves various challenges
in dense images.

Deep Learning (DL) [12] belongs to machine learning, based on representation learning of data,
which realizes artificial intelligence by means of artificial neural networks with many hidden layers and
massive training data. DL has been successful in computer vision [13], natural language processing [14],
bioinformatics [15], automatic control [16], machine translation [17], automatic driving [18] and other
practical problems [19]. The reason for the success of DL lies in its unique characteristics of network
structure: deep neural network can acquire high-level features by learning local features from the
bottom and then synthesizing these features at the top. DL uses multi-level abstraction to learn complex
feature representations from raw data and generate components automatically [20]. Different features at
different levels can correspond to different tasks. Deep learning is a technology that uses deep network
structure to learn features. Deep learning emphasizes the depth of the model structure, highlights
the importance of feature learning and proposes various techniques to learn more and higher-level
features better and faster. Strong learning ability enables them to implement various kinds of problems
especially well and flexibly adapt to numerous highly complex problems. Monitoring and studying a
large number of interesting objects in videos or images is an important task for the macro-world and
micro-field, for instance, the research on crowding traffic and microscopic microorganisms [21,22].

Usually, advances in one area are driven more by some combination of expertise, resources, and
application requirements in other areas [23]. Similarly, applications of DL in analyzing dense scenes
spread to the agricultural sector after advances in medical diagnostics and population analysis. More
and more scenes in agriculture produce a lot of high-density images, and they are becoming more and
more attention. At present, agricultural tasks have been transformed into tasks of agrovision (computer
vision in agriculture). There have been some reviews on the applications of DL in agriculture [24,25] and
some reviews pertinent to the use of DL in computer vision. They either gave a comprehensive overview
of DL methods applied throughout the agricultural field or the latest research of DL technology in
a certain agricultural field and also reviewed the application of DL methods in general computer
vision tasks. However, none of them involved how DL works in dense agricultural scenes. Koirala
et al. [23] summarized the use of DL in fruit detection and yield estimation, including the problem of
occluded fruit in imaging and the solutions. However, they were only concerned with the detection
and yield estimates while ignoring other agricultural tasks containing a large number of objects. Thus,
the motivation for preparing this review stems from the need to summarize the applications of DL in
agriculture with the increase of dense scenes and images.



Sensors 2020, 20, 1520 3 of 33

1.1. Types of Dense Scenes in Agriculture

Dense scenes mentioned in most papers refer to the videos or images about the crowds, and a
lot of studies have been done in the field of automatic monitoring and crowd analysis [26,27]. To the
best of our knowledge, No one seems to define dense scenes in agriculture so far. In this section, by
observing various scenes in agriculture, we distinguish whether the scene is dense or not according to
the number of interesting objects with specific tasks, namely, there are two conditions to judge whether
a scene is dense. One is that there are a large number of interested objects in the image. The other is
the case that the research task is to detect/classify each object. Based on these available options, two
types of dense scenes in agriculture were formulated:

(1) Quantity-dense scenes

Quantity-dense scenes (Figure 1a) refer to images or videos with a very large quantity of objects,
which are often accompanied by severe occlusion and overlap. Although many systems can assess
agricultural crops under controlled conditions, they ignore the interaction between crops and the
environment, and many crops have to be evaluated directly in their growth environment. For example,
fruit in orchards, grain in fields, vegetation in grasslands, etc. While in practice, producers usually
adopt the way of high-density planting for agricultural production. In actual orchards, fruit is densely
distributed and usually overlapped by each other, the ubiquitous branches and leaves even shade
the fruit. Grain fields usually have very narrow row spacing when planting high-density crops, and
overlapping plants often appears.

However, it should be noted that the images acquired in the above scenes are not necessarily
what we call dense scenes. We should judge the scenes according to the specific tasks, such as in [28],
which is also to study farmland, but the task is to classify different farmland types, and it does not care
whether the grain distribution in farmland is dense or not, so we do not divide such scenes into dense
scenes. The problems in analyzing this type of dense scenes are usually the same and the solutions
are similar.

(2) Inner-dense scenes

The second type of dense scenes refers to some objects in an image which have dense attributes
themselves, i.e., the objects in the images are the same kind of objects that are conglutinated with each
other (Figure 1b), such as wheat, grapes, hives, etc. The study of these objects, especially a wheat spike
or an ear of rice, is often a study of dense objects. In this case, separating adjacent objects is the biggest
challenge. That is to say, because of the large number and the interaction between adjacent objects,
data labeling is a huge problem, not to mention the use of DL methods for subsequent processing. Due
to the nature of those objects, these phenomena exist in every image of them. Therefore, the research
on the second type of dense scenes is less than that of the first type.

With the deep study of agricultural production, it has been recognized that most scenes in
agriculture are dense or crowded scenes. Therefore, analysis of agricultural problems mostly needs to
analyze the dense scenes. As shown in Figure 1, the high-density objects in specific agricultural tasks
pose severe challenges to the analysis of agricultural dense scenes, especially for underwater fish or
other aquatic objects [29,30]. Consequently, more and more attention should be paid to the research of
dense scenes in agriculture.
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Figure 1. Dense scenes in agriculture. (a) Detecting fruits in an orchard. Source: [31] is licensed under 
https://creativecommons.org/licenses/by/4.0/; (b) Green Spike and Green Canopy (GSGC), Green 
Spike and Yellow Canopy (GSYC), Yellow Spike and Yellow Canopy (YSYC). Source: [32]is licensed 
under https://creativecommons.org/licenses/by/4.0/. 

1.2. Challenges in Dense Agricultural Scenes 

Research has found that there are a variety of thorny problems in dense scenes, as illustrated in 
Figure 2. First of all, there are some challenges in both quantity-dense and inner-dense scenes in 
agriculture. Sa et al. [33] pointed out that occlusion is a key challenge in dense scenes. There are two 
types of occlusion: scene occlusion and inter-object occlusion. Scene occlusion refers to the occlusion 
of the detected object by other non-objects; inter-object occlusion means that the detected objects in 
the image are occluded from each other, which is at the heart of the occlusion problem. It should be 
noted that in the quantity-dense scenes, there are two kinds of occlusion. However, for the inner-
dense scenes, there is often no occlusion of other objects in the image, so the main challenge is inter-
class occlusion. In addition, high-density objects will lead to a small size of a single object and the 
object resolution is relatively low in both types of agricultural dense scenes. Moreover, because of the 
small size of the object, it is easily affected by noise and leads to inaccurate detection, and there is a 
general limitation in agricultural applications, namely, sensitivity to changing illumination 
conditions. Although it has been proved that LIDAR sensors are reliable for solving this problem, 
they usually require higher investment costs. Besides, objects at different distances from the camera 
may vary greatly in scale, bringing about constant changes in imaging features, especially in object 
size. 

Meanwhile, there are some unique challenges for the quantity-dense scenes in agriculture, i.e., 
complex background. The complex background includes two situations, one is that the background 
is similar to the object, and the noise is intense, which makes it difficult to distinguish the object from 
the background. The other is the case that the background may be dynamic, which changes with the 
moving of the object. Images obtained from realistic agricultural scenes such as farmland or orchard 

Figure 1. Dense scenes in agriculture. (a) Detecting fruits in an orchard. Source: [31] is licensed under
https://creativecommons.org/licenses/by/4.0/; (b) Green Spike and Green Canopy (GSGC), Green Spike
and Yellow Canopy (GSYC), Yellow Spike and Yellow Canopy (YSYC). Source: [32] is licensed under
https://creativecommons.org/licenses/by/4.0/.

1.2. Challenges in Dense Agricultural Scenes

Research has found that there are a variety of thorny problems in dense scenes, as illustrated
in Figure 2. First of all, there are some challenges in both quantity-dense and inner-dense scenes in
agriculture. Sa et al. [33] pointed out that occlusion is a key challenge in dense scenes. There are two
types of occlusion: scene occlusion and inter-object occlusion. Scene occlusion refers to the occlusion
of the detected object by other non-objects; inter-object occlusion means that the detected objects in the
image are occluded from each other, which is at the heart of the occlusion problem. It should be noted
that in the quantity-dense scenes, there are two kinds of occlusion. However, for the inner-dense scenes,
there is often no occlusion of other objects in the image, so the main challenge is inter-class occlusion.
In addition, high-density objects will lead to a small size of a single object and the object resolution is
relatively low in both types of agricultural dense scenes. Moreover, because of the small size of the
object, it is easily affected by noise and leads to inaccurate detection, and there is a general limitation in
agricultural applications, namely, sensitivity to changing illumination conditions. Although it has
been proved that LIDAR sensors are reliable for solving this problem, they usually require higher
investment costs. Besides, objects at different distances from the camera may vary greatly in scale,
bringing about constant changes in imaging features, especially in object size.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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application of DL algorithms in a natural agricultural environment. The rest of the paper is organized 
as following: 

In Section 2, two categories of DL models, the most widely used models in dense scenes are 
reviewed: Convolutional Neural Networks (CNN) and Autoencoder, as well as the basic 
architectures, contributions, and limitations of each category. Then we introduce the achievements 
of those DL algorithms above to various agriculture applications in Section 3, including recognition, 
classification, detection, counting and yield estimation. Emphasis is placed on how the DL model 
handles dense scenes. Finally, we terminate this paper with a discussion and a conclusion. We hope 
this review can provide new ideas and suggestions researchers who are engaged in dense scenes 
analysis in agriculture and be satisfactorily used to develop expert or intelligent systems in other 
related fields. 

