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Abstract: Path planning for sailboat robots is a challenging task particularly due to the kinematics
and dynamics modelling of such kinds of wind propelled boats. The problem is divided into two
layers. The first one is global where a general trajectory composed of waypoints is planned, which
can be done automatically based on some variables such as weather conditions or defined by hand
using some human-robot interface (a ground-station). In the second local layer, at execution time, the
global route should be followed by making the sailboat proceed between each pair of consecutive
waypoints. Our proposal in this paper is an algorithm for the global, path generation layer, which
has been developed for the N-Boat (The Sailboat Robot project), in order to compute feasible sailing
routes between a start and a target point while avoiding dangerous situations such as obstacles and
borders. A reinforcement learning approach (Q-Learning) is used based on a reward matrix and a set
of actions that changes according to wind directions to account for the dead zone, which is the region
against the wind where the sailboat can not gain velocity. Our algorithm generates straight and
zigzag paths accounting for wind direction. The path generated also guarantees the sailboat safety
and robustness, enabling it to sail for long periods of time, depending only on the start and target
points defined for this global planning. The result is the development of a complete path planner
algorithm that, together with the local planner solved in previous work, can be used to allow the final
developments of an N-Boat making it a fully autonomous sailboat.

Keywords: Q-Learning; path planning; USV; ASV; autonomous sailboat; mobile robotics;
green robotics

1. Introduction

The number of researches working on the development of navigation methods for autonomous
sailing has grown significantly. The interest in this research area is relatively new compared to general
mobile robots, such as Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs) and
other types of motorized Unmanned Surface Vehicles (USVs). The main motivation for research into
autonomous sailboats is the possibility of uninterrupted navigation by using the wind, a physically
vast and free source of propulsion. This source is generally allied to solar panels and/or turbines
that can be used to recharge internal batteries that feed the computers and actuators necessary for
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autonomy, based on green robotic concepts [1]. Besides, with more stability, a sailboat can carry a
larger payload, which allows its use in a broad range of applications such as environmental and coastal
monitoring [2] and other water quality related studies [3].

Nonetheless, since the propulsion source of a sailboat (wind) is usually complex and the sailboat
is subject to other random forces such as currents and waves, its dynamics are highly non-linear,
making its automatic control a non-trivial problem [4,5]. Particularly, by our experience, we noticed
that path planning methods developed for general mobile robots will not work in the same way in
this kind of autonomous vehicle. For example, the approach proposed by Chen et al. [6] based on the
reinforcement learning (Q-Learning) [7] algorithm, originally developed and used on smart motorized
ships does not work here in a straight implementation. It is difficult to use such an approach for
sailboats, noting that motorized boats do not need to take into account wind direction. Fortunately, this
restriction can be incorporated in the Q-Learning model by using a kind of punishment, still keeping
the model as a Markovian decision process, thus enabling using the same approach for developing a
path planning for a sailboat.

Thus, in the same fashion as Chen et al. [6], in this paper we propose to use Q-Learning for the
global path planning of a sailboat robot using a different state space and set of actions. Our main goal is
to find a feasible path that avoids obstacles while keeping the sailboat out of the dead zone. Q-Learning
is a reinforcement learning approach that consists of rewarding or punishing agents according to
actions that they perform in the world [7-10]. Furthermore, in this work we design a new cost function
that rewards the agent and captures the desired behaviors representing the state space and set of action
models both devised for modeling the behavior of the sailboat robot.

Our approach is different from the work of Chen et al. [6], which is not developed for sailboats, as
we have to consider more situations. Our approach is able to find feasible trajectories even in situations
against the wind while avoiding mapped obstacles. We validated our proposal with experiments in
simulation which shows feasible sailboat trajectories for all situations, defined through the points
generated by the algorithm.

The next section introduces the theoretical background showing concepts about path and trajectory
planning, sailing and the Q-Learning algorithm. In Section 4, we devise the behavior model in which
we generated the distance and reward matrices and the Q-Learning table according to wind and boat
directions. Section 5 shows the behaviour of a sailboat in simulation while travelling through the path
generated by the Q-Learning, in different scenarios with some discussion about them and, finally, in
Section 6, we trace the new findings based on the algorithm results and limitations, with the conclusion
about this work.

2. Theoretical Background

In order to better understand the concepts behind the proposed approach, a brief theory
recapitulation about path and trajectory planning, sailboat navigation and reinforcement learning,
especially the Q-Learning, including some terminology, are introduced in this section.

2.1. Path and Trajectory Planning

Path planning and trajectory planning are assuming an increasing importance in robotics. Path
planning is simply the calculation of a path free of collision between a starting point and a goal in
order for a robot to travel in an environment possibly with obstacles [11,12]. The solution to this
problem plays a central role in the design of an autonomous robot navigation system. To complete
the navigation task, the algorithms read a map of the environment or workspace and subsequently
try to create free paths for the robot to traverse, avoiding objects and obstacles. There are several
path planning algorithms such as road map, optimal search, heuristic algorithms, bug algorithms,
and randomized algorithms. On its side, solving the trajectory planning problem means generating
the reference inputs for the control system of the robot, so as to ensure that the desired motion is
performed [13]. Usually, the algorithm employed for trajectory planning takes as inputs the path
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generated by the path planner, and the kinematic and dynamic constraints of the robot. The output of
the trajectory planning module is given by the trajectory of the joints, or of the end-effector, in the form
of a sequence of values of position, velocity and acceleration. The algorithms for trajectory planning
are usually named by the function that is optimized, such as minimum time, minimum energy, and
minimum jerk [13]. Hence, path planning generates a geometric path from an initial to a final point,
passing (or not) through predefined via-points, either in the joint space or in the operating space of the
robot, while trajectory planning algorithms take a given geometric path and endow it with the time
information. In this paper, we deal with path planning.

