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Abstract: In a smart grid system, the utility server collects data from various smart grid devices.
These data play an important role in the energy distribution and balancing between the energy
providers and energy consumers. However, these data are prone to tampering attacks by an attacker,
while traversing from the smart grid devices to the utility servers, which may result in energy
disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices
and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm
is proposed for preserving demand–response security in a smart grid. The proposed mechanism
also provides a fine-grained access control feature where the utility server can only access a limited
number of smart grid devices. The initial authentication between the utility server and smart grid
device in a group involves a single public key operation, while the subsequent authentications with
the same device or other devices in the same group do not need a public key operation. This reduces
the overall computation and communication overheads and takes less time to successfully establish
a secret session key, which is used to exchange sensitive information over an unsecured wireless
channel. The resilience of the proposed algorithm is tested against various attacks using formal and
informal security analysis.
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1. Introduction

Electricity is one of the major stakeholders in the development of the global economy. However,
traditional electricity systems fail to reliably react to the current electricity demands due to their
one-way communication, centralised generation and electromechanical structure [1]. A new centralised
gird technology, the smart grid, has been introduced to overcome the traditional electrical system issues.
A smart grid is based on the modern and advanced communication infrastructure that supports a
bidirectional communication and energy exchange among the end users (i.e., consumer and providers).
For example, a smart meter collects information about electricity usage of the consumer and sends
this information to the utility servers. In return, smart meters receive some commands from the utility
servers to execute proper actions. In a smart grid, the flow of information is divided into different
levels. The first level of information exchange is between the smart devices and smart meters using
small-range communication technologies, such as Bluetooth, Zigbee and 6LoWPAN. The second level
of information flow is between the smart meter and utility provider and data centres using medium-
and long-range communication technologies, such as public telephony networks, the internet and
mobile networks [2]. This bidirectional communication plays an important role in balancing the
demand and response by controlling power generation based on its utilisation.
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It is revealed by the U.S. energy department that, since 1988, there is currently an overall increase of
30% in electricity demand while the peak demand will grow to 20% in the near future. However, there is
only a 15% increase in the production and operational efficiency. According to the National Institute
of Standards and Technology framework for smart grids, the main tasks are to efficiently handle and
process data to ensure better service availability to the end users [3]. Various smart devices are being
developed for the demand–response management in smart grids, in which important information
is exchanged among the devices and the utility servers for control and operation. This information
is prone to numerous cyber attacks, such as replay, impersonation and man-in-the-middle attacks,
which can compromise the users’ privacy and modify information [4]. Therefore, communication
security is the most critical issue in smart grids, and special attention is needed to protect the channels
from these well-known attacks.

A symmetric key-based cryptographic algorithms, like the advance encryption standard, can be
used to secure the communication between smart grid and service providers. In these approaches,
a unique secret key is shared between each pair of communicating parties. Each secret key is valid
only for secure communication between each pair of devices, and it cannot be used for secure
communication with other devices of the network. In the last decade, several key management
protocols have been proposed to manage those symmetric keys in the context of smart grids.
Fouda et al. [5] presented a Diffie–Hellman (DH)-based key establishment protocol, while Zhou [6]
presented an elliptic curve based key establishment protocol leveraged on public key infrastructure
(PKI) for smart grids in 2011. However, Xia and Wang [7] showed that Zhou’s scheme is vulnerable
to the man-in-the-middle attack and needs high maintenance. Furthermore, they proposed a trusted
party-based lightweight directory access protocol to reduce the overhead introduced by the PKI. In 2013,
Park et al. [8] showed that Xia’s protocol suffers from the unknown key share and impersonation
attacks. In 2015, Tsai et al. [9] presented a key distribution protocol that strongly preserves anonymity
in the smart grid scenario, but Odelu et al. [10] recently showed that Tsai’s protocol suffers from the
ephemeral secret key leakage attack. Finally, He et al. [11] and Mohammadali et al. [12] presented a cost
efficient key establishment protocols that have better communication and computational overheads
compared with the previous approaches.

A detailed and careful analysis of the existing approaches reveal that three approaches [9–11]
provide anonymity in smart grid architecture. However, these approaches suffer from the key escrow
problem. The main reason for the key escrow problem is the trusted anchor, which is responsible
for generating the private key for the smart grid devices and service servers. The key establishment
approach, presented in [11], also suffers from private key leakage as is vulnerable to the known
session-specific information attacks. These issues motivated us to develop an authentication and key
establishment mechanism that can cope with the existing challenges.

1.1. Main Contributions

The key contributions of the proposed approach are as follows:

• Developing a lightweight and fast group-based authentication mechanism that executes a
full authentication process during the first handshake, while the subsequent handshakes are
performed using the authentication token;

• Reducing the energy consumption by reducing the communication overhead; and
• Security validation of the proposed algorithm using a formal and informal security analysis.

An Automated Validation of Internet Security Protocol and Applications (AVISPA) tool is used to
test the resilience of the proposed algorithm.

