Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal
Abstract
:1. Introduction
- (1)
- An arrhythmia recognition method based on a Multi-Resolution Representation (MRR) of the ECG signal was proposed. Theoretically, the MRR mechanism can combine all possible features generated by any means. These features can vector representations learned by deep neural networks, categorize information of inputs or features extracted using domain knowledge.
- (2)
- The Convolutional Neural Network’s power of ECG signal representation by the Squeeze-and-Excitation mechanism was strengthened. The SE mechanism models the interdependencies between channels during training and pays more attention to the channel information useful for the final prediction.
2. Proposed Method
2.1. Model Architecture
2.2. Deep Feature Extraction
2.2.1. Problem Formulation
2.2.2. GoogLeNet
2.2.3. ResNet
2.2.4. SeNet
2.3. Feature Fusion and Prediction
3. Experiments
3.1. Data Sets
3.2. Data Augmentation
- (1)
- Randomly select a scaling factor from the normal distribution (0, 0.1), and then use to scale the original signal. This method can simulate groups of different constitutions, because people of different constitutions tend to have various heart rhythm fluctuations.
- (2)
- Translation to generate more data is a common data augmentation method in the image field [32]. Inspired by this method, we translated the ECG signal as a whole to simulate the same individual’s ECG collected at different times.
- (3)
- During training, use an all-zero segment of (0, 1) s length fragment to randomly mask the ECG signal to prevent the model from focusing too much on some local features. [33]
3.3. Experimental Setting
3.4. Evaluation Metrics
4. Results and Discussion
4.1. Results
4.2. Discussion
- (1)
- For a specific channel model, a sub-model will be obtained in each fold’s training of a 5-fold cross validation. These sub-models vote to decide the prediction result on the test set.
- (2)
- For a specific channel model, differently from the strategy of using multiple models to construct MRR in the proposed scheme above, we used the five sub-models obtained by cross validation to extract features from the dataset and combine them as a new MRR of ECG data. Then feed the new MRR to LightGBM for training who vote to decide the prediction result on the test set.
- (1)
- It has good scalability and can fuse the useful information in any recognition scheme. Compared with the method used in [18], the training time of our model only has linear growth, which mainly depends on the time consumption of each fusion scheme.
- (2)
- The proposed method can combine the advantages of each recognition scheme. Because the classification method used in MRR generation filters the features according to the information gain of the nodes, the method is more robust than the ones that used the prediction results directly for model integration. In the worst case, the results will not be worse than every single model. On this basis, the scheme of model integration can further improve accuracy.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 13 February 2020).
- Van Mieghem, C.; Sabbe, M.; Knockaert, D. The clinical value of the ECG in noncardiac conditions. Chest 2004, 125, 1561–1576. [Google Scholar] [CrossRef]
- Schlant, R.C.; Adolph, R.J.; DiMarco, J.; Dreifus, L.S.; Dunn, M.I.; Fisch, C.; Garson, A., Jr.; Haywood, L.; Levine, H.J.; Murray, J.A. Guidelines for electrocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Electrocardiography). Circulation 1992, 85, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Kumar, B.V.; Coimbra, M.T. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 2012, 59, 2930–2941. [Google Scholar] [PubMed]
- Acharya, U.R.; Fujita, H.; Adam, M.; Lih, O.S.; Hong, T.J.; Sudarshan, V.K.; Koh, J.E. Automated Characterization of Arrhythmias Using Nonlinear Features from Tachycardia ECG Beats. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 000533–000538. [Google Scholar]
- Desai, U.; Martis, R.J.; Acharya, U.R.; Nayak, C.G.; Seshikala, G.; Shetty, K.R. Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 2016, 16, 1640005. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034. [Google Scholar]
- Bai, J.; Wu, Y.; Zhang, J.; Chen, F. Subset based deep learning for RGB-D object recognition. Neurocomputing 2015, 165, 280–292. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 2117–2125. [Google Scholar]
- Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen, G. Deep speech 2: End-to-end Speech Recognition in English and Mandarin. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 173–182. [Google Scholar]
- Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A. Deep speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Pławiak, P.; Tan, R.-S.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Golrizkhatami, Z.; Acan, A. ECG classification using three-level fusion of different feature descriptors. Expert Syst. Appl. 2018, 114, 54–64. [Google Scholar] [CrossRef]
- Guanglong, M.; Xiangqing, W.; Junsheng, Y. ECG Signal Classification Algorithm Based on Fusion Features; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; p. 012003. [Google Scholar]
- Cakaloglu, T.; Xu, X. A multi-resolution word embedding for document retrieval from large unstructured knowledge bases. arXiv 2019, arXiv:1902.00663. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegaas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegaas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.; Coumel, P.; Fallen, E.; Kennedy, H.; Kleiger, R. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Zhang, Z.; Luo, X. Heartbeat classification using decision level fusion. Biomed. Eng. Lett. 2014, 4, 388–395. [Google Scholar] [CrossRef]
- Experiment Dataset (ECG Signals). Available online: http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/231754/round2/hf_round2_train.zip (accessed on 13 February 2020).