2. Deep Learning Methods 

DL has shown an incomparable advantage for computer vision tasks in the context of big data. 
Especially in the tasks of detection, classification, and identification, DL technology occupies a core 
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in this section, we focus on two DL methods that work well in dense agricultural scenes and introduce 
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Figure 2. Challenges in dense scenes in agriculture.

Meanwhile, there are some unique challenges for the quantity-dense scenes in agriculture, i.e.,
complex background. The complex background includes two situations, one is that the background is
similar to the object, and the noise is intense, which makes it difficult to distinguish the object from
the background. The other is the case that the background may be dynamic, which changes with the
moving of the object. Images obtained from realistic agricultural scenes such as farmland or orchard
tend to have high background noise, due to the nature of this challenge which is an unpredictable
event, the methods are so varied and there is no robust solution that works in all conditions.

These challenges may occur in other computer vision tasks, but more frequently or simultaneously
in dense scenes. Thus, methods specifically for dense scenes in agriculture need to be proposed.

1.3. Outline

As far as we know, this is the first such overview of the applications of DL in dense scenes of
agriculture. We summarize various DL algorithms used in dense scenes, which will contribute to the
application of DL algorithms in a natural agricultural environment. The rest of the paper is organized
as following:

In Section 2, two categories of DL models, the most widely used models in dense scenes are
reviewed: Convolutional Neural Networks (CNN) and Autoencoder, as well as the basic architectures,
contributions, and limitations of each category. Then we introduce the achievements of those DL
algorithms above to various agriculture applications in Section 3, including recognition, classification,
detection, counting and yield estimation. Emphasis is placed on how the DL model handles dense
scenes. Finally, we terminate this paper with a discussion and a conclusion. We hope this review can
provide new ideas and suggestions researchers who are engaged in dense scenes analysis in agriculture
and be satisfactorily used to develop expert or intelligent systems in other related fields.

2. Deep Learning Methods

DL has shown an incomparable advantage for computer vision tasks in the context of big data.
Especially in the tasks of detection, classification, and identification, DL technology occupies a core
position at present. However, these methods are difficult to apply directly to dense scenes. Therefore, in
this section, we focus on two DL methods that work well in dense agricultural scenes and introduce the
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popular backbone networks among them. As illustrated in Figure 3, two DL methods are respectively:
Convolutional Neural Networks (CNN) and Autoencoder. Table 1 displays the characteristics of
various backbone networks and their highlights in dense scenes. There are many other deep learning
structures that have been applied in agriculture, but have not been used in agricultural dense scenes.
For example, Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) are very
useful in processing time-series data, which are typically used in agriculture for time prediction.
Generative Adversarial Network (GAN) can be used to enrich datasets and it has been applied in
agriculture [34,35], but it has not been widely used in agricultural dense scenes. In addition, Figure 4
shows the uses of surveyed DL methods in a recent study of dense scenes in agriculture. This chart
information is very valuable to new researchers since it can help them find the most effective DL
algorithm and further research.
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Table 1. Characteristics of various backbone networks in dense images.

Networks Number of Layers Architectures Highlights in Dense Images First Used in

VGGNet 11/13/16/19 Conv + FC

Very small convolutional filter
size and the increase of network

depth effectively improves
network performance

[36]

GoogLeNet 22 Conv + Inception +
DepthConcat + FC

Multiscale convolution and
reorganization extract features

of different scales
[13]

ResNet 18/34/50/101/152
Conv + ReLU +
Residual block +

Shortcut + FC

ResNet architecture is deeper
through residual block and

easier to optimize
[37]

DetectNet - -

Predicting the existence of the
object and the position of the
object relative to the center of

the grid square

-

DarkNet 19/53 Conv + Residual
layer

Recognizing background
correctly and detecting most

occluded and overlapped
objects

-

FCN 8/16/32 Conv Accepts input images of any size
and is more efficient [38]

SegNet 13 Conv + up-Conv Improve the edge depiction and
reduce the training times [39]

U-Net 9 Conv + up-Conv

Each pixel can be segmented,
with higher segmentation

accuracy and support a small
number of training models

[40]

Number of layers: Total number of convolution layers and fully connected layers, Conv: Convolution layer, FC:
Fully connected layer.
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2.1. Convolutional Neural Networks (CNNs)

2.1.1. Review of CNNs

CNN is a feedforward neural network proposed by Fukushima [41] for the first time, the essence
of which is a Multi-Layer Perceptron (MLP). Despite some modifications, the core concept of a neural
network has not changed much. It consists of the input layer, hidden layers, and output layer, each
layer has hundreds of nodes. The nodes in the previous layer are connected to other nodes in the next
layer by weight, which reflects the strength of the connection between the two nodes. Figure 4 shows
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the overall architecture of the CNNs: as a whole, the CNNs can be divided into three main types of
neural layers, namely, convolutional layer, pooling layer, and fully connected layer. Various CNNs
have different implementation details. The function of the convolutional layer is to extract features
from input data, which contains multiple kernels. Because the spatial connection of the image is local,
each neuron only needs to feel the local image area, and CNN can get the global information at a
higher level. The values in the convolution kernel is the weights, and the weights of each local area
in the same convolution layer are shared. There are many initialization methods for weight, such as
random initialization, pre-training, etc., and the weights are updated during model training. Using
different kernels, various feature maps can be generated. The reason for the success of convolutional
layer and popularity to date lies in the way of its local connectivity and weight sharing [42], which
reduce the number of weights to reduce the complexity of the model and the risk of over-fitting, as
well as making the network easy to optimize. The pooling layer, also known as the sub-sampling layer
or down-sampling layer, is often behind the convolutional layer, which is the operation of feature
selection and filtering for the input feature map. On the one hand, it makes the feature map smaller
and simplifies the complexity of network computing; on the other hand, it compresses the feature,
extracts the main features, and ensures the invariance of feature position and rotation. Average pooling
and max pooling are the most commonly used strategies, among which max pooling is used more
because of its better performance [43]. The fully connected layer is usually the last part of the hidden
layer of CNNs. Its function is to integrate the highly abstract features which have been convoluted and
pooled many times before, that is, to connect all the features into one vector, then, the expanded vector
is passed to the classifier through the activation function for classification or further processing [44].
Research has shown that the representation learned by CNN is rich in an amazing amount of image
information, including position, size and pose of objects [45]. The training process of CNNs can be
divided into two stages. The first stage is called forward propagation stage. Data flows from the input
to the output, and the network extracts the features from the low level to the high level. Another stage
is called the back-propagation stage, which aims to adjust the weight and bias to minimize the overall
cost (error). Follow-up works improved CNNs to enable it to be more effectively learn and extract the
features, which have great advantages in the process of 2-D image processing. Now, 3D convolution
characterized by 3D convolution kernels for the processing of videos is commonly used [46]. In the
analysis of dense scenes, most of the research works use CNNs as the framework.

2.1.2. CNNs’ Backbone Network

There are many popular and advanced backbone networks of CNNs. Although most deep CNNs
are composed of a set of base layers introduced above, each network has its characteristics and suitable
application scenes; not all networks are suitable for dense scenes. Therefore, in this section, we will
focus on the backbone networks which are most used and work well in dense scenes. Including
classification networks: VGGNet, GoogLeNet, ResNet, detection networks: DetectNet, YOLO, and
semantic segmentation networks: FCN, SegNet and U-Net. Most of the works reviewed in this paper
are based on these network structures for combination or fine-tuning, making it more suitable for
analyzing dense scenes in agriculture.