1.2. Paper Organization

The rest of the paper is organised as follows: A literature survey is provided in Section 2.
The preliminaries, including the threat model, solution overview, and system model are discussed in
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Section 3. Section 4 discusses the proposed group-based authentication and session key establishment
mechanism while its formal and informal security validation is discussed in Section 5. The performance
evaluation of the proposed approach is presented in Section 6. Finally, Section 7 concludes the paper.

2. Literature

Recently, many authentication mechanisms have been proposed for smart grid architectures.
Tsai et al. [9] have presented an identity-based key distribution, encryption and signature mechanism
for smart grid communication between the smart meter and service provider. Both end devices
establish a mutual secret key for the authentication and secure communication. However,
Odelu et al. [10] found and proved that this approach is vulnerable to the ephemeral key leakage
attacks and the privacy of the smart meters can be compromised. To overcome the aforementioned
challenges, Odelu proposed a new authentication mechanism for a smart grid environment.

Doh et al. [13] and Saxena et al. [14] proposed an authentication mechanism among the end users
in smart grid architecture that verify their authenticity to prevent any insider and outsider attacks.
He et al. [11] presented an elliptic curve cryptography (ECC)-based key distribution mechanism for
the smart grid that has less computation cost and lower communication overhead as compared to the
Tsai’s scheme [9].

Yan [15] conducted a detailed survey on cyber security in the smart grid. In this survey, IEC 62,351
was presented, which addressed many security features for real-time communication in smart grids.
More specifically, it was designed to provide data integrity and authentication using digital signatures
and hash functions. An access control mechanism is used to stop unauthorised access to network
devices and data while the malicious activities are monitored by the intrusion detection system.
Standard hashing algorithms, such as Secure Hash Algorithms (SHA) and Message Digest-5 (MD5),
are used to generate a hash from the data and then digitally sign it. The digital signature and its
verification are done by the private key and the public key of the sender, respectively. In the verification
process, the receiver decrypts the received hash by the sender’s public key and generates a new hash
from the received data with the same hashing algorithm used at the sender side. It then compares
the decrypted hash with the newly generated hash. The receiver accepts the data if both hashes are
equal; otherwise, it discards the data. This verification process is expensive in terms of time and energy
consumption, and it is not highly suitable for time-critical applications/processes in the industries.

Tsang [16] presented a fast and secure mechanism for Supervisory Control and Data Acquisition
(SCADA) systems. His approach has utilised the concept of a bump in a wire along with the Hash-based
Message Authentication Code (HMAC) and Advance Encryption Standard (AES) in the SCADA
network. AES is a symmetric key based security algorithm in which each device shares a unique
common secret key with every device of the network for secure communication. This approach is
suitable for ad hoc and controlled networks as compromising one device can put the whole network
security at risk. In a smart grid scenario where each controlling device can be controlled locally and
remotely, this approach is highly vulnerable to man-in-the-middle attacks, key compromission attacks,
and forgery attacks.

Perrig [17] and Ciarns [18] presented Rivest Shamir Adleman (RSA) based security mechanism
for smart grid applications. They utilised the concepts of Message Authentication Code (MAC) and
one-time signature (OTS) for data integrity and authentication purposes. Timed Efficient Stream
Loss-Tolerant Authentication (TESLA) is a time-slot-based MAC approach where time is divided into
slots of fixed duration. For each slot, the sender uses a different key to sign a message. The sender
makes the key available to the public as the slot duration expires. Nobody will be able to sign a
message with that key for that specific slot as the slot duration has already expired, and the key will be
invalid for signing. However, the key will be used to verify the signatures of all the messages signed
during that time slot. After the sender makes the key public, it uses another key to sign messages in the
next time slot. This approach is not suitable for time-critical applications of the smart grid as it suffers
from significant latency in verifying the messages. This is because the first receiver needs to buffer all
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the received messages before it receives the key. In addition, it is a memory-expensive approach and
it is not suitable for resource-constrained devices, especially if the duration of the time slot is large
or many messages are generated in each time slot. One time signature approach can solve the issue
of replay attacks, but it also suffers from the large computational and communication overhead as
HMAC.

3. Preliminaries
Here, a brief overview of the adopted threat model and the proposed algorithm is described.

Table 1 shows the notations used in this paper.

Table 1. Notation table.

Parameters Definition

td Message delivery time
tS Time spent in cryptographic operations at the sender side
tR Time spent in the verification operation at the receiver side

dmsg Size of message in bits
tmax Maximum acceptable communication delay

N Nonce
US, SGD Utility server and smart grid device

TTP Trusted third party
K, PK EC public key and EC private key

SK Symmetric key shared between TTP and SGD
Cert Public key certificate

KF(.) Key generation function
H(.) Second preimage resistant hash function

AP , apID Access policy and access policy ID
AC , AK Authentication code and authentication key

SSK Session secret key
TK Token key
CK Common key among all devices of the SG

3.1. Threat Model

A well-known threat model, the Dolev Yao (DY) model [19], is considered in this paper to evaluate
the performance of the proposed algorithm. In this model, end devices communicate with each other
over a public and insecure communication channel, and an adversary A has the capabilities to intercept
all the messages over this insecure public channel. We are considering the following key features of
an adversary:

• Concurrent execution—the adversary has the capabilities to start multiple sessions with several
devices in parallel so that he/she can act as a man in the middle;

• Access to public information—the adversary has full access to all the available public parameters
of each device in the network;

• Message tampering—the adversary has the capabilities to capture all the messages, tamper them
without knowing the actual content and replay them.