- Experiment Dataset (Label). Available online: http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/231754/round2/hf_round2_train.txt (accessed on 13 February 2020).
- Experiment Dataset (Arrythmia). Available online: http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/231754/round2/hf_round2_arrythmia.txt (accessed on 13 February 2020).
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
# | Type | Records |
---|---|---|
1 | Low QRS voltages | 3 |
2 | Right axis deviation | 1124 |
3 | Paced rhythm | 16 |
4 | T wave change | 3479 |
5 | Left axis deviation | 1124 |
6 | Atrial fibrillation | 120 |
7 | Nonspecific ST segment anomaly | 64 |
8 | Abnormal Q-wave in inferior wall | 52 |
9 | Poor R wave progression of the front wall | 16 |
10 | ST segment change | 286 |
11 | First degree atrioventricular block | 142 |
12 | Left bundle branch block | 25 |
13 | Right bundle branch block | 551 |
14 | Complete left bundle branch block | 25 |
15 | Left anterior fascicular block | 35 |
16 | Right atrial enlargement | 32 |
17 | Short PR interval | 23 |
18 | Left ventricular high voltage | 414 |
19 | Sinus bradycardia | 5264 |
20 | Early repolarization | 22 |
21 | Normal sinus rhythm | 9501 |
22 | Fusion beat | 7 |
23 | ST-T change | 299 |
24 | Nonspecific ST segment and T wave anomaly | 16 |
25 | Rapid ventricular rate | 29 |
26 | Nonspecific T wave anomaly | 34 |
27 | Ventricular premature beat | 543 |
28 | Atrial premature beat | 314 |
29 | Sinus arrhythmia | 901 |
30 | Complete right bundle branch block | 418 |
31 | Sinus tachycardia | 4895 |
32 | Incomplete right bundle branch block | 126 |
33 | Clockwise rotation | 35 |
34 | Counterclockwise rotation | 60 |
- | Total | 29995 |
Type | F1 Score | Precision | Recall |
---|---|---|---|
GoogleNet | 0.9118 | 0.9398 | 0.8854 |
SeInceptionNet | 0.9181 | 0.9480 | 0.8902 |
ResNet | 0.9130 | 0.9399 | 0.8876 |
SeResNet | 0.9183 | 0.9427 | 0.8951 |
Hand-crafted fea | 0.7922 | 0.9051 | 0.7045 |
Multi-Resolution | 0.9238 | 0.9372 | 0.9107 |
Type | F1 Score | Precision | Recall | |||
---|---|---|---|---|---|---|
scheme_1 | scheme_2 | scheme_1 | scheme_2 | scheme_1 | scheme_2 | |
GoogleNet | 0.9118 | 0.9173 | 0.9398 | 0.9305 | 0.8854 | 0.9044 |
SeInceptionNet | 0.9181 | 0.9196 | 0.9480 | 0.9320 | 0.8902 | 0.9077 |
ResNet | 0.9130 | 0.9190 | 0.9399 | 0.9331 | 0.8876 | 0.9055 |
SeResNet | 0.9183 | 0.9205 | 0.9427 | 0.9342 | 0.8951 | 0.9072 |
Net Type | Parameters |
---|---|
ResNet | 37899938 |
SeResNet_1 | 38057122 |
SeResNet_2 | 40257698 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Meng, Q.; Chen, D.; Zhang, H.; Xu, L. Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal. Sensors 2020, 20, 1579. https://doi.org/10.3390/s20061579
Wang D, Meng Q, Chen D, Zhang H, Xu L. Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal. Sensors. 2020; 20(6):1579. https://doi.org/10.3390/s20061579
Chicago/Turabian StyleWang, Dongqi, Qinghua Meng, Dongming Chen, Hupo Zhang, and Lisheng Xu. 2020. "Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal" Sensors 20, no. 6: 1579. https://doi.org/10.3390/s20061579
APA StyleWang, D., Meng, Q., Chen, D., Zhang, H., & Xu, L. (2020). Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal. Sensors, 20(6), 1579. https://doi.org/10.3390/s20061579