A brief overview on autonomous mobile robot path planning focusing on traditional algorithms
that produce optimal paths for a robot to navigate in an environment is presented by Sariff [11].
According to the author, the optimal path can be as short, smooth, and robust for autonomous robot
navigation and simultaneously it has been proven that appropriate algorithms can run fast enough
to be used practically without time-consuming problems. A more critical review on path planning
techniques is presented in the work of Katrakazas [14], along with the associated discussions on
their constraints and limitations, which seek to assist researchers in accelerating development in
the emerging field of autonomous vehicle research. Several approaches exist to this problem in
robotics [13,15-17]. In general, path planning algorithms use several methods for representing the
environment, which can be as a configuration space or a graph presentations. Path planning algorithms
are usually divided according to three methodologies, which are used to generate the geometric path,
namely, roadmap techniques, cell decomposition algorithms, and artificial potential methods [13].

In this paper, we will focus on path planning, however, not in the strength and weakness of
general path planning algorithms used by previous and current researchers, but in the development of
high-level path planning for a specific type of robot, a sailboat, coming up with a particular algorithm
that is effective and has shown to be robust. Nonetheless, we notice that sailboat navigation is a
problem that has to be approached differently from any methodology that we found up to date in
the literature for mobile robots as it has to consider the wind direction besides waves, which is not
taken into account in the above approaches to general mobile robot platforms, including motorized
USVs. These traditional algorithms do not work in the sailboat path planning due to the existence of
directions in which the sailboat can not go forward besides not being occupied by any obstacles. So a
different type of algorithm has to be devised for this particular problem, using Q-Learning, which will
be treated further.

2.2. Sailing Theory

The main parts of a sailboat are, basically, the rudder, sail, hull and keel, as shown in Figure 1a.
The sail and rudder are the core equipment, which are used for the control of the sailboat. The rudder’s
main purpose is to change heading and the sail’s main purpose is to gather the wind force in order
to give speed to the sailboat. The role of the keel is to help with roll stability, decreasing lateral drift
and making the sailboat perform like a pop-up dummy on the water surface. In a sailboat, the keel
has in general a heavy weight material on its bottom tip to lower the center of mass of the boat and
avoid capsizing. The hull is the body of the sailboat. Its front is called bow and the back is often called
stern. The left side of the sailboat is called port and the right side is called starboard. Some physical
greatness of importance appear here as the true wind vector, which is shown in the upper graphic of
Figure 1b. It is defined in the n-frame and < is the direction of the true wind vector. There is also the
apparent wind, which is the wind measured in the sailboat Cartesian origin. Easing its understanding,
it is the wind felt by the crew of the sailboat in a passenger sailboat version. Notice that it is given as
the vector summation of the velocity of the boat and the wind direction.
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Figure 1. Main parts of a sailboat on (a). Frame of reference used in this paper on (b).

The possible set of sailboat maneuvers is shown in Figure 2a, noticing that during sailing the
sailboat can basically be found in three situations: upwind, downwind and beam reaching. In
downwind sailing, the wind hits the sailboat from the stern so a sailor just needs to open the sail to
gather wind and gain speed. In the beam reaching situation, the wind hits the sailboat from the sides,
with an angle of 90 degrees. In upwind situations, there is a range of directions where it is still possible
to gain some speed. Actually, certain types of rigid sails hit their higher performance in this situation.
In this case, as the sailboat speed increases, the apparent wind speed also increases, so it is possible
to sail faster than the wind. Nonetheless, the region directly upwind, of approximately 30° from one
side and the other, is called the dead zone or no-sail zone. In this region the sailboat can not gain
forward speed due to the fact that the angle of the wind on the sail does not allow propulsion. The
minimum angle of sail, i.e., the closest angle that a sailboat can travel against the wind can be found
through wind tunnel experiments, measuring the force generated by the sail as it goes closer to the
wind direction. Alternatively this can also be determined during field trials.
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Figure 2. Sailing maneuvers on (a). Example of a sailing tack on (b).

Beating is a zigzag maneuver that a sailor performs in order to reach points that are in the dead
zone or straight against the wind. This maneuver consists of a number of tacks in which the bow
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crosses the wind and the wind changes from port to starboard (or from starboard to port). In this way,
the sailboat is able to be kept outside the dead zone while advancing towards the target. Figure 2b
shows an example of a tack. In situation 1, the sailboat is preparing to tack and the wind comes from
starboard. In situation 2, the sailboat is performing the tack and crossing the wind. The sailboat uses
its inertia to keep some velocity across the wind direction as it does not have propulsion during this
state, so a minimum speed is necessary to perform this maneuver. In situation 3, the sailboat finishes
the tack, and is starting to regain speed with the wind coming from port.

2.3. Q-Learning

Q-Learning is a class of reinforcement learning algorithm based on the Markov Chain theory, as
illustrated in Figure 3. Basically, the agent is at an initial state and should apply an action (A¢) in the
world. After executing this action, the world returns to the agent its next state (S;) and a reward (R;)
is given according to some cost function. In this scenario, the problem that the agent tries to solve
is to find a sequence of actions, called a policy, that takes the agent from a current state to a desired
(final) state while maximizing the immediate rewards (exploitation) and the sum of rewards to the
target (exploration).

World

State: St

Reward: Rt Action: At

Agent

Figure 3. The Markov chain illustration. The agent acts in the world and receives back a state and a
reward value. This return is used to update the learned values of the agent.