Visual Geometry Group Network (VGGNet) [36] explores the relationship between the depth and
performance of a convolution neural network. VGGNet inherits some frameworks of LeNet [47] and
AlexNet [44]. However VGGNet uses the small convolution filter size. The outstanding contribution
of VGGNet is to prove that using a very small convolution filter size and increasing the depth of
the network can effectively improve the performance of the model. At the same time, it has strong
expansibility, and good generalization ability for other datasets makes it a valuable network for
transfer learning.

Different from previous structures of AlexNet and VGGNet, which increase the depth of the
network to improve training results, GoogLeNet [13] is a novel DL structure. To build a sparse and
high computing performance network structure, an inception module is proposed in the GoogLeNet
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inspired by that sparse matrices can be clustered into more dense sub-matrices to improve computing
performance. Convolution and reassembly of multiple sizes can extract the features of different
scales and accurately gather the features with a strong correlation in advance, thus accelerating the
convergence of the network. DetectNet is a GoogLeNet-based network for optimizing object detection.
It consists of two parts: fully convolution neural network and clustering function. The fully convolution
neural network is based on the GoogLeNet structure without the input layer, the final pool layer, and
the internal product layer. Allowing the use of pre-trained GoogLeNet to initialize DetectNet reduces
training time and improving the accuracy of the final model. DetectNet not only predicts the existence
of the object but also predicts the position of the boundary angle of the object relative to the center of
the grid square, this is the main advantage of using DetectNet for object detection.

The original inspiration of Residual Network (ResNet) [37] is a problem called degradation, that
is, accuracy will rise first and then reach saturation, and continuous increase in depth of the net will
lead to a decline inaccuracy. As the convergence of deep network and accuracy reaches saturation, the
network begins to degenerate. This problem is solved in ResNet by a structure consisting of several
layers of networks containing a shortcut connection called a residual block. Mask R-CNN [48] uses
ResNet and Feature Pyramid Networks (FPN) [49] to fuse and extract multi-layer features. Shortly
after ResNet was launched, Google borrowed the essence of ResNet and proposed Inception-v4 [50]
and inception-residual-v1/v2 [51]. Inception-residual network combines the inception idea, which
links the results of convolutional layers with different filter sizes through inception module to capture
the characteristics of multiple sizes.

The two-stage method represented by R-CNN has higher and higher detection accuracy in
computer vision tasks, but it is sometimes difficult to meet the real-time requirements in some scenes.
One-stage method represented by YOLO [52] integrates feature extraction, candidate frame regression,
and classification into a network, which improves the detection speed. YOLO is improved based on
the GoogLeNet architecture, and the difference is that YOlO uses 1 × 1 + 3 × 3 convolution kernels
to replace the inception module. Nevertheless, it has a problem in detecting small objects since the
YOLO model can only detect one object class in each cell. So, when using this model in dense images,
different changes are usually made to the initial model. Later, YOLOv2 [53] and YOLOv3 [54] are
therefore proposed to improve it. In addition, new classification models, DarkNet-19 and DarkNet-53,
are proposed in YOLOv2 and YOLOv3. Using ResNet for reference, both of them are mainly composed
of a series of convolution kernels of 1 × 1 and 3 × 3 to avoid gradient dispersion and explosion of
depth network.

Fully Convolutional Networks(FCN) [38] is a kind of network that uses the convolutional
layer instead of the fully connected layer in the previous classification network. In dealing with
dense images, the segmentation of objects is the basic work of many tasks. FCN is one of the first
successful semantically segmentation method [55,56]. There are three main technologies used in
FCN: convolutional, up-sample and skip layer. The existence of a fully connected layer will lead to
a large storage overhead and constrain local features. Then FCN transforms the last three layers of
CNN into three layers of the convolutional layer, which is used for end-to-end and point-to-point
semantic segmentation.

As an effective image segmentation method, FCN has some limitations. For example, the blurring
of the underlying features makes the network insensitive to the details of the image, and often ignores
the relationship between the local and the whole. In addition, the pooling layer of CNNs discards part
of the location information, semantic segmentation needs to retain the location information discarded
in the pooling layer. As a result, networks based on encoder-decoder are proposed to solve this
problem. SegNet [39] and U-Net [40] are the most prevalent semantic segmentation networks based on
encoder-decoder, which are also used widely in dense scenes.

SegNet is modified by the VGG-16 network based on FCN. The encoder used in SegNet the first
13 layers of the convolution network of VGG-16. Each encoder layer corresponds to a decoder layer.
In the encoder process and decoder process, the convolution method utilized by SegNet is the same



Sensors 2020, 20, 1520 10 of 33

convolution. The difference is that in the decoder process, convolution is used to make information
lost in the pooling process available through the decoder.

U-Net is an improvement on FCN, consisting of a contraction path and an expansion path. The
contraction path is used to get context information, and an expansion path is used to locate accurately.
Different from FCN, U-Net uses skip connection to cascade the feature information of contraction path
of the model with that of deconvolution operation in expansion path, so as to obtain multi-scale feature
information to improve network performance. In order to recover the structural features of the original
image, U-Net uses 4 skip connection to connect the low-level and high-level feature maps.

2.2. Autoencoder

Overview

Autoencoder network is a type of unsupervised learning method. The main objective of
autoencoder is to automatically learn and represent the unmarked input data, typically for data
dimensionality reduction, compression, fusion. Autoencoder includes two processes: encode and
decode. Input images are processed by encoding to get code, and then decode to get output, by using the
back-propagation algorithm to train the network so that the output equals the input. High-dimensional
data is always difficult to understand; if we reduce the input data to a lower dimension, it will be much
more intuitive and easy to handle.

The following Figure 5 shows the conceptual diagram of an autoencoder. It is a kind of neural
network aiming at reconstructing input information and it can give a better description of features
than the original data. That is to say, there is the following relationship between the output layer and
the input layer of the autoencoder network: xi ≈ x̂i [57].
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Generally, different variations of the autoencoder have been proposed to ensure robust features
representation for machine learning applications. These include parse autoencoder [58], denoising
autoencoder [59], stacked autoencoder [60], and contractive autoencoder [61].

2.3. Conclusion

These deep learning networks are used to solve various challenges in agricultural intensive scenes
due to their own characteristics. To deal with the complex problems encountered in dense scenes, it is
inevitable to deepen the depth of the network. Therefore, VGGNet has a broad application in dense
scenes analysis. Convolution and reassembly of multiple sizes in GoogLeNet is an effective way to
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solve the problem of scale inconsistency in dense scenes. The training data of DetectNet is a large
image containing multiple objects, which is suitable for dense object detection. The main advantage of
ResNet is to destroy the flow of information in the network, but this means that some features can be
reused, and the ResNet architecture is easier to optimize than other deep networks. Inception-residual
network combines the inception idea, which links the results of convolutional layers with different
filter sizes through inception module to capture the characteristics of multiple sizes. In addition, YOLO
can recognize the background correctly, and can be used to detect a certain degree of occlusion and
overlapping objects. The structure of FCN reduces the repeated calculation, reduces the complexity of
the model with filling up the missing detail data during upsampling, and the input image can be any
size. It is used for accurate crowd count estimation in crowded scenes [62]. As a semantic segmentation
network based on encoder decoder, while the segmentation result of SegNet is not good, so in the
dense agricultural image, U-Net is more used. The outstanding advantage of U-Net is that it can get
very accurate segmentation results with very few training images. However, it still considers more
high-level features and makes little use of low-level features. In general, analysis of agricultural dense
scenes is one of computer vision tasks, and CNNs are the main deep learning method. At present, an
autoencoder is rarely used in agricultural scenes.

3. Applications

Deep learning has been widely used in agriculture, such as disease diagnosis [62,63], crop
recognition and classification [64,65], leaf counting [66], etc. To a great extent, these methods have
solved the agricultural tasks. In fact, they cannot be applied directly to dense scenes. In most
agricultural scenes, due to the existence of dense objects, these methods of DL cannot work well.
Therefore, this section introduces the application of DL in dense scenes in agriculture. Table 2 shows
the applications of deep learning networks in dense images in different agricultural tasks. We introduce
the models used in various applications of agricultural dense scenes and the results. Among them,
computing time indicates whether it is real-time. We found that in the dense agricultural scenes, the
vast majority of datasets are created by the author. So, in Table 3, we describe the datasets used by the
methods in Table 2.

Table 2. Applications of deep learning networks in dense images in different agricultural tasks.

Application Model Description of Method Accuracy (%) Computing
Time Ref.