The purpose of this threat model is to evaluate the performance of the proposed algorithm
and show that an adversary cannot successfully recover information from the captured messages,
even if he/she actively participates during the communication. This helps to ensure the security of
communication from the man in the middle attacks, replay attacks and forgery attacks.

3.2. Algorithm Overview

The proposed algorithm for the authentication and session establishment is divided into five
different phases, which are as follows: (1) setup, (2) registration, (3) creation of access policy,
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(4) authentication mechanism, and (5) session key establishment. During the setup phase, the TTP
selects and assigns an elliptic curve to the end devices along with a one-time-secret-token (OTST) and
its signed hash. The TTP also defines an access policy for each utility server that (1) limits their access
to the smart grid devices and (2) speeds up the authentication process of smart grid devices. During the
authentication phase, both the smart grid device and the utility server mutually authenticate each other,
followed by session key establishment. A symmetric session key is established to secure messages
over insecure public channels. The TTP and utility server use their pre-shared secret key for secure
communication with each other. In the proposed algorithm, all mathematical operations are based on
the elliptic curve’s mathematics.

3.3. System Model

The proposed system model for smart grid consists of utility server (US) and smart grid devices
(SGDs; i.e., smart meter and other smart devices). As shown in Figure 1, smart grid devices are used
for controlling and monitoring various factors and plays an important role in the demand–response
management by communicating with the utility server. These devices are grouped together to form a
group, SGi. The devices within a group (i.e., SGD1, SGD2, SGD3, . . . ) can further be grouped together
into various small groups (i.e., known as Zi) of different sizes such that Z1 ∩ Z2 = ∅. These devices
are connected to the internet through a border gateway router (6LBR). The TTP registers devices and
utility servers by validating their OTST and signs certificate for their public keys using its own private
key. It also defines an access policy for the utility servers. Each utility server accesses these devices
based on pre-defined access policy. For example, it can easily be imagined by considering a large
building automation process where different areas are leased to different companies. Each company is
given some access rights to control various appliances (i.e., lights, heating, ventilation, etc) in its leased
own area and not in other parts of the building. Depending on the employee’s role, the company can
also restrict employee’s access to a specific unit(s), for example, devices belonging to Zi.

Internet
6LBR

Utility Server (US)SG1

SGD1

SGD2

SGD3

SGD4

Trusted third Party
(TTP)

Intruder

Z1

SG2

SGD1

SGD2

SGD3

SGD4

SG3

SGD1

SGD2

SGD3

SGD4

Figure 1. System model.

In this paper, a multicast communication architecture is considered where the utility server (US)
establishes a communication link with multiple smart grid devices (SGDi). For each communication
session, US and SGDi authenticate each other.

3.4. Elliptic Curve Description and Notations

An elliptic curve (EC) Ep(a, b) : y2 = x3 + ax + b (mod p) is defined over a finite field p, where p
is a large prime number. The domain parameters of the elliptic curve are represented by (p, a, b, G, n),
where n is a large prime number and G is a base point generator. Each end device (US or SGD)
generates its public key (K) and private key (PK) using the EC Diffie–Hellman (ECDH) approach,
where K = PK × G. These devices receive a certificate (Cert) for their public keys from the TTP.
The Cert issuance is discussed in the following section.
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4. Proposed Algorithm

In this section, various steps of the proposed algorithm are described in detail.

4.1. Setup

During the setup phase, the network devices are configured as follows:

Step-1: Each device of the network is equipped with a non-singular EC EP(a, b) : y2 = x3 + ax + b
(mod p) over a finite field ZP, where a and b are constants and satisfy the condition
4a3 + 27b2 6= 0 and ZP = {0, 1, 2, . . . , P− 1};

Step-2: A device is given a non collision hash function H(.);
Step-3: A device selects G (group generator). The order of G is set to n and satisfies the condition

n.G = ℘, where ℘ represents the point at infinity or zero; and
Step-4: The TTP selects a private key PKTTP ∈ ZP on elliptic curve and calculates its private key

KTTP = PKTTP · G; and
Step-5: The TTP makes KTTP, H(.) and EP(a, b) public.

4.2. Registration

During the registration phase, SGD and US register themselves with the TTP and get all the
necessary secret information from the TTP which are utilised during the authentication and key
establishment phases.