The Markov property states that the current state the agent is using to make its decisions has the
sufficient statistics of the history of that agent. Mathematically, a state S; is a Markov’s state if and
only if

p(str1lst, ar) = p(ser1|he, at) @

where ¢ is the time step, S; is the state in time ¢, 4; is the action in time ¢ and /; is the history in time .
In this sense, the Q-Learning algorithm is based on the Markov Chain added the rewards, actions
and the policy concepts to the mathematical formulation, which is known as a Markov Decision
Process [18]. In order to better understand this formulation, some concepts are presented below.
The return G; is the discounted sum of rewards from time step to the number of time steps in
each episode as defined by Equation (2)

Gt =71+ Y41+ ')/ZI’H_Q + ’737”t+3 —+ ... (2)

The discount factor () is a term that is mathematically convenient since it avoids a large number
of return values. When y = 0, G; only takes into account immediate rewards. On the other hand,
when ¢ = 1, future rewards are as beneficial as immediate ones. The value of 7 is always set between
0 and 1. In our case, the state value function that will be updated is given by

V(s) = E[G¢|st = s] = E[rt + yri1 + 'yerz + 73rt+3 +...|st =] (3)

By rearranging the terms of Equation (3), the state value function is equal to the immediate return
of this state (R(s)) plus the discount factor multiplied by the sum of probabilities of all states due to
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the previous state, multiplied by the state value function of the next state. Mathematically, this can be
written as

V(s) =R(s) +7 )} P(s'Is)V(s) 4)

s'es
Notice that Equation (4) regards only the rewards. By adding the influences of actions and
establishing a policy, the complete modeling of the agent behavior can be set as

e S:afinite set of Markov states (s € S);

e A:afinite set of actions (a € A);

e p: the model for each action, that specifies p(s;11 = §'|s; = s,a; = a);
e R:areward function given by R(s; = s,a;y = a) = E[r¢|s; = s,a; = al;
e 7 :adiscount factor, where v € [0,1];

e and 7: apolicy given by 7t(als) = p(a; = alsy = s)

The new R and P functions are dependent on the policy and will be, respectively

R™(s) = ) m(als)R(s,a) )
acA
Z 7t(a |s a) (6)
acA

The state value function is given by

Vit(s) = )+ ), p(s'ls, 7t(s))V k-1 (s") 7)

s'es

2.4. Q-Learning Values Update

Equation (7) is known as a Bellman backup and it is the basis of the Q-Learning algorithm. The
algorithm idea is to find the optimal policy that specifies the best sequence of actions. For this, the goal
is to maximize the return value (G;) defined in Equation (2). Thus, a function Q(s, a) is defined that is
the expected value of discounted rewards if performing action a from state s. By following an optimal
policy for all states and defining

V(s) =arg max Q(s,a) 8)

the function Q is nothing more than a state value function as show in Equation (7). It takes into account
that its variable values are updated during the learning process without it being necessary to use a
probabilities matrix for this. This update can be done using deterministic and probabilistic models. For
a deterministic scenario, it is just a matter of performing action a in state s, get the reward r and update
the value of Q(s, a) by adding it with the previous value. Mathematically, this can de written as

Qse,ar) ¢ r+ymaxQ(ses1,at +1) ©)
t+

On the other hand, the probabilistic updating rules can be computed by way of using
Equation (10):

Q(st,ar) < (1 —a)Q(st,ar) +afr + 7 max Q(st41,a141)] (10)

where « is the learning rate.
The convergence of the Q-Learning Algorithm has been proven in the work of Melo [19] and we
recommend reading it to better understand the concepts of its mathematical formulation.
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Three more definitions are important in order to understand the Q-Learning approach used in
this work. The first one is the horizon that corresponds to the maximum number of iterations that will
be performed by the algorithm in the learning processing. The second one is related to the random
explorer value. This value is useful because, in some cases, the algorithm uses a random action instead
of the maximum value of the Q-Table. This avoids the algorithm entering in a loop between actions
during the learning steps. Finally, the parameter used in this work to evaluate the learning process is
the temporal differential (TD) [8] accumulated by the steps. This value is computed directly from the
Q-Learning Equation (10). By rewriting this equation and isolating the part of it that is multiplied by
the learning rate, we obtain the value of TD as shown in Equation (11). The sum of this value in each
step is the accumulated error (Equation (12)).

TD(t) <1+ 7 max Q(st41,a141) — Q(st,a1) (11)
tmax

TDace = E TD(t) (12)
t=0

2.5. N-boat Control Architecture

The N-boat control architecture (Figure 4) is organized as follows. The low level is composed of
both heading and propulsion control, which work independently. The propulsion control changes the
sail’s position so the sailboat has forward speed according to current wind speed and direction. The
heading control changes the rudder’s position so the sailboat can follow the line that connect the last
and the coming waypoints. At the higher level, we have the local and global path planning modules
working. The local path planning uses information about surface and underwater obstacles to find
alternative paths to avoid them. At the highest level, we have the global path planning, which uses
information about the climate and terrain to find feasible routes for the N-boat. As it will be shown
latter, this is where our proposal resides, i.e., to find these routes using the Q-Learning algorithm.

The basic processing flow of the N-boat Q-Learning algorithm is to create a simplified map of the
terrain in order to get a discrete description of the environment. Next, the wind map is looked up to
get its direction and to remove the actions that put the N-boat inside the dead zone, so a safe path can
be learned. Finally, the algorithm is trained so a safe, feasible path is found and passed on to the other
lower layers.
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Figure 4. Data flow chart of N-boat sailboat.
3. Related Works on Sailboat Path Planning

A common guidance for the software architecture of mobile robots is the separation of the path
planning in local/short-term and global/long-term. Stelzer [20] defines long-term path planning for
autonomous sailboat as the use of a global weather map (wind, currents and/or other environmental
forces) to find optimal routes to the target while short-term path planning uses only local and
instantaneous information about the weather. Local path planning is usually reactive, to allow
avoidance of non-static and non-mapped obstacles, while long-term path planning is deliberative
in the sense that it uses a global map and occupancy-grid-based algorithms [21] to find a particular
path to the objective. Determining the global path (also called weather routing) for a sailboat is of
extreme importance in long range missions since guidance based only on local and instantaneous wind
information can lead to undesired and potentially catastrophic situations.