Recognition ResNet
Using 50-layer and

101-layer depth residual
networks

50-Layer:94.6/
101-Layer:101:98.67 x [63]

Recognition YOLOv3/ResNet
152/ResNet50

Yolov3 and two Mark
R-CNNs with ResNet-50

and ResNet-152

MaskRCNN-152:
86.83

√
[64]

Recognition U-Net Combining U-Net and a
recurrent component - - [65]

Classification U-Net + VGG-16

VGG-U-Net initialized by
VGG-16 for segmentation,

and VGG-16 for
classification

90 - [66]

Detection GMM/U-NET

The detection methods of
using GMM and image

segmentation, U-NET and
object-based detection
network are compared

91.27
√

[67]
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Table 2. Cont.

Application Model Description of Method Accuracy (%) Computing
Time Ref.

Detection FCN
An encoder and a decoder

part based on the idea
FCN

- - [68]

Detection DetectNet

Consisting of a FCN based
on the GoogLeNet

architecture and clustering
function

86.6
√

[69]

Detection Caffe reference +
VGGNet

DeepAnomaly algorithm
that using DL combined
with anomaly detection

-
√

[70]

Detection VGGNet/GoogLeNet/
DetectNet

Using VGGNet,
GoogLeNet and DetectNet

for detecting weeds in
bermudagrass

- - [71]

Detection ZF network and
VGG-16

Faster R-CNN with ZF
network and VGG-16, and
different types of transfer

learning are used to
initialize the network

95.8
√

[72]

Detection YOLO

Modified YOLO with two
other blocks. The “splitter”

block at the entrance
divided the image into

four separate images, and
the “joiner” block at the

end splices the four pieces
together

87
√

[31]

Detection VGG-16

VGG-16 with early and
late fusion, and combining
multiple modes (RGB and

NIR) images

-
√

[33]

Detection Author-defined
CNN

Fine-tuned the Clarifai
model combined CNN

with color and
morphological

information

92.0 - [73]

Detection ResNet101/
ResNet50/MobilNetV1

An instance segmentation
algorithm based on mask
T-CNN. Experiments on

ResNet101, ResNet50 and
MobilNetV1

-
√

[74]

Counting Author-defined
CNN

N4-Fields algorithm is
used to foreground

segmentation predict edge
maps

90.39
√

[75]

Counting FCN A blob detector based on a
FCN -

√
[9]

Counting YOLO+SVM

Adding convolutional
layer to the pre-trained

YOLO model transforms
classification model into

detection model

93.71
√

[76]

Counting Inception-ResNet

Modified the
Inception-ResNet-A layer

to capture the
characteristics of multiple

scales

91
√

[77]
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Table 2. Cont.

Application Model Description of Method Accuracy (%) Computing
Time Ref.

Counting FCN
Using FCN model to
segment targets and

non-targets
-

√
[78]

Counting FCN-8

Enhance and interleave
density estimation by

foreground background
segmentation and explicit

local uncertainty
estimation

[79]

Yield
Estimation Inception-ResNet

Modified the
Inception-ResNet-A layer

to capture the
characteristics of multiple

scales

91
√

[80]

Yield
Estimation AlexNet

Two independent
branches CNN structures
for processing RGB and

multispectral images
respectively

-
√

[81]

Yield
Estimation R-CNNs

R-CNNs optimized for
implementation method

and hyper-parameter
93.3

√
[32]
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Table 3. Datasets in agricultural dense scenes.

Ref. Description of Datasets Type of Image (Is It a Real
Image) Resolution(Pixels)

Objects and Numbers for Training

Objects Training Validation/Testing

[63] Dataset obtained from [82]
√

Pest 800 300

[64]
300 images captured by binocular
color camera in Fruit Garden and

Citrus Experimental Base

√
1024 × 768 Fruit 250 50

[65]
A dataset of 8, 640 30 FPS and 12,

960 70 FPS images containing
total of 375, 698 annotated bees

√
512 × 512 Bees 19,434 2176

[66] 500 photos in the sunflower field
taken by robot

√
512 × 384 sunflower 1500 350/150

[67]
Datasets were acquired by

mobile phones in HRC over a
period of 2 years.

√
500 × 500 Apples 5200 1300

[68]
Six sets of grape image data
provided by Grape Breeding

Institute

√
5472 × 3648

ShootsN 35 24/36

ShootsA 34 34/34

InfloresN 15 15/15

PedicelsA 40 40/40

GrapesN 30 30/30

GrapesA 30 30/30

[69] A dataset consisting of 1,427
images from 10 fields

√
1224 × 1024 Weeds 1274 153

[70] 104 images on the grass by a
stereo camera

√
1080 × 1920 Field 56 48

[71]
Datasets were taken at multiple
athletic fields, golf courses, and

institutional lawns in FL.

√
640 × 360

Hydrocotyle spp. 12,000 1000

Hedyotis cormybosa 16,132 1000

Hedyotis cormybosa 13,206 1000

Poa annua 12,030 1000

Multiple-species 36,000 1000
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Table 3. Cont.

Ref. Description of Datasets Type of Image (Is It a Real
Image) Resolution(Pixels)

Objects and Numbers for Training

Objects Training Validation/Testing

[72] Capture image data by sensors in different
orchards

√
500 × 500

Apples 729 112

Almonds 1154 270

Mangoes 385 100

[31] In total 100 images of apples and 50 of pears
were taken.

√
1216 × 1216 -

[33] Some data sets are collected by themselves,
while the rest are from Google’s image search.

√ 1296 × 964 and
1920 × 1080, Sweet pepper 100 22

[73] Datasets of 147 images from the apple tree
were collected by camera

√
5184 × 3456 Apple 100 47

[74]
A dataset of 293 images taken in the field and
an annotated dataset of 10,161 blueberries for

detection and 228 for segmentation.

√ images with 3264 ×
2448/videos with 1920 ×

1080

Blueberry-V1 - -

Blueberry-V2 - -

[75] A dataset contains 52 videos from six different
conveyors with a total of 443 frames.

√
- -

[9]
Orange datasets without lighting during the

day and Apples data at night
√

1280 × 960
Oranges 3600 35

Apples 1100 10

[76] Collection of dataset using capture devices
and image

√
30 × 30 -

[77] 26400 synthetic images produced by the
authors Synthetic images - Synthetic tomato 24,000 2400
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Table 3. Cont.

Ref. Description of Datasets Type of Image (Is It a Real
Image) Resolution(Pixels)

Objects and Numbers for Training

Objects Training Validation/Testing

[78]
Orange datasets without lighting
during the day and Apples data

at night

√
- -

[79]

More than half a million images
have been generated in more

than 40 different locations over
three years

√
- Penguin 57,400 24,600

[80] 26,400 synthetic images
produced by the authors Synthetic images - Synthetic tomato 24,000 2400

[81] There were 643 areas of interest
in total

√
1280 × 960 Paddy rice 412 102 for validation and

129 for test

[32] 335 pictures of 10 wheat varieties
at three different growth stages

√
5184 × 3456 Wheat 305 30
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3.1. Recognition and Classification

Object recognition is a process in which a particular object or a type of object is distinguished
from other objects or other types of objects. Classification is the further processing of data based on
recognition, that is, to recognize multiple classes. Recognition of agricultural dense scenes is mainly
used in the recognition of pests and diseases and the recognition of objects as the basis of other tasks,
such as fruit picking and object tracking. Classification tasks in dense scenes mainly include crop and
weed classification and fine-grained classification in agriculture. In general, the recognition ability of
the model increases as the depth deepens [36]. However, it has been shown that simply increasing
the depth can cause network degradation [37]. Especially in dense scenes, it still faces the problem
of complex background. Therefore, it is necessary to find a DL method to increase the depth of the
model while restraining the degradation for dense scenes analysis in agriculture. Images in recognition
tasks are quantity-dense scenes, while the images in classification tasks tend to be inner-dense scenes.
Therefore, the problem of classification in dense scenes in agriculture is more complex. Usually,
multiple DL methods are combined to deal with the overlapping and classification of different classes,
i.e., classification-based network and semantic segmentation based network.