4.2.1. Smart Grid Device Registration

• The TTP randomly selects a unique identity (IDSGD) for the smart grid device and calculates
sgID = H(PKTTP||IDSGD);

• The TTP calculates a timestamps TSSGD = H(PKTTP||Treg), where Treg represents the registration
time of the SGD with the TTP. This TSSGD is used to generate a new timestamps for the SGD
communication with the US and TTP after the registration phase;

• The TTP generates a OTST = H(PKTTP||Treg||IDSGD
); and

• The TTP gives 〈sgID, TSSGD, OTST〉 offline to the SGD.
• The TTP pre-load the usIDj onto the SGD memory, where j = {1, 2, 3, . . .}.

4.2.2. Utility Server Registration

• The TTP randomly selects a unique identity (IDUS) for the utility server and calculates
usID = H(PKTTP||IDUS);

• The TTP calculates a timestamps TSUS = H(PKTTP||Treg), where Treg represents the registration
time of the US with the TTP. This TSUS is used to generate a new timestamps for the US
communication with the SGD and TTP after the registration phase;

• The TTP generates a OTST = H(PKTTP||Treg||IDUS
);

• The TTP gives 〈usID, TSUS, OTST〉 offline to the US; and
• The TTP pre-load the sgIDi onto the US memory where i = {1, 2, 3, . . .}.

4.2.3. Cert Generation

The SGD uses its certificate to incorporate the certificate mechanism for the verification of its
public key, while the public key is embedded in the access policy ID (apID). After the deployment of
SGD, it requests a certificate from the TTP. To this aim, the following steps are executed by the SGD
and US:
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• The SGD selects a random number rSGD ∈ [1, n− 1] and current timestamps T;
• The SGD calculates RSGD = rGD × G and a verification hash

VHSGD = H(TSSGD||T||OTST)⊕ H(sgID||RSGD||T);
• The SGD sends 〈RSGD, VHSGD, T, H(OTST)〉 to the TTP;
• The TTP verifies the received H(OTST) by comparing it with H(H(PKTTP||Treg||IDSGD));
• The successful verification of OTST and VHSGD allows the TTP to generate a certificate

CertSGD = H(RSGD + rTTP × G) = H(RSGD + RTTP) and a signature s = H(PKTTP + rTTP); and
• Finally, the TTP sends 〈CertSGD, s, VHTTP, T〉, where VHTTP = H(CertSGD||T||OTST) ⊕

H(s||TSSGD||T).

The US also requests TTP in a similar way for its certificate as described above for the SGD.

4.2.4. Public/Private Key Generation

After receiving the CertSGD, the SGD generates a private and public keys pair as follows:

PKSGD = s + rSGD × H(CertSGD||sgID) (1)

KSGD = PKSGD × G (2)

Similarly, the US generates its private and public key pair as

PKUS = s + rUS × H(CertUS||usID) (3)

KUS = PKUS × G (4)

The utility server (US) can compute the public key of SGD using the CertSGD and the public key
(KTTP) of the TTP as

KSGD = KTTP + CertSGD × H(CertSGD||sgID) (5)

The utility server (US) receives CertUS for its public key KUS from the TTP and embeds it along
with its KUS in apID. The US uses the apID for the authentication of its public key (KUS) to the
SGD. The pubic keys are used for the ECDH key exchange. Both the SGD and the US compute
authentication key AK after exchanging their Cert and K with each other as follows:

AK = PKSGD/US × KUS/SGD (6)

4.3. Access Policy

To access smart grid devices (SGDs), after generating its public/private key pair, each US requests
the TTP to issue an access policy (AP) along with its ID (apID) and an authentication code (AC).
Figure 2 shows the pictorial representation of the said request–response messages exchanged between
the US and TTP.

Utility Server (US) Trusted Third Party (TTP)

1. Send a request to the TTP to get AP, 
apID and AC for a specific set of SGDs

2. Combine the requested SGDs to form a 
group
3. Define a tree based access policy for
the created group of SGDs
4. Calculate the AC
5. Send apID = H(SKSGD||KUS||AC) to US

Figure 2. A utility server request to the trusted third party to get access policy, its ID,
and authentication code.
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This request contains utility server ID (US), list of the SGDs and utility server’s public key (KUS).
For example, US wants access to SGD1, SGD2, SGD3 and SGD4. The TTP follows the following steps
to generate AP and AC:

• All intended SGDs are grouped together to form a group (i.e., SG as shown in Figure 1) such that
i = 2l , where i is total number of SGDs in a smart grid and l ≥ 1;

• The access policy is defined as a tree structure, where the leaf nodes are the hashes of SGDs
and the root hash is the authentication code (AC), as shown in Figure 3;

• The hashes of SGD1, SGD2, SGD3, SGD4 are represented by h(log2i)0, h(log2i)1, . . . , h(log2i)(i−1); and
• The authentication code is AC = h00 = H(h10||h11), where hjk = H(h(j+1)(2k)||h(j+1)(2k+1)) for

j = 0, 1, . . . , (log2i)− 1 and k = 0, 1, 2, . . . , i− 1.