A usual cost to optimize in long-term path planning for motorized mobile robots is the distance to
target, so a methods can try to find the shortest path. Mapping approaches based on occupancy grids
are the most common although other approaches for calculating the maps are used. This is not enough
for sailboats since the path of the shortest distance is not guaranteed to be the fastest one and it can
even be unfeasible due to the sailboat kinematics. When the sailboat has to move with the same wind
direction it can travel without restrictions. On the other hand, a problem appears when the sailboat
has to travel against the wind, due to the existence of a region called the dead zone (or no-sail zone),
where the sail is unable to generate propulsion. So a good starting point for path planning methods for
sailboats is trying to generate, at least, feasible paths.

Compared to more traditional motorized research mobile vehicles, such as UAVs, UGVs and
even motorized USVs, there is a limited amount of studies on autonomous sailboat navigation. The
current state-of-the-art in sailboat navigation can be classified as deterministic and non-deterministic
or stochastic path-planning. In the work of Baker et al. [22], a global map is used with the Dijkstra
algorithm to find the shortest path to the target without taking wind and current information into
account. Saoud et al. [23] developed a PRM-Dijkstra (PRM: Probabilistic Road Map) algorithm that
basically divides the path into segments and uses the expected time to travel a segment according to
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information about wind and the sailboat polar diagram as a cost function. Their method also provides
avoidance of mapped obstacles. Langbein, Stelzer and Frithwirth [24] use an A* to find optimal routes
in dynamically adapted weather maps, while Cabrera et al. [25] use a Nelder-Mead simplex algorithm
on weather maps to find optimal routes that minimizes the time to the target. This last method also
accounts for obstacles in the map.

A class of more recent researches in autonomous sailboat path-planning is heading towards
meta-heuristic and adaptive/intelligent methods. In the work of Du et al. [26], a method called
three-dimensional dynamic programming (3DDP) is used to generate multiple routes between two
points in a weather map. Those routes are optimized for time to destination and wind direction and the
best path can be chosen according to other factors, such as safety and energy consumption. In the work
of Wang, Yao, and Dou [27] a comparison of PSO (Particle-Swarm Optimization), GWO (Grey-Wolf
Optimization) and a modified GWO (IGWO (Instinctively Grey—Wolf Optimization)) is presented.
These methods are used to find energy-minimum and shortest paths while avoiding mapped obstacles.
The case study is a sailboat robot but all experiments were performed in downwind situations, so
performance in upwind situations is uncertain.

Q-Learning has also been used successfully in other robot platforms such as UGV and AUV.
Jaradat et al. [28], Khriji et al. [29] and Jiang et al. [30] used classical Q-Learning to find obstacle-free
paths for differential UGVs in dynamic environments. To increase the convergence speed of training
the Q-Learning, the above studies reduce the number of possible actions of their robots. Jaradat
and Jiang used only eight actions to represent the robot movement while Khriji used 14 actions.
Cui et al. [31] and Zhang et al. [32] used modified Q-Learning approaches to solve the problem of
path-planning and obstacle avoidance for UAVs. The idea is that since a UAV acts in a dynamic and
uncertain environment subjected to wind forces, state estimation and actions are usually prone to
errors. Hence, the navigation problem can be modelled as a partially observable Markov decision
problem, and Q-Learning is a valid solution for path-planning in unknown environments.

The approach proposed by Chen et al. [6], which is based on the Q-Learning algorithm [7] and
was originally developed to be used on a fleet of smart motorized ships is the closest research to ours
and has also motivated our proposal. The authors argue that the essence of path planning based on the
Q-Learning system is that agents can independently find the most effective path by enumerating all
possible solutions, which might be closer to human manipulating intelligence. Further, the Q-Learning
can find good solutions even in an uncertain and chaotic aquatic environment. The only prerequisite is
to build a computing environment which is consistent with or close to the real world. Nonetheless, note
that motorized boats do not take into account wind direction, so it is difficult to use such an approach
as is for sailboats. It needs further developments to be adopted here, as will be described next.

4. Path Planning Implementation

The first step is the generation of a map where the Q-Learning approach will be applied to define
the trajectory. Notice that, in the real world, there are some regions, other than the dead zone, where
the sailboat can not pass, such as obstacles and the borders of the water body. These regions are joined
together as possible generating blocks. These blocks should be mapped so the Q-Learning algorithm
can generate feasible paths avoiding them. After mapping, these blocks have a penalty associated to
them, which indicates that it is not easy for the sailboat to go through that region and so the algorithm
needs to search for an alternative path.

To simplify the obstacles and borders matrix generation, we have created an algorithm using the
OpenCV library [33] in order to identify the blocks on an image with known obstacles painted in red
color. This is done by computing the width and height of the image, and dividing it by the number
of squares on the reward matrix and looking for the central point of each square. Then mapping the
blocks in a matrix N x N mapping the regions where the agent can not reach.

Figure 5 shows the construction process of the image in order to create the blocks matrix. Figure 5a
is a piece of Bonfim lake taken from Google Maps marked with blue squares on the area of interest and
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red squares are placed on the borders and obstacle points. Figure 5b corresponds to the final image
that will be the basis for the algorithm to generate the blocks matrix.

(@ (b)
Figure 5. Creation of the image that will be used to generate the blocks matrix. In the most left image

(a) we show part of Bonfim Lake (Natal, Brazil) inside the area of interest. Notice that in the center
image, the red squares are placed on borders and obstacles. The right image (b) corresponds to the
input of the algorithm to generate the block matrix.