The main task of recognition in agriculture is to recognize diseases and insect pests. Timely
and accurate diagnosis of plant diseases is one of the main objectives of precision agriculture [83].
Cheng et al. [63] used the 50-layer and 101-layer fine-tuning deep residual learning pre-trained on
ImageNet to identify pests. Because of the end-to-end training on the pest dataset with a complex
background, their system has strong robustness. The recognition accuracy of 98.67% for 10 classes
of crop pest images with complex farmland background was achieved. Besides, recognition is the
first step in picking in the orchard. The general system can only recognize the fruit, but in the field
environment, it is also very important to recognize obstacles such as leaves and branches. Liu et al. [64]
designed a fruit-picking robot working in a natural environment. Yolov3 and two Mark R-CNNs with
backbone networks ResNet50 and ResNet152 were used. ResNet50 and ResNet152 contain 16 and 50
residual modules, respectively. The experimental results showed that the Mark R-CNN152 model has
the highest comprehensive recognition accuracy of 85.12% and can meet the real-time requirements.
To solve a series of problems such as random growth posture of trees and complex occlusion of
branches and leaves to fruits, they divided the types of recognition into Normal Branch, Occlusion,
Leaf Occlusion, Slight Occlusion, Overlapping and Main Branch according to the occlusion rate. Then
they recognize, classify and plan the path according to the occlusion. Accurate individual recognition
is an important step towards automated dense object tracking. In the hive, there are hundreds of dense,
often occluded and constantly moving individuals. In order to identify all honeybee individuals in the
dense natural environment, and judge the orientation of the individuals, Bozek et al. [65] used the
method of combining U-Net and a recurrent component to encode the additional information of the
segmented object. In their work, they reduced the size of U-Net to reduce overfitting. The proposed
method can effectively identify individuals in iteration.

Crop and weeds are similar in shape, size, and color, so the classification of crop and weeds faces
the challenges: the overlap between crop and weeds [84]. For general classification tasks, most of the
methods use the fully connected layer of CNNs architecture for final classification. However, in dense
scenes, the use of a fully connected layer directly for classification is not effective. Because the pooling
layer compresses the original two-dimensional matrix into one-dimensional, thus, spatial information
is lost. Therefore, classification tasks are usually divided into two steps in dense scenes. Firstly, object
and background are segmented by semantic segmentation methods, and then foreground objects are
classified. A new method combining robust pixel-wise with a coarse-to-fine classifier based on CNN
was proposed in [66]. Specifically, the segmentation network was based on a modified version of U-Net
architecture. The segmented network was trained by datasets from different contexts, plant types,
fields and environmental conditions, which was used to generate the binary mask. Then the vegetation
clumps in the binary mask were extracted and sent to the fine-tuned CNN classifier based on VGG-16
for crop/weed classification. The proposed method achieved good classification results on challenging
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data, i.e., serious occlusion of weeds and crops. It is the overlapping of weeds and crops that affects the
detection results. Besides traditional fruit or crop classification, some tasks can also be transformed into
classification tasks in analyzing dense scenes in agriculture, such as quality assessment, fine-grained
classification and so on. In the study of [85], the evaluation of paddy field quality was transformed
into the classification of paddy field density, including sparse density and normal density. Different
from traditional disease classification, there are larger intra-class similarities and smaller inter-class
variance [86]. So fine-grained classification in dense scenes is more of a challenge. At present, the
research in this field is too little and not mature.

3.2. Detection

Detection is based on classification, which requires the network to output not only the category of
the object but also the location parameters of the object. Accurate detection is usually the basis of other
tasks. In agricultural applications, weed control, fruit picking and so on need to use the detection
results as input. In the analysis of agricultural dense scenes, the main challenges of detection are: (1)
for the case of quantity-dense scenes, serious occlusion between objects, as well as small objects; (2) for
the inner-dense scenes, due to the narrow line spacing, overlapping similar objects often appear. In
this context, DL used in detection includes the most advanced object detection networks and semantic
image segmentation models.

Weeds detection and control is an important application of precision agriculture [87], and also
an important application of dense scenes in agriculture. Weeds generally have the characteristics
of wide distribution, high density and low nutritional value, which do not make use of the growth
and development of crops. So, it is of great significance to accurately detect weeds in farmland
for controlling weeds, spraying pesticides, machine cutting and so on. Dyrmann et al. [69] used
DetectNet-based structure consisting of a fully convolution neural network to detect weeds. They used
a model trained on the ImageNet to initialize the weight, and by evaluating the error of bounding boxes
and predicting the coverage map, the FCN is trained to determine the position of weeds in the image.
The network could detect a single weed in a grain field under the condition of serious leaf occlusion.
The results showed that the accuracy was 86.6%, although most of the weeds overlapped with wheat
plants. The average IOU was 0.64, according to the IOU standard, the algorithm encountered problems
in the detection of very small weeds, grasses and weeds exposed to serious overlap, which led to the
performance degradation of the system. Due to the selection of the area with the largest occlusion
degree, they found a big challenge of automatic weed detection, that is, small target and serious
occlusion, which must be solved for the precise control of wheat field weeds. They also pointed
out that not all weeds were annotated in the training data used in the study, so if the training data
is fully annotated, the accuracy of the test will be further increased. So, some studies have done
weed detection on more challenging datasets. Yu et al. [71] reported three deep convolution neural
networks (DCNN) including VGGNet, GoogLeNet and DetectNet for detecting weeds in bermudagrass
[Cynodon dactylon (L.) Pers.]. The detection results are very accurate, among them, DetectNet is the
most successful because it exhibits high performance in multiple images with very high weed density
(more than 100 weeds per image), with F1 scores > 0.99. The networks of all of them have all achieved
good detection results under severe blocking conditions, and cannot play a role in a few high-density
weed detection images.

The precise location of fruits is also an important application in agricultural dense scenes, detecting
fruits helps to reduce one of the most labor-intensive tasks in orchards [88]. Different from the challenge
of weed detection task, which mainly depends on the deep object detection network to deal with
inter-object occlusion, fruit detection in orchard often still faces the problem of occlusion of other
objects in the background [89], small objects and different appearance changes. So, in a real outdoor
farm environment, fruit detection is more challenging than weed detection, and the DL algorithms
based on segmentation network is widely used and dense fruit image detection to separate the object
from the background.
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Experimental results show that the region-based object detection networks can achieve accurate
object detection even in the complex background of light changes. In view of the fact that a single
sensor mode cannot fully provide the information needed to detect the target fruit, the fruit detection
system based on the multi-modal region has begun to be used in dense agricultural scenes. A
high-performance fruit detection system was developed by [33], i.e., a novel multi-modal Faster
R-CNN based on VGG-16. By using early and late fusion, combined multiple modes (RGB and NIR)
images, they combined the classification decisions of the two modes and changed the structure of the
VGGNet input layer. The end-to-end network can significantly reduce the training and prediction time,
and further improvements have been made in the detection results. However, the detection results
are relatively poor on the fruits with most areas blocked. Bargoti and Underwood [72] proposed a
trained model called Tiled Faster R-CNN to implement fruit detection over orchard data containing
between 100–1000 fruits per image. The experiment was carried out on the ZF network and VGG-16
net. By using the attention mechanism, the individual proposals are propagated through the fully
connected layers and then become the two sibling layers again, and a more refined output of region
classification and associated object boundaries were obtained. In addition, in order to perform more
advanced tasks on the original image, they used smaller sliding windows to perform detection or
“tiling” on the larger image to obtain tiled Fast R-CNN. Recently, a new detection method has been
provided by utilizing additional features and machine learning strategies. Dias et al. [73] studied the
removal of apple blossoms at a specific growth stage. In view of the fact that the detection of apple
flowers is hampered by variable lighting and blocking of leaves, stems or other flowers, they further
fine-tuned the Clarifai model [90]. It had been significantly fine-tuned, and effectively combined the
features extracted by CNN with color and morphological information, which made their methods have
certain applicability in various occlusion level scenes. Even in datasets that are significantly different
from training data, the optimal recall rate and accuracy rate are close to 80%. Different from the above
two-stage model, Bresilla et al. [31] proposed an end-to-end fast and accurate fruit detection model
based on YOLO. By modifying the standard model, the network scale was expanded, some layers
were deleted, and then two other blocks are added. The “splitter” block at the entrance divided the
image into four separate images, and the “joiner” block at the end splices the four pieces together,
taking into account speed and accuracy. However, their models cannot detect two objects of the
same category. Accurate fruit detection is also the key to counting based on detection, because any
undiscovered fruit will not be counted. Häni et al. [67] compared detection methods using GMM and
image segmentation, deep image segmentation network, U-Net and object-based detection network.
Among them, their deep object detection network is based on the work of [72], but the backbone
network is switched to the ResNet50. In order to make up for the poor performance of the network in
detecting small objects, they used a feature pyramid network (FPN) with lateral connections proposed
in [49] to extract more low-level features. The counting results also showed that the DL method using
50-layer ResNet is more accurate. Of course, UNET did quite well. Grimm et al. [68] developed a
learning semantic segmentation framework for grape detection, localization, and counting. The serial
VGG-16 is used as the encoder and the combination of U-Net, SegNet, and FCN-8 is used as the
decoder to effectively segment the object and background. Specifically, the decoder used upsampling
and downsampling steps with factors of 2 and used concatenations of complete feature maps of the
encoder part with feature maps of the decoder part having the same size. Then, the decoder ended
with a final upsampling layer with a factor of 8. It can learn more complex models while having good
detection performance, and reduce the memory and running time of image segmentation. In addition
to the method based on semantic segmentation, case segmentation is also used in agricultural dense
object detection. Gonzalez et al. [74] proposed a new instance segmentation algorithm of blueberry
quantization based on Mask R-CNN. ResNet101, ResNet50 and MobilNetV1 were selected as backbone
networks and several experiments were carried out in each network. Different from the usual method,
their algorithm was trained from the beginning on a challenging new dataset captured in the field. In
order to detect small objects in dense images, they improved the standard feature extraction pyramid
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by adding a second pyramid to access lower and higher-level features. Good detection results were
obtained in dense images.