It is clear from Figure 3 that h10 and h11 are the child hashes of the root hash (h00, considered as
AC) and the leaf hashes are the child hashes of h10 and h11 . Therefore, AC can be easily calculated
using the leaf hashes and subsidiary hashes. For example, AC can be calculated from h21 and h11 if
h20 is given. This is because, h10 = h20||h21 and AC = h00 = h10||h11 This approach generates the AC
more quickly and consumes fewer computational resources.

h20	 h21	 h22	 h23	

h10	 h11	

AC=h00	

Figure 3. Access policy for SG1 = { SGD1, SGD2, SGD3, SGD4 }.

Once the AP is defined and constructed by the TTP, apID = H(SKSGD||KUS||AC) is issued
by the TTP to the utility server, where SKSGD is the symmetric key that TTP pre-shares with the
SGD. This response includes apID, the set of SGDs (e.g., SG1), and the public key of the TTP
(apID, SG1, KTTP). Algorithm 1 shows the summary of all steps involved in obtaining the apID and
AC values.

Algorithm 1 Generation and issuance of access policy, apID and authentication code by the KMS to
the utility server

1: TTP← utilityserver : US, SGD, KUS
2: Construction of AP
3: AC ← H00 = H(h10||h11)
4: TTP← US : US, SGD, KUS
5: apID ← H(SKSGD||KUS||AC)
6: utilityserver ← TTP : apID, SG1, KTTP

4.4. Authentication and Session Key Establishment

The proposed authentication approach consists of the two following phases: (1) initial
handshake and (2) subsequent handshake. The initial handshake mechanism uses the certificate
and public/private key pair to authenticate end devices and to generate AK. This AK serves as the
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pre-shared secret key (PSK) and helps in calculating the TK, which is generated at the end of the initial
handshake. The subsequent handshakes use the AK for authentication and verification purposes.
The utility server uses AK for the authentication of other SGDs within the same group (e.g., SG1).
Thus, US does not need a public key after the initial handshake.

During the authentication phase, the following steps are employed:

• The US selects a random number w ∈ ZP and generates a current time stamp T1;
• The US calculates a nonce NUS = w · G, XB = H(TSUS||T1) and TS1 = H(TSUS||T1) ⊕

H(sgID||NUS||T1). The sgID is pre-shared with the utility server by the TTP during the
registration phase;

• The US sends 〈NUS, TS1, XB, T1〉 to the SGD;
• The SGD validates the timestamp T1 after receiving 〈NUS, TS1, T1〉 by checking |T1 − T∗1 | ≤ 4T,

where 4T is the maximum propagation time of a message over a channel. It also checks the
validity of TS1;

• If T1 and TS1 are valid, the SGD selects a random number v ∈ ZP and generates a current time
stamp T2;

• The SGD calculates a nonce NSGD = v · G and TS2 = H(TSSGD||T2) ⊕ H(sgID||NSGD||T2) ⊕
H(CertSGD||T2);

• The SGD calculates TX = v · Nus = vwG, B = H(sgID||NUS||T2) and XT = TS1 ⊕
H(sgID||NUS||T1) = H(TSUS||T1);

• The SGD calculates the corresponding SSK using the key-generation function (KF) as
SSK = KF(AK, H(TX||XT||B));

• The SGD further calculates Q = H(SSK||usID||T2) and R = B⊕ H(usID||NSGD||Nus||T2);
• The SGD sends 〈NSGD, TS2, CertSGD, Q, R, T2〉 to the US;
• The US validates the timestamp T2 after receiving 〈NSGD, TS2, CertSGD, Q, R, T2〉 by checking
|T2 − T∗2 | ≤ 4T, where4T is the maximum propagation time of a message over a channel;

• The successful validation of T2 allows the US to compute the public key of SGD1 using
Equation (5);

• The US then computes the AK using Equation (6), AK = PKUS × KSGD = PKUSPKSGDG;
• To calculate the SSK, the US first computes E = R⊕ H(usID||NSGD||Nus||T2) and TX∗ = w ·

NSGD;
• The US then computes SSK∗ = KF(AK, H(TX∗||E||H(TSus||T1)));
• The successful verification of R and Q allows the US to send the apID and subsidiaries of SGD to

SGD and a hash of SSK∗ (i.e., H(SSK∗));
• The SGD then computes AK using Equation (6) and verifies the received hash (H(SSK∗)) by

comparing it with its computed hash from the SSK;
• Successful verification of the received hash allows SGD to compute the AC, deriving the apID as

H(SKSGD||KUS||AC) and comparing it with the received apID. Successful verification allows the
utility server to establish a secure link with SGD1; and

• Finally, SGD1 calculates the TK = [US, AK, AC]CK1 and sends it to the utility server where CK1
is a common key shared among the SG1 devices.