4.1. Generating the Reward Matrix

The reward matrix is obtained from another matrix called the distance matrix. The values of
this last matrix correspond to the number of squares from any point on the map to the end point.
Figure 6 exemplifies the distance and reward matrices, respectively. The yellow square is defined as
the end point and the distance matrix is calculated from them (Figure 6a), where the side squares have
a distance of 1 and diagonal squares have a distance of 2. The values of any other square corresponds
to the number of remaining squares to reach the final point. On the other hand, the values of the matrix
in Figure 6b are the rewards to get from any place on the map table to the end point. Notice that the
reward matrix is obtained from the difference between each value of the distance matrix by the highest
distance value.

32|10 1 4 5 6 7 6
4 3 2 1 2 34 ,/5|6|5
514 (3|23 2|1 3|4)|5|4
6 5 4 3 4 112|343
7 6 5 4 5 012|332

(a) (b)
Figure 6. The matrices used on the generation of the Q-Table. In (a), we show the distance matrix
with the end point painted in yellow color. In (b), we show the reward matrix that corresponds to the
distance matrix minus the highest distance value, resulting in lower reward values to squares that are
far from the end point, while the highest reward is on the end point.

Other aspects that should be taken into account are the obstacles and borders. For these cases,
the reward is actually a penalty applied to the agent that allows it to know that a block should not
be achieved. Generally, it is given a number much lower than that used for the rewards, like minus
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1000 plus the negative of the highest reward, for example. Notice that this penalty can be added to the
reward matrix after its generation as shown previously. This will not change the algorithm efficiency
due to the necessary conditions: (1) there should be a possible path between the start and end points,
and (2) the end point can not be placed in the same point, and should be different from obstacles
and borders.

4.2. Q-Table Generation

Once the reward matrix has been generated, it is necessary to generate the Q-Table that will be
used in the learning process. The table is composed of the actions on the rows and the states on the
columns. The actions define which directions are allowed in that particular state.

Specifically for this application, as the wind direction must be taken into account, the definition of
the actions is very important in order for the desired goal to be reachable. As mentioned above, there
is a range of angles between the wind and the boat directions that is called the dead zone. In this zone,
the boat is not able to go straight ahead because it is against the wind and, in order to achieve the final
point in this situation, it is necessary to perform a zigzag trajectory. This is the beating, where the boat
changes its orientation alternating i order to get out of the dead zone, thus being able to reach the goal
point at the end.

Figure 7 shows all the possible actions used in this work related to the world (circle) and to the
algorithm (table) without taking the wind into consideration. Notice that when the wind is taken into
account there are some actions that should not be done because they might get the boat into the dead
done. To illustrate this, Figure 8 represents some possible trajectories for different scenarios. The start
point (Sy), the end point (E,), and the wind direction are shown.

Up
Up-Left i Up-Right
|t/
Left |---|-e—t5l—»l--| Right
FARIRN
Down-Left i Down-Right

Down

Figure 7. All actions available to generate the Q-Table. This figure is related the real world (the
positions into the circle) to the simulate world used on the algorithm to create the trajectory (matrix).
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2 ® © D

Ep Ep Ep Ep

Sp Sp Sp Sp

(a) (b)
Figure 8. Four scenarios to exemplify possible paths from the start point (Sp) to the end point (Ep)
taking account the wind directions. In (a) it is a downwind situation, so it is possible to reach the
goal by following a straight path. On the other hand, in the two situations in (b) the wind and boat
directions are contrary to each other, so it is necessary for the boat to perform a zigzag path to achieve
the end point.

In the cases where the desired heading to get to the end point is outside the dead zone (Figure 8a),
all actions available may be used in the Q-Table to generate the path. Otherwise, when it is necessary
to perform a zigzag as shown in Figure 8b some actions have to be removed from the action pool and
they can be chosen only the actions that are allowed by the policy of each scenario.

Figure 9 helps understanding how the approach is implemented. Figure 9a presents the
relationship between the boat and wind directions to indicate whether the boat is inside the dead zone.
If the dead zone is confirmed, then it is computed the range of directions that the sailboat cannot follow.
Thus, it is mapped which actions corresponds to those angles as shown in Figure 9b.These actions are
then removed from the pool of actions and the Q-Table is generated using the remaining ones. Notice
that depending on the dead zone range multiple actions could no longer be feasible. For instance, in
the situation exemplified in Figure 9 the dead zone range is 80°, which results in two actions that were
removed from the action vector.

Wind

Direction \ *

NN

Boat Direction

?

180°

D\er;\d Zone / * \

270°

(a) (b)
Figure 9. Relationship between the wind direction and the actions not allowed to generate the Q-Table.
In (a), we show one example where the sailboat desired direction is contrary to the wind. In red color,
the dead zone is presented with a range from +40 to —40 degrees taking account the boat direction. In
(b), the actions forbidden are the red squares, while the other actions may be used in the Q-Table.

Mathematically formalizing this, the dead zone (A;;) is defined by:

Adz = [’)/tw - |ll]dz|/ Yiw + |1sz|] (13)

where 7y, is the angle of the true wind, 4, is the minimum angle of sailing in upwind.
If (yp — 77) € Ayy, then
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0, keA
Ay = * (14)
|k — 7|, otherwise

where Ay, is a vector that contains the actions that will be used to generate the Q-Table, and

k= ng n=1[01,2,..67 (15)

The operation |k — 77| is necessary because the actions are defined in the sailboat frame. Thus, the
action vector is contrary to the wind direction.