3.3. Counting and Yield Estimation

Since Seguí et al. [91] began to study the number of interest counted by CNN, the counting method
based on DL has become popular. The automatic counting of agricultural products is very helpful for
agricultural enterprises to optimize and simplify their harvest. Yield is the criterion for evaluating the
production situation and production efficiency, estimation of yield is very important for agricultural
producers, and it will be the basis for producers to forecast storage demand, profit and production
capacity [92]. In the dense scene of agriculture, counting and yield estimation are similar, because
the yield estimation based on DL mainly uses the counting based method. The meaning of counting
is to calculate the number of all objects in each frame, while the yield estimation needs to integrate
these counts in the whole dataset, and also needs to eliminate duplicate counts. In other words, yield
estimation is based on previously obtained data. In general, counting is to estimate part of the yield. It
is not hard to imagine that counting and estimating the yield is challenging because it deals with a
large number of clustered objects, and the use of artificial methods is time-consuming and laborious,
which is not suitable for large-scale cultivation of crops. In dense scenes of the agricultural sector, there
are two difficulties: (1) Objects often grow in arbitrarily large clusters. (2) Objects are often occluded
by branches, leaves or other objects. Methods of object counting tend to fall within four categories:
segmentation-based, detection-based, regression-based, and finally density functions-based.

Segmentation-based methods are used most frequently. French et al. [75] explored a method to
segment the scene and counting fish with CNN, which exploited the N4-Fields [93] as a foreground
segmentation method. The N4-Fields generated a real-valued output image giving the probability that
each pixel is a foreground pixel. After foreground segmentation, the N4-Fields algorithm was used
to predict edge maps again, and then small convolution was used to segment and count objects in
surveillance video. Chen et al. [9] used a blob detector based on FCN to extract candidate regions,
and then used a counting algorithm based on second convolution network to estimate the number
of each region. Finally, a linear regression model was used to get the final fruit counting. Since FCN
does not use any fully connected layer, the network can perform the partitioning task well, and by
initializing weights as the VGG network weights, the network can be trained quickly. Their method
can realize good counting results even in very dense conditions. It is very difficult to use only one
network to deal with the counting problem of large fruit images which differ greatly in appearance and
quantity. Further, Liu et al. [78] combined deep segmentation, frame-to-frame tracking and 3D location
technology, proposed a new counting method: using FCN model to segment targets and non-targets,
using Hungarian algorithm to track inter-frame results, and finally using 3D location to eliminate the
trajectories counted repeatedly and correct the count by rejecting false positives.

YOLO network is the most effective counting method based on the detection. In the research
of Zhong et al. [76], they designed and implemented a vision-based flying insect counting system.
To detect flying insects, the phenomenon of camera out of focus and impurity interference is easy to
occur in the process of image acquisition, so a YOLO network with strong anti-interference ability
and reliability is selected. For the convenience of counting, they supposed flying insects as a class
and used YOLO for detection and rough counting, which was pre-trained on ImageNet and added a
convolutional layer to transform classification model into detection model. Then, the boundary box of
detection results of the fine-tuned model is provided to SVM for identification to alleviate the problem
of insufficient samples.

Through density regression, we can also train a deep model which can solve the counting task. To
solve the problem of crowding and occlusion between targets, Arteta et al. [79] proposed a method
to define the target density map by foreground segmentation. Compared with the general density
regression, this method is easier to learn, and its core is to use the robustness of fcn8s to noise annotation.
Specifically, three tasks, foreground background segmentation, explicit local uncertainty estimation,
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and density estimation, are solved through a single deep structure joint training. The algorithm
performs well in very crowded conditions, but there are still many problems to be solved.

Since all previous fruit counting methods based on DL rely on counting the detected instances.
In fact, under the conditions of the large variance of illumination, leaf occlusion or some degree of
overlap amongst fruits, in it is difficult to count directly even using DL methods. Rahnemoonfar [77]
first proposed fruit counting based on deep simulation learning. In their method, objects were counted
without detecting objects. They modified the Inception-ResNet-A layer of Inception-ResNet to capture
the characteristics of multiple scales and generated synthetic images for network training, and good
counting results were achieved. The experimental results showed that the average test accuracy of
their network in the real image and the synthetic image is 91% and 93%, respectively. However, it is
still a long way from promoting this method. In their subsequent further research, on this basis, they
reduced the image size and the number of expansion filters, realizing a real-time estimation of tomato
yield [80].

In addition to the above counting methods, there is also region or area-based method for yield
estimation. Based on the fact that the panicle number is directly related to the final yield, yield can
be predicted by detecting the leaves and panicles of rice. [81] first used UAV remote sensing data to
estimate crop yields using CNNs; they proposed a DL network consisting of two independent branches
CNN structures for processing RGB and multispectral images respectively. The first branch consists of
five convolutional layers and three max-pooling layers, similar to the reduced version of AlexNet, used
to learn spatial features in RGB images. The second branch uses the structure of a pool layer and three
convolutional layers to extract features from multispectral images. Due to the difficulty in obtaining
high-resolution remote sensing images and the corresponding crop yield distribution, the research on
the application of dl to the estimation of production at home and abroad is very limited. It is worth
mentioning that Hasan et al. [32] established a wheat spikes dataset, which consists of hundreds of
high-quality wheat images with 25,000 annotated peaks, in total. Four region-based convolutional
neural networks (R-CNNs) were designed to accurately detect and count spike regions in each map
in the study and to better classify and improve the overall detection performance, they made some
modifications to the implementation method and optimized the hyper-parameters.

After the objects are detected and counted, to solve the problem that fruit parts are occluded
or invisible in the cluttered environment, measures should be taken to improve the robustness of
the counting method. Clustering and merging single prediction through cross-frame tracking is a
routine operation to avoid repeated counting [77]. Some work combined GPS positioning information
to accurately track objects [94,95]. It was later discovered that the accuracy of counting was greatly
improved by using multiple perspectives. Das et al. [96] utilized multi-sensor platforms and optical
lines, and Hung et al. [97] ensured that the images do not overlap at all by selecting the sampling
frequency, thus avoiding tracking. Besides, Structure from Motion (SfM) [98] technology can be used
to perform 3D reconstruction, and cluster views can be tracked by estimating camera motion [67]. In
short, counting is still a thorny problem in dense agricultural scenes. Generally, the accurate counting
results cannot be obtained by using the DL method alone, all of these often need to be combined with
other methods to further improve the counting performance.

4. Discussion

In the previous section, we reviewed the DL methods and their applications in dense agricultural
scenes. In this section, we first present an analysis of the applications of the surveyed DL methods.
Then, the limitations and future research directions of DL applications that we think are meaningful in
this field are emphasized.
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4.1. Analysis of the Surveyed DL Applications

(1) Data Preprocessing

One of the major features of DL is the need for a large amount of data. One of the most prominent
factors in promoting DL is the emergence of large, high-quality, publicly accessible annotated
datasets [99]. The quality and quantity of training data often determine the depth of the network and
the effects of the model [24]. To get better training data, many studies have adopted the method of
image generation and data augmentation [100]. Figure 6 shows the methods of data preprocessing.
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At this stage, most of the datasets studied by DL come from some large technology companies, it
is difficult for general researchers to establish high-quality public datasets, but the emergence of data
synthesis technology breaks the shackles. Synthesis data is data generated by a computer to simulate
real data. There is no cost to generate new data by using synthetic images of computer-generated
models to enhance the dataset of images [101], and simply training synthetic datasets can be successfully
applied to real data. In addition, it has been proved that the network trained on synthetic data can be
generalized into two separate real image datasets, each of which has a different distribution. Generally,
the DL model is trained on synthetic data, then validated on actual data, and finally applied to real data.
The experimental results showed that the effect of synthetic data training is fine, and only when there
is a big deviation between synthetic data and real data, the accuracy will be reduced. Experiments
in [101] were implemented using lpfg, a plant simulator based on L-system included in the Virtual
Laboratory plant modeling environment. Virtual environments allow free placement of any contained
element in a scene and generate its semantic annotations without additional work. In addition to
generating synthetic data in a virtual environment, there is a simpler and more widely used synthetic
data generation method. Rahnemoonfar [77] filled the entire blank image with green and brown circles
to simulate the background and tomato plants and used Gaussian filtering for blurring; then, random
circles were drawn at any position to simulate tomatoes with variable sizes. The images overlap with
the change of size, proportion, and illumination to fuse complex real scenes.