The utility server uses the TK along with the AK with any SGD in SG1 in the subsequent
handshakes for authentication. If the utility server wants to authenticate another SGD of the same
SG1, they first exchange the nonce with each other. The utility server then shares the TK with SGD2.
SGD2 computes the AK using Equation (6) and AC from the AP. Then, it obtains the AC from the
received TK as it has the CK1 and compares it with the calculated AC. Successful verification allows
the utility server to access SGD2 and both derive SSK. Finally, both verify the hash of the SSK.
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5. Security Analysis

In this section, we show the capabilities of the proposed algorithm to resist some of the well-known
attacks by providing formal and informal security analysis.

5.1. Formal Security Analysis Using AVISPA

We validate the reliability of the proposed algorithm using AVISPA tool [20,21]. AVISPA is a
standard tool use to analyse the security strength of the security algorithm. A security algorithm
is modelled within the AVISPA tool using a human readable High Level Protocol Specification
Language (HLPSL), which is then automatically translated into intermediate Format (IF) for formal
security analysis by using four attack models (SAT-based Model-Checker (SATMC), TA4SP, On-the-Fly
Model-Checker (OFMC) and CL-based Model-Checker (CL-AtSe)).

Figure 4 shows the screen shot of algorithm testing using the AVISPA-SPAN tool. The proposed
algorithm is implemented as follows:

Figure 4. Screen shot of the simulation tool.

1. First, all the public and private parameters and the communication links among the smart grid
devices are defined;

2. All the messages are scheduled in sequence and properly labelled. For example, US sends a
message to SGD. It is labelled as 1 while the response from the SGD is labelled as 2. The next
message from the US is labelled as 3 and so on;

3. The total number of messages per device and the content of each message are defined;
4. Then, the role and capabilities of an attacker are defined as man-in-the-middle where it has full

access to all the messages being exchanged among the devices in the smart grid;
5. Finally, all the security sensitive parameters are defined; and
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6. The AVISPA attack models are run to check the security strength of the proposed algorithm.

Figure 5 represents the outcomes of the AVISPA test and the strength of the proposed algorithm.

Figure 5. Output of the SPAN-AVISPA analysis.

5.2. Informal Security Analysis

In this section, we informally analyse the proposed algorithm to show that its effectiveness against
the following attacks.

5.2.1. Man-In-The-Middle Attack (MMA)

A man-in-the-middle attack is implemented by introducing a fake device between the US and
SGD. Such attacks are difficult to detect because the attacker impersonates an authentic SGD/US.
This attack allows the attacker to easily manipulate the captured packets or send fake data if the
implemented algorithm is not secure against this attack. In the proposed algorithm, this attack
is possible during the certificate extraction phase and during the authentication and session key
establishment phase.

During the certificate generation phase as described in Section 4.2, the SGD sends
〈RSGD, VHSGD, T, H(OTST)〉 to the TTP. If the attacker in the middles changes RSGD to R∗SGD,
the attacker will not be able to change VHSGD = H(TSSGD||T||OTST)⊕ H(sgID||RSGD||T), which is
dependent on RSGD. This is because the attacker does not have any information about the TSSGD
and OTST and while the TTP knows the values of TSSGD and OTST. If the TTP receives a modified
message 〈R∗SGD, VHSGD, T, H(OTST)〉 from the attacker, it would not be able to verify VHSGD with
the new R∗SGD. The unsuccessful verification will alert the TTP about the possible man-in-the-middle
attack. Similarly, the SGD receives a certificate from the TTP as 〈CertSGD, s, VHTTP, T〉. If the attacker
changes the certificate to Cert∗SGD, it will not be able to change the VHTTP = H(CertSGD||T||OTST)⊕
H(s||TSSGD||T). This is because the attacker does not know the exact values of actual RSGD, OTST and
TSSGD. If the SGD device receives a modified message 〈Cert∗SGD, s∗, VHTTP, T〉 from the attacker, it
will not be able to verify VHTTP which will alert the SGD about the possible man-in-the-middle attack.

During the authentication phase, the US sends 〈NUS, TS1, XB, T〉 to the SGD. If the attacker
changes the nonce to N∗US, the attacker will not be able to change the TS1 = H(TSUS||T1) ⊕
H(sgID||NUS||T1) as these changes need TSUS and sgID which are not known to the attacker. Thus,
upon receiving 〈N∗US, TS1, XB, T〉 by the SGD, it will not be able to verify the TS1. This is because
TS1 ⊕ XB = H(sgID||NUS||T1) 6= H(sgID||N∗US||T1). This will alert the SGD about the possible
man-in-the-middle attack. Similarly, the SGD sends 〈NSGD, TS2, CertSGD, Q, R, T2〉 to the US after
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receiving and verification of the authentication request from the US. If the attacker changes NSGD to
N∗SGD and CertSGD to Cert∗SGD, the US will receive a modified message 〈N∗SGD, TS2, Cert∗SGD, Q, R, T2〉.
The US will verify Q and R which are dependent on NSGD, NUS, SSK and usID. Only the authentic
SGD knows these values and the attacker does not have any information about them. To verify
R, the US validates E = H(sgID||NUS||T2). To do so, E = R ⊕ H(usID||N∗SGD||NUS||T2) 6=
H(sgID||NUS||T2) because NSGD 6= N∗SGD. This will alert the US about the possible man-in-the-middle
attack and it will result in the wrong SSK generation and invalidate the value of Q, which is dependent
on SSK. Thus, if the attacker makes some changes within the message, it is immediately detected by
the end devices. The reason is that the attacker only knows the public information of both US and
SGD and does not have any information about their private information.