5. Experiments and Results

In order to validate our proposal, we start with a set of experimental scenarios that were designed
in order for the algorithm to be used to generate paths to go from a point (source) to another (target), ina
lake-like environment. These experimental scenarios and situations use similar maps as shown above in
Figure 5a. Our usv_sim simulator (https://github.com/disaster-robotics-proalertas/usv_sim_lsa) [34]
is used in this work to perform the trajectories based on the paths resulting from the experiments.
These multiple scenarios were created for the tests, basically, by changing the initial and end points
and also the wind direction. In scenarios 1 and 2, the wind direction is fixed, and the start and end
points are then swapped in each of them to simulate both upwind and downwind situations. The
first scenario is free of obstacles while the second has some obstacles that were added near the border
in order to force the algorithm to change the generated path. The resulting block matrices for each
scenario are as shown in Figure 10. In scenario 3, the start and end points are fixed and the wind
direction is changed in order to observe if the Q-Learning would still find feasible paths. Additionally,
we also devised other scenarios for comparison with the A* algorithm. Besides, this algorithm does
not apply to sailboats (mainly in upwind situation).

() (b)
Figure 10. The block matrices resulting from the scenario shown in Figure 5b. In (a), we provide exactly
the same map as already shown previously. In (b), there are some blocks added as obstacles to force
the algorithm to change the trajectory generation.

In each scenario, the wind vector is considered to be uniform throughout the whole map, with
the same direction, which may vary from one scenario to another , and with a wind speed of 2.2 m/s.
The parameters used on the training are shown in the Table 1. These values were found empirically by
applying a fine tuning on the error and the maximum rewards achieved in each training.


https://github.com/disaster-robotics-proalertas/usv_sim_lsa
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Table 1. Parameters values used in each training.

Parameter Scenario 1(a) Scenario 1(b) Scenario 2(a) Scenario 2(b) Scenario 3
Learning Rate 0.8 0.9 0.5 0.9 0.6
Discount Factor 0.7 0.7 0.3 0.7 0.4
Random Explorer 0.3 0.3 0.25 0.3 0.35
Horizon 10,000 10,000 10,000 10,000 10,000

5.1. Scenario 1 - Path without Obstacles

In this scenario, there are only the border blocks without obstacles. Figure 11 shows the
experiments and resulting sailboat paths for this scenario. Basically, we devised a mission where
the boat goes from the start point to the end point (left of Figure 11) and then returns to the start
point (right of Figure 11). The white marks are the waypoints generated by the algorithm. The green
square is the start point whereas the gray one is the target point. The red lines are further trajectories
performed by the sailboat in the simulator, using the path given by the path planning.

Generated Path
—— Sailboat Path

Generated Path
—— Sailboat Path

Wind Direction Wind Direction

() (b)
Figure 11. Scenarios without obstacles. In (a), the boat and wind directions are the same. Thus, the
generated path can be done using all directions. The red line is the sailboat trajectory performed by the
simulator with the path given by the algorithm. In (b), once the boat direction is contrary to the wind,
a zigzag trajectory is generated. Note that the action down-left is not allowed in this case.

Note that in Figure 11a, the direction to the end point is downwind. For this reason, all actions, as
shown above, are made available to the algorithm and the path can be done by the shortest distance,
just following the diagonal path. In this case, the Q-Learning has been performed in such a way that is
similar to other traditional algorithms for motorized boats. For example the A* (that will be shown
below for comparison) would produce a similar path, besides being more complex to implement. On
the other hand, in Figure 11b the direction to the end point is upwind and the A* does not work in
this case. In this later scenario, our approach makes the boat ending up with a beating maneuver,
performing a zigzag trajectory in order to reach the endpoint. The first experiments depicted in
Figure 11 show that the paths generated by Q-Learning could be successfully used by the sailboat
to generate its low-level trajectory and follow it reaching the target, both in downwind and upwind
situations, and for scenarios with no obstacles. It can also be noticed that this result would be similar if
there is no upwind situation by using other traditional approaches even not for sailboats. Nonetheless,
notice that these strategies would not work in general situations mainly of upwind. In fact, we found
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no strategy that can be easily implemented, up to date, that can deal with upwind situations, so this is
the major contribution of our work.

5.2. Scenario 2 - Path with Obstacles

A second scenario with the same wind parameters as scenario 1, but with the blocks map as
shown in Figure 10b, is devised. Figure 12 shows the generated trajectories with the planned paths.

Generated Path
—— Sailboat Path

Generated Path
—— Sailboat Path

Wind Direction Wind Direction

(a) (b)
Figure 12. A similar scenario as in Figure 11b with obstacles added to the map. In (a), the boat and
wind directions are the same. Thus, the path can be generated using all directions. The final path is
changed if compared with the first case, in order to avoid the obstacles. The red line is the final sailboat
trajectory performed on the simulator. In (b), once the boat direction is contrary to wind, a zigzag path
is generated, with the action down-left not allowed in this case. Due to obstacles between the start and
end points, the algorithm created a different path.

As in the previous experiments, Figure 12a shows the movement of the sailboat following the
trajectory in downwind situations. In this case, since there is an obstacle in the middle of the diagonal
line, the algorithm generates a detour avoiding it, and reaches the end point from another direction.
In Figure 12b, the sailboat has to travel upwind and a zigzag trajectory was generated following a
different path than the previous one. Notice that there is not an allowed action for the Q-Learning,
which is the Down-Left one, during this experiment since the wind direction is the same. However, the
path could be created without considering this action that was excluded by the algorithm. Nonetheless,
the experiment shown in Figure 12 demonstrates that the paths generated by Q-Learning could be
successfully used by the sailboat to generate a low-level trajectory and following it reaching the target
while avoiding obstacles along the course, both in upwind and downwind situations.