Data augmentation is commonly used in the use of DL methods to artificially expand training data.
There are two purposes of data augmentation: one is that the sample is scarce, which is not enough
to support the training of DL networks, so it needs data augmentation to increase the number of the
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sample. The other one is to prevent over-fitting, over-fitting means that the DL model performs too
well in training datasets, resulting in poor performance in testing datasets. Data augmentation usually
supplements the original data in quantity and diversity, and we can divide data augmentation methods
into traditional methods and DL methods. Traditional augmentation technology can be divided into
geometric transformation and intensity transformation. The geometric transformation includes size
adjustment, sample tailoring, rotation, inversion and so on. The intensity transformation includes
the transformation of contrast, brightness, color, and noise. Besides, mixup and PCA enhancement
technologies are also traditional data augmentation means. Recently, methods based on DL for data
augmentation have become popular. The CycleGAN [102] is essentially two mirror-symmetrical GAN,
it can learn the characteristics of a class of data and generate similar data. The research showed that
compared with traditional image enhancement methods, the CycleGAN method greatly enriched the
diversity of training data sets [103].

Although data augmentation technology and synthetic image technology expand some data sets,
greatly alleviating the problem of lack of data sets, in fact, at least hundreds of images are needed,
which depends on the complexity of the problem studied.

(2) Surveyed models and model optimization

Although DL has made substantial progress in many computer vision problems, up to now, the
research on dense scenes in agriculture is not mature. However, the review shows that the DL methods
are better than the traditional machine learning methods based on the performance index adopted by
the authors. Our analysis shows that in most of the related work, the main DL method to deal with
dense scenes in agriculture is CNN, among which VGGNet and ResNet are the most commonly used
models. Since the closer the network is to the bottom, the more effective the extracted features are, it
can be said that the network architecture of VGGNet is superior to other most advanced networks. So,
in order to maintain this characteristic, many convolutional neural network models use VGGNet as the
basic model for image detection and other tasks. ResNet can not only prevent the degradation of deep
neural network, but also improve the training quality of the model, so it is widely used in dense scenes
analysis. As reviewed above, data annotation in dense images is very difficult. As a result, due to the
character that it needs less data and can use available data accurately, semantic segmentation network
including FCN and U-Net is also widely used to solve recognition, detection and counting tasks by
segmenting foreground objects.

CNNs are the most important deep learning methods in the dense agricultural scene. At the same
time, transfer learning and autoencoder are also used in the dense agricultural scene. The biggest use
of transfer learning is to alleviate the lack of data and pre-training the networks. Supervised learning
needs a lot of annotation data, which is also one of difficulties of DL in dense scenes. On the one hand,
many machine learning methods work only when training data and test data come from the same
feature space and have the same distribution. If the distribution of data changes, most models need to
be reconstructed [104]. On the other hand, labeling data is a tedious and expensive task. Reducing the
amount of data means reducing the overhead, but there is a risk of reducing network performance.
Therefore, due to the low data requirements [105], transfer learning is more and more used in the
applications of DL. Transfer learning allows different domains, tasks, and distributions of training
and testing data while saving a lot of labeling work. It is also helpful in adapting a training model for
one period of time or equipment so that it can be applied to another period of time and transferring
knowledge to a new field [106–108]. In computer vision tasks, it has become a standard operation
to transfer the trained features (i.e., fine-tuning) from the trained CNN to the new target tasks [72].
In general, the pre-training model and initial weights are obtained by pre-training on the ImageNet
dataset or Pascal VOC dataset. That is to fine-tune the network. Fine-tuning usually requires only
a small number of parameters to optimize, and the whole network has not been trained from the
beginning. This greatly reduces data requirements for specific tasks. Initialization of convolutional
neural networks using models trained on different datasets will result in faster convergence of the
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networks. After training on thousands or even more annotated images, the DL networks can be better
trained in dense agricultural scenes. An autoencoder can also be used to generate data, but it has not
yet been used in dense agriculture scenes.

Standard DL models cannot perform dense scenes analysis well, so it is necessary to enhance the
basic network architecture. The review shows that there are many methods to optimize the structure
of DL network and make it more suitable for dense scenes analysis. One is to integrate different CNNs
networks and combine the advantages of each network to deal with occlusion, complex background,
and other issues. For example, Grimm et al. [68] designed a segmentation network that combines U-net,
SegNet and FCN-8 to segment objects more effectively. The other is to modify the advanced networks,
such as changing the size of the convolutional filter, adding or deleting layers of network, updating
or adjusting model parameters, etc. [73]. At the same time, there is another network improvement
method that has a good performance in the dense agricultural scenes analysis, i.e., CNNs models
combined with other classical machine learning methods. Bozek et al. [65] combined U-Net and
recurrent components. Zhong et al. [76] used YOLO to count roughly, and then used SVM to classify
and recognize accurately. There is also work to divide the objects into clusters, and then detect or count
each cluster [67].

There are many commonly used evaluation indexes for DL. Our review shows that accuracy,
recall, and IOU are the most frequently used. Among them, the accuracy rate is best understood, which
is an index presenting the proportion of correctly classified samples to the total number of samples.
Generally, the accuracy rate is used to evaluate the global accuracy of the model, but it cannot fully
evaluate the performance of a model. A similar indicator is the recall, which is the proportion of
all positive samples in the test set that are correctly identified as positive samples. IOU is an object
detection task evaluation index, which is the percentage of overlapping area between detected and
ground truth boundary box in the joint area.

(3) Hyperparameters and optimization technology

Hyperparameters are user-defined and tailored to a specific application task. Hyperparameters
have a great influence on DL networks, and the performance of networks is likely to depend on subtle
differences of hyperparameters. The setting of hyperparameters is an important work in DL, learning
rate, batch size, momentum and weight decay are the most common hyperparameters. The deployment
of this work often depends on experience. From the relative literature review, the learning rate is
discussed more in the hyperparameter optimization technology, and the setting and optimization of
other hyperparameters are less involved. Specifically, there are four ways to set the learning rate: (1)
fixed learning rate; (2) linear decay policy, when the number of iterations reaches the upper limit, the
training stops; (3) exponential decay; (4) step strategy, we set an iteration number in advance, when the
number is reached, the learning rate will be reduced to a certain value. Gradient descent is a common
optimization technique in machine learning algorithm. Batch gradient descent and stochastic gradient
descent (SGD) are used most in the application of dense agricultural scenes. In addition, Ada-Delta
and mini batch gradient descent are also applied. Among them, mini batch gradient descent adds extra
hyperparameter to the learning algorithm, the batch size. The batch size and weight decay remain
unchanged during training. In the literature we investigated, the momentum is generally the same,
and the momentum is generally set to 0.9. In order to make the deep learning model provide the best
results, it is necessary and not easy to find the best value of these hyperparameters. Therefore, better
hyperparameters optimization technologies need to be proposed.

(4) Solutions to challenges

As mentioned in this review, occlusion is the biggest challenge in dense scenes. There are two
main methods to alleviate the problem of occlusion. One is to label the object into different categories
according to the occlusion situation, and then recognize and classify it [64]. This method avoids the
huge error caused by the same feature extraction for all objects. The other is to train DL networks on
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thousands of large annotated data sets with different sizes, illumination, and occlusion levels, which is
the main solution [69]. However it also means collecting large annotated datasets. In the experiment
of [79], it took more than three years to collect Penguin datasets and more than 35000 volunteers to
label the images.

Small object is also one of the key challenges in dense scenes. Such a challenge is relieved by
optimizing the network. Because the pooling layer in CNNs reduces the feature mapping by two times
every time, it does a poor job in detecting small objects. Because the FPN with lateral connections
makes up for the difference of spatial resolution in the higher level, it is very suitable for small target
detection. In addition, for networks with anchor scale or mini-mask shape, the settings of these two
parameters can be changed to improve the detection effect of small objects.