In the case of the public/private key encryption/decryption mechanism, the attacker can only
decrypt a message using the sender’s public key if and only if it is encrypted with the sender’s
private key. After decryption, it is not possible for the attacker to re-encrypt the message using the
sender’s private key as the attacker does not know the sender’s private key. If the message (i.e.,
secret information) is encrypted with the public key of the receiver, then the attacker is not able to
decrypt it as it does not know the private key of the receiver. In conclusion, the proposed algorithm is
secure against the man-in-the-middle attacks.

5.2.2. Replay Attacks

Sometimes, the attacker does not modify the content of the messages, but it delays or replays the
messages to disturb the normal functionality of the smart grid. In the proposed approach, we use the
timestamps in the messages as shown in the general representation of communication between the end
devices in Figure 6. During the registration phase, the SGD sends 〈RSGD, VHSGD, T, H(OTST)〉 to the
TTP which includes the timestamp T. The TTP checks T− T∗ ≤ 4T, where4T = tmax represents the
maximum delay that a message can encounter during its transmission between the end devices. If the
time check condition is valid, the message is accepted as a new and fresh message. The attacker cannot
modify the timestamp in the message as T is also involved in calculating VHSGD. Similarly, the TTP
sends 〈CertSGD, s, VHTTP, T〉 to the SGD which also includes T to verify the freshness of the message.

IED Application

Data Packet + Timestamp

Data Packet Sign and Encrypt

UDP/IP

IED Application

Check Packet Timestamp

Data Packet Decrypt and Verify

UDP/IP

S R

Network delay td

tS tR

Figure 6. Time consumed in various stages.

During the authentication phase, the US sends 〈NUS, TS1, T1〉 to the SGD and the SGD sends
〈NSGD, TS2, CertSGD, Q, R, T2〉 to the US which also includes T1 and T2 to verify the freshness of the
messages, where TS1 and TS2 are dependent on T1 and T2, respectively.

These timestamps play an important role in verifying the packet creation time and its validity.
If the timestamp is not expired (i.e., less than4T = tmax), the receiving device will accept the packet;
otherwise, it will reject the packet. In this way, the proposed security approach works well against the
replay attacks.
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5.2.3. Forgery of the apID

As described above, the utility server can access only a limited number of SGDs that are defined
by its access policy (e.g., [SGD1, SGD2, SGD3, SGD4] or [SGD2, SGD3]). The generated SSK can only
be used with a device with which it is in communication. This key cannot be used with any other
device in the same group or in a subset of a group. This is because it is dependent on each individual
NSGD, NUS, sgID, TS1, and TS2, which are unique for each individual SGD and US. The forgery of
the utility server’s apID means that an adversary (adv) can compute the ECDH public/private key
pair (i.e., K, PK) such that

H(SKSGD||KUS||AC) = H(SKSGD||Kadv + ||AC) (7)

where apID = H(SKSGD||KUS||AC) is the actual utility server’s apID. Given the
apID = H(SKSGD||KUS||AC), it not computationally feasible to find apID′ = H(SKSGD||Kadv||AC).
This is because H(.) is the preimage resistance hash function, where the output can easily be calculated
using the inputs, but it is very difficult to calculate or predict the input values based on the given
output. Therefore, it is not possible to find this private key by knowing only the public key.

Similarly, as described above, the forgery attack is also not possible during the certificate
generation phase and authentication and session key establishment phase. This is because the
attacker does not know the private parameter assigned to the US and SGD, which play an important
role in authenticating and verifying the messages exchange during the certificate generation and
authentication process.

5.2.4. End-to-End Security

If both the utility server and SGD have already shared their public keys with each other, then there
is no need for the certificate. This is because, during the first handshake/session establishment,
both end users use their certificate to verify their public keys to each other. In the subsequent
sessions, they do not need to verify their public keys again. However, this is not always true. In most
cases, SGDs are replaced or upgraded with new SGDs or SGD changes the US, and they need to
re-authenticate themselves with the utility servers, even if they belong to the same group or subgroup.
Therefore, there is always a need for a certificate to verify and authenticate a public key of the end user.
Thus, the certificate plays an important role in maintaining the end-to-end security.

6. Simulation Setup and Results

The performance of the proposed approach is evaluated using MATLAB and OMNeT++.
MATLAB is used to simulate the power system [22], while OMNeT++ is used to evaluate the
communication performance. The UDP is used instead of TCP to avoid any retransmission delay and
100-Mbps links are used for connections. An adaptive scheduler is used to integrate MATLAB and
OMNeT++ because all operations of smart grids depend on the actions and decisions of the controllers,
while the scheduler synchronises the operation of both simulators.