5.3. Scenario 3: Changes in the Wind Direction

To evaluate the robustness of the method, we created another scenario with three situations having
the same start and end points but with changes in the wind direction in order to verify the possibility of
this approach to calculate feasible paths. This can be seen in Figure 13. In the first case (Figure 13a), the
sailboat is moving with the same wind direction, so the feasible path that the Q-Learning generates is
also the path of shortest distance. In Figure 13b, the end point is against the wind and the Q-Learning
generates a feasible path with two straight segments. In the third case (Figure 13c), the end point
is also against the wind but with a sharper angle, so the Q-Learning generated a feasible path by
adding multiple zigzags. It can be seen in the figure that, by following this path, the sailboat devised a
trajectory that reached the target.
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Generated Path
—— Sailboat Path

——(Enavoing

Generated Path
—— Sailboat Path
——(End Point]

Generated Path
—— Sailboat Path
{End Point]

(@ (b) (0
Figure 13. Three scenarios with the same start and end points and change in wind direction. The wind
direction in Figure (a—c) are 315, 120 and 145 degrees, respectively.

In addition to calculating feasible paths, the experiments shown in Figure 13 demonstrate the
algorithm’s ability to adapt to different wind directions. In Figure 13a, the boat is not inside the dead
zone and its movement is in the same direction of the wind. The generated path is initially a diagonal
line and then turns to the up direction until the end point is reached. The other two figures (b and c)
show the situation where the sailboat is in the dead zone. However, in Figure 13b, only the up-left
direction is blocked, and in Figure 13c, both up-left and up are not allowed. As noticed by an expert in
sailing within our group, the trajectory followed in Figure 13c is not the best trajectory for this case, but
it is a feasible trajectory and the most important is that it solves the problem for the proposed scenario.

5.4. Q-Learning Convergence and Performance

Related to Q-Learning convergence, Figure 14 shows the temporal differential (TD) accumulated
error for the first two scenarios described above (Figures 11 and 12), which were computed by using
Equation (11). We noticed that the learning cost is proportional to the scenario complexity. The scenario
without obstacles and with the sailboat direction being the same as the wind (blue line) converges
more quickly. On the other hand, the scenario with obstacles and sailboat direction against the wind
(inside the dead zone, the red line) takes longer to achieve the convergence. These results show that
the wind direction is an important parameter in path planning for sailboats because it directly changes
the computational cost in the learning process. This is also true for traditional strategies as will be
discussed below.



Sensors 2020, 20, 1550 17 of 22

Temporal Differential Accumulated - 4 Scenarios

0 —— Same wind direction

Same wind direction with Obstacles
—— Contrary wind
—— Contrary wind with Obstacles

—25000

—50000

—75000

—100000

TD Accumulated

—125000

—150000

—175000

0 2000 4000 6000 8000 10000
Episodes

Figure 14. Accumulated Temporal differential error for scenarios Figures 11a,b and 12a,b.

In relation to performance and starting with time spent, for the tests performed in this paper, the
execution time of the training was about 1 minute and 8 seconds for a horizon equal to 10,000 steps
of training, running on a computer with an Intel® Core™ i7-8565 1.8 GHz CPU and 16 GB RAM
memory. This value changes depending on the scenario and number of steps (actions). For instance,
the scenario without obstacles and the sail boat with same wind direction, the training time was 6
seconds with 1000 steps. This information is important because in a real environment, where there
are other kinds of obstacles (other boats in movement, for example) and more complex situations
like severe water flow, it would be necessary to recompute the path in real time in order to allow
the sailboat to make decisions and eventually re-plan the route, creating alternative paths to avoid
obstacles that this will show up only during the mission execution. However, notice that situations
like these are generally treated with other low-level approaches that work in parallel with this high
level path planning layer. In fact, we see this as an advantage of this algorithm that can even be used
anytime to recompute a path from the actual sailboat position to the target without much trouble.

Another issue that affects the algorithm efficiency is about the quantitation of the grid. Since in
this approach, the real world is mapped on a matrix with N x N positions, there might be some loss of
reachable points. Nonetheless, the higher the discretization is, more points in the environment can
be achieved, but this significantly increases the processing of the training step. On the other hand,
the lower this discretization value is, the faster the generation of the path, but fewer points in the
real world can be reached with precision. To this end, the right measurement between the number
of matrix squares and the number of points available depends on the mission details and this was
determined empirically in this work.

5.5. Scenario 4: Comparison with A* and An Expert Sailor

We found no algorithms in the literature that work in a similar way for high-level path planning
of sailboats. We devised a last set of experiments to provide some comparison of our approach mainly
with the A* algorithm [24], which we implemented only for a downwind situation as this does not
work in upwinds. We also show paths devised by human sailor specialists, that can be used at some
degree for visualizing the results. They were asked to draw the possible paths that they would follow,
without informing them of the results of our implementations (Q-Learning and A*). This gives an idea
of how optimized the path generated by the Q-Learning and A* is. Actually, Figures 15 and 16 show
the three approaches for a similar scenario in which the sailboat is out of the dead zone. Figure 15a is
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for the A* algorithm that surprisingly generated (visually) the same path as the Q-Learning algorithm
(Figure 16a). This means that our approach is better than the A* since it also provides solutions for
upwind situations, in which the A* can not be applied.

In Figure 15b, we show the possible path generated by the sailor experts (both agreed on it) that
were asked to take into account the wind direction and to provide the smallest and/or fastest path to
the target. Notice that the path given by the sailors is different from both automatic approaches, even
in this downwind situation. This is because they considered minimizing the number of jibes necessary
on the path besides the wind direction. Each time the wind changes from starboard to port (or the
opposite) a jibe is necessary, which makes the boat lose velocity.