For the case of high background noise, one solution is to select a high-performance network; the
other is to add a variety of scenes with high background noise in the test dataset. Some CNNs used
for saliency detection are fine-tuned [73] and others choose networks with strong anti-interference
ability and reliability, such as YOLO [76], R-CNN, etc. Although DL has made great progress in dense
image processing, there is still room for further improvement in serious occlusion, real-time detection
and other aspects. Only relying on the network often cannot perform well in the agricultural complex
real scene. It is also necessary to train and test representative visual changes and various high noise
datasets to improve the robustness of the network.

Besides, in dense agricultural scenes, for background processing with high similarity to the object,
using semantic segmentation to extract the region of interest can achieve good results [66,78].

4.2. Limitations to DL Applications

(1) Influential Architectures

In general, by considering partially occluded objects in training data or detecting partially occluded
objects through design models can improve performance. However, by selecting the densest area, it is
possible to reduce the performance of the model. It has been proved that the DL methods cannot be
extended well when there are clutter and occlusion in the image [109]. The performance of the network
will decrease with the increase of the complexity of the dataset. Moreover, in the dense scenes of
agriculture, there are objects that are hard to see even with human eyes. Therefore, the DL algorithms
cannot solve the problem of serious overlap up to now.

(2) Datasets

In addition to the fact that DL algorithms are still difficult to deal with serious occlusion problems,
the collection, and labeling of dense objects datasets is a major problem. The costs of generating
new data are high, it takes a lot of time and effort to acquire and annotate datasets. We are familiar
with common datasets for DL architecture, but in the field of agricultural applications, there are few
public datasets available. In the complex background of dense agricultural scenes, the construction
of datasets is even more difficult. Besides, the datasets used by one research institute are often not
suitable for other studies. From Table 2, we can see that all the experiments except one study that
used other people’s datasets were self-generated datasets. At present, there are no public datasets
for dense agriculture scenes, and few studies can download data directly from the Internet [110], and
most require researchers to build their datasets. For example, to collect images of pests and diseases
of tomato plants according to the time, the researchers collected 9230 pictures of wheat crops with
different wheat diseases under various conditions [111].

4.3. Future Work

(1) DL optimization

Facing the challenges of dense scenes analysis in agriculture, given the current solution to the
use of auxiliary means to solve occlusion, scale inconsistency, and other issues, the effect is unlikely
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to have a qualitative leap, the research focus should also turn to the DL algorithm itself. First, we
need to add more layers to improve the performance of the DL network. Plain networks do not
perform well in dense scenes, so it is necessary to build a deeper DL structure to deal with more
complex problems. However, blindly pursuing the layers of the network may lead to too many model
parameters, increased computational complexity, and low training efficiency. Therefore, on the premise
of not reducing the training efficiency of the network, increasing the number of network layers will be
an important research direction to improve the ability of DL in dense scenes analysis. Therefore, it is a
trend to explore lightweight CNNs, which can obtain higher recognition accuracy with less trainable
parameters [112,113], such as MobileNet. It is possible to propose some new network structures to deal
with dense objects. The new compression layer and optimization technology should be considered in
the new DL architecture. Next, it is recommended that an in-depth study of the mechanism of DL. In
the existing DL applications, the design and optimization of the algorithm mainly focus on the accuracy
of the algorithm, rather than studying the black box. Needless to say, DL has a powerful ability, but
the process is too abstract. We do not know how it works at present. As a result, Geoffrey Hinton, the
father of neural network, said that DL entered a bottleneck period. Therefore, further research on DL
theory needs more. Multi-feature fusion is also an effective way to improve DL performance. One is
the fusion of multiple features, for example, the combination of spatial features and semantic features
can maintain the positioning accuracy and more semantic information [114]. Second, multi-layer
features fusion can effectively use spatial information by giving different weights to different feature
layers [115]. The third is to combine CNN features with artificial features [116]. In fact, this has been
applied in agricultural intensive scenes, but there are more feature combinations, which may achieve
the effect of improving network performance. In addition, it is suggested that CNNs combine with
other DL algorithms, such as RNN, LSTM. Each DL method has its own application areas. Other DL
methods may not be as powerful as CNNs in scenes processing, but they can use their advantages
to complement CNNs. Now there are examples of CNNs and RNNs combination [117] and CNNs
and LSTM combination [118]. The next step is to improve them to effectively apply them to dense
scenes in agriculture. Besides, how to ensure the accuracy of deep learning in agricultural tasks is
also a problem to be considered. Although there may be errors inevitably, it is worth studying how to
reduce the errors by using the real values for calibration.

(2) To meet the challenges of big data processing

As mentioned in the review, there is no public dense image data set for agriculture. To maximize
the potential of DL, it is very important to create a well-annotated large-scale intensive agricultural
image database. It is also helpful for researchers to use the same data set for training, verification,
and testing, and algorithm comparison. However, it is difficult due to that labeling data is costly
and laborious.

Several methods can be used to alleviate the difficulty of datasets generation. One is to generate
virtual training data by simulation. There are two issues to consider when applying data generation in
an agricultural scene. One is that the generated image is highly similar to the real image, ensuring that
it can be tested on the real data set; the other is that the generated image is rich in type, covering all
real scenes. Its advantage is that it can express multi-level details and has high modeling efficiency,
i.e., it can generate a large amount of data in a very simple way. However, it ignores the complex
background in reality, so the difficulty now is to extend the model of synthetic data training to actual
data. Therefore, it is a promising method to use the computer to generate a large number of available
synthetic data and use these weakly annotated training data to promote the solution of the visual
task [119]. Another one is to transform supervised DL into unsupervised or semi-supervised DL. At
present, in the field of DL, the use of annotated data for supervised learning is in a leading position.
However, with the increase of dense scenes, it is unrealistic to mark all objects. Therefore, there is a lot
of research space for semi-supervised and unsupervised DL methods using only part of annotated
data. In addition, more and more attention will be paid to the research of automatic annotation. On



Sensors 2020, 20, 1520 27 of 33

the other hand, low resolution is another obstacle to the application of DL in dense agricultural scenes,
so it is necessary to make a new attempt on low-resolution data based on the DL model.

(3) Apply DL to agriculture through transfer learning

DL is applied to agriculture after achieving excellent performance in other fields. So the application
level of DL in other dense scenes is far higher than that in agriculture. For example, in the crowd
analysis, many improved DL algorithms or DL combined with traditional machine learning methods
are proposed. A lot of open datasets have been generated. Based on transfer learning, transferring
knowledge from one application field to another is a learning method that is conducive to the application
of DL in agriculture. In the long run, this is a very promising application.

(4) Robot system

The research on robots for weeding, feeding, pruning, picking, and harvesting is a hotspot in
agricultural application, which greatly improves labor efficiency, saves production costs, and promotes
the development of agricultural machinery. Agricultural robots have developed into one of the
most promising industries in precision agriculture [120]. Developing an accurate, real-time and
reliable computer system for pest identification or yield estimate is an important part of agricultural
robot system. It requires complex algorithms to overcome realistic challenges, such as lighting,
shape, occlusion and natural changes in viewpoints [121]. The positioning algorithms and modules
corresponding to the robot system are also necessary. Combining robot path planning, mechanical
design, and DL algorithm to solve practical needs is also the next research focus. As a visual task,
tracking is more and more needed in the dense scene analysis of agriculture. After the object in
the dense scene is detected, the research of quantitative trajectory reconstruction algorithms will be
an important direction in the future. At the same time, it is necessary to combine DL algorithms
with modern technologies such as meteorological information and geographic information to form a
comprehensive service platform. By considering the portability of mobile platforms such as Android
or ios [122], it can be applied in smart mobile terminals to provide higher practical and promotional
value [63].

5. Conclusions

As discussed in this review, the greatest challenge for dense scenes analysis is that objects are
too dense and small. This paper performed a review of DL in dense agricultural scenes, mostly from
an application perspective. In this review, we review the recent research on DL for application in
dense agricultural scenes. Based on these surveys, readers can understand which dense scenes exist in
current agricultural applications, and which DL algorithms are used in these dense scenes, as well
as the application of DL in general agricultural tasks. By comparing the DL methods with other
methods in the survey paper, it shows that DL provides better performance in dense scenes and is
superior to other popular image processing techniques. In short, research on the application of DL in
dense agricultural scenes is a very meaningful and urgent matter. However, what we also need to
know is that research on dense agricultural scenes is still in its infancy and many obstacles need to be
overcome, such as datasets. The future development of DL technology still has different opportunities
and challenges and has a high development prospect.
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