Furthermore, Figure 15c shows the path provided by the sailors with the start and target changed
around. When comparing this path to the one resulting from the Q-Learning shown in Figure 16b
the paths are very similar. In this opposite situation, the A* is not able to find feasible paths. This is
because it will eventually end up in an upwind situation which has to be considered, but the A* will
ignore it, eventually directing the boat against the wind at some point. At this time, the sailboat will
eventually start losing velocity until it completely stops.

wind direction = wind direction @ end point wind direction

\\\ Sﬁ&. '%...Q..._Qr \\\ ﬁ- \\\

2
By |
':. )

° R S D e
end point end point =R < = start point

(@ (b) (c)
Figure 15. Path resulting from the A* algorithm and devised by sailor experts. In (a) the generated

path by the A* algorithm, which is very similar to the Q-Learning resulting path shown in Figure 16a.
Pictures (b,c) show the generated possible paths made by the sailor experts considering the wind in the
same direction and versing the boat so that the start and end points change.
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Figure 16. Q-Learning algorithm result to the scenarios shown in Figure 15 to comparison analyze.

(a) presents the resulting path for target point in a downwind situation (sailboat and wind in the same
direction). (b) shows the result for a situation where the sailboat should travel against the wind to
reach the destination.
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5.6. Further Discussion of the Results

From the experiments, we notice that the application of reinforcement learning, especially the
Q-Learning algorithm, to the generation of paths for an autonomous sailboat is interesting because the
actions forbidden by the sailboat kinematic are easily translated into the Q-Table. The actions used
to generate the Q-Table are, in our case, the possible directions to be followed by the sailboat taking
into account the wind direction, obstacles and borders. In other words, these directions are directly
managed by the algorithm in the form of actions. This complex behavior was achievable simply by
allowing and/or removing actions from the matrix generation.

Lastly, the low-level control used for the sailboat in the experiments is the simplest control strategy
for a sailboat to follow a path, comprised by a PID for heading control and the linear selection of
sail angle based on the wind direction for propulsion control. This simple control was enough to
follow the generated trajectory without the addition of more complex control strategies. This shows
the robustness and feasibility of the route. On top of this low-level control strategy, the Q-Learning
was capable of generating feasible paths for all the tested situations, including several ones against
the wind.

Nonetheless, in the case where an obstacle was placed on the diagonal line generated in the
first scenario (scenario 2), an avoidance of the obstacle in the path planned is provided, reaching
the endpoint from another direction. Moreover, when the boat direction is contrary to the wind, the
algorithm result is a zigzag trajectory also avoiding the obstacle. It is important to note that depending
on the scenario, it is possible that the generated path could not be mapped onto a feasible trajectory.
This is because the wind direction and obstacle avoidance conditions must be always satisfied, so
obstacles can be put so close to each other in such a way that some requirement like this is not met.
This possibility is also a problem for general path planning algorithms.

6. Conclusions

This work proposed the use of a Q-Learning approach for long-term path planning of autonomous
sailboat. It has been shown that the idea of using such a reinforcement learning algorithm is
interesting because it takes into account the kinematics of the sailboat, generating feasible paths
while simultaneously avoiding mapped obstacles. The proposed strategy has been validated in a
simulation environment. The experiments show that this approach results in correct trajectories that
are generated for all possible situations (including upwind). With this, the map generation phase is
automated, so it is easy to update maps, and information about currents, wind fields and additional
obstacles that can be added during the run-time. Our approach is devised for situations that are similar
to the works of Stateczny et al. [35,36] where the key aspect of autonomous navigation is the need to
avoid collisions with other objects, including shore structures. In this case, we are also developing
a Vision System based on the ZED camera that works well for distances closer than 20 m [37,38],
besides using a LIDAR. So the N-Boat is able to automatically detect obstacles and perform suitable
maneuvers in a similar manner as pointed in the above references. As pointed, this situation also arises
in near-coastal areas, where shore structures like berths or moored vessels can be encountered.

We would like to highlight the importance of our algorithm to path planning in sailboat navigation,
mainly in the upwind situations that really makes a difference, not allowing any motion if the boat
eventually loses velocity and stops against wind situations. As pointed, the wind situation is complex
in several regions of the world, even for example in the northeast of Brazil where we do have some
regularity of strong wind coming from the sea. If an estimation of the wind conditions is given by
some wind map, the algorithm can be used to find a path to the goal. Besides, during navigation, the
real wind direction given by our embarked sensors can be used by the algorithm, even if it changes,
which gives a new route from the current point to the target. With this developed technique, we are
now able to complete the whole cycle, starting from high-level path planning to the low-level control
of our sailboat.
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We have shown that the traditional Q-Learning algorithm can also be applied with modifications
for application to sailboat path planning, managing the allowed actions given wind direction, and
decreasing the computational cost. As future work, we will try to improve the current implementation
of Q-Learning in order to achieve better performance. For example, in order to smooth the generated
trajectory, we can increase the number of Q-Table actions using Geometric Reinforcement Learning as
proposed by Zhang et al. [32]. This allows the agent to search for the optimal next state in places other
than its immediate neighbors. This approach will increase the computational cost, which is important
to search for a balancing point between smoothing and cost. Another possible future work is to add
the selection of actions according to the sail polar diagram in order to optimize the time to target. This
allows better control of the number of tacks.

Another point for research is to find a trade off regarding the discretization of the map and
processing time since this will increase the precision of the path while decreasing performance. Other
strategies can also be devised for the sailboat robot to follow the generated path, with dynamica
recalculation of the trajectory, if necessary, from each point. Approaches including visual attention
features [39,40] and natural or artificial marks could also be devised for following a planned trajectory.
Currently, these strategies are being implemented to work under ROS (Robotic Operating System) in
order for them to be tested in the real N-Boat or sailboat robot (Figure 17) during field trials. Besides
that, the model responsible for recomputing the path in real time due the change in the scenario
will be added to the path planning layer, allowing the sailboat to travel a safe trajectory in all paths
and situations. Deep reinforcement learning can be further studied here in order to find better and
faster strategies that are optimized for other metrics besides feasibility, such as time to target and
power consumption.

Figure 17. N-Boat the Sailboat Robot during the first field tests at the Bonfim Lake, Natal, Brazil.
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