6.1. Communication Cost

To calculate the communication cost during the authentication phase, we consider the length of
random number (i.e., nonce), certificate and apID as 160, 320 and 832 bits, respectively. The selection
of 160 bits for ECC-based calculations was made according to the NIST recommendations, which
state that the security of a 160-bit EEC-based system is equivalent to a 2048-bit RSA system [23].
During the initial handshake for authentication, US and SGD exchange three messages in total (i.e.,
request (nonce), cert and apID) requiring 160 bits, 320 bits and 832 bits and results in 1312 bits
communication overhead. The subsequent authentication with the same SGD or other SGDs with
the same group needs to exchange AK and TK with a valid time-stamp requiring 160 bits, 160 bits
and 32 bits, respectively. This results in 352-bit communication overhead during the subsequent
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handshakes. Table 2 shows the comparison of proposed algorithm with other schemes. The schemes of
Fouda [5], Wu and Zhou [6], Xia [7], Tsai-Lo [9], Odelu et al. [10], and He [11] require 6804, 4248, 2768,
3520, 3840 and 1760 bits, respectively. It is clear that our scheme requires minimum communication
cost compared with those schemes.

Table 2. Comparison of communication costs.

Algorithm Cost (bits) No. of Messages

[5] 6804 4
[6] 4248 6
[7] 2768 5
[9] 3520 3

[10] 3840 3
[11] 1760 3

Ours (initial) 1312 3
Ours (subsequent) 352 2

6.2. Cost of Cryptographic Operations

Time is one of the critical factors in smart grid communication, playing an important role in the
system’s stability and synchronisation. The performance of the proposed algorithm in terms of time
consumption during the cryptographic operations are observed using a MICAZ device (as SGD) and
with a 3-GHz Pentium IV system as a utility server. The processing time of various cryptographic
operations is shown in Table 3.

Table 3. Computational time of various cryptographic operations.

Operation MICAZ 3-GHz Pentium IV PC

Key generation 5.32 s 3.88 ms
Point multiplication 2.45 s 1.82 ms
AES en/decryption 0.023 ms ∼0 ms

Hash function 0.023 ms ∼0 ms
Public encryption 0.79 s 0.57 ms
Public decryption 21.5 s 16 ms

Signature 21.5s 16 ms
Signature verification 0.79 s 0.57 ms
ECC point addition 0.44 ms ∼0 ms

The overall computational costs of the proposed algorithm and various existing algorithms are
shown in Table 4. The following notations are used to represent various computational costs:

• TKF: computational time of key generation function;
• TPM: computational time of point multiplication;
• TES : computational time of symmetric encryption;
• TEP : computational time of public key encryption;
• TH : computational time of hash function;
• Tsig: computational time of signature;
• Tver: computational time of signature verification; and
• Tadd: computational time of ECC point addition.
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Table 4. Computational operations of various algorithms.

Algorithm Cryptographic Operations

[6] 8TPM + 1TES + 1Tsig + 1Tver + 5TH
[9] 7TPM + 2Tadd + 2TKF + 2TEP + 10TH

[10] 5TPM + 2Tadd + 2TKF + 2TEP + 12TH
[11] 10TPM + 3Tadd + 11TH

Proposed (initial) 4TPM + 3TH + 3TKF + 1Tver
Proposed (subsequent) 2TPM + 1TKF + 1Tver

Based on the computational cost presented in Table 4 and the cost of each cryptographic operation
shown in Table 3, the comparative analysis of the total time consumed by the proposed algorithm
during the authentication and session key with other existing schemes is shown in Table 5.

Table 5. Computational times of various algorithms.

Algorithm MICAZ (s) Pentium IV PC (ms)

[6] 41.91 31.1
[9] 29.37 21.6

[10] 24.47 18.0
[11] 24.50 18.2

Proposed (initial) 26.55 19.5
Proposed (subsequent) 11.10 8.1

The cryptographic operations in the proposed algorithm are based on elliptic curve mathematics,
and the key length is fixed to 160-bits according to the NIST recommendations. Each cryptographic
mechanism needs a key specific length to achieve a certain level of security. For example, for a security
level set by the NIST that an RSA-based approach can achieve with a key of 2048 bits in length,
the same security can be achieved by a 160-bit key in the elliptic curve-based approach, which is much
shorter than the RSA based approach. Similarly, a 256-bit key is needed for DSA. Using short keys
improves the performance of security algorithms as they consume less time during the verification
and encryption process.

6.3. Memory Cost

Table 6 shows the total memory occupied by the secret keys use in the authentication and secure
channel establishment process. It is clearly evident from the results that the proposed mechanism
needs fewer keys for both authentication and secure channel establishment and occupies less memory
if compared with [24] and RSA mechanism. Although there is little difference in the memory
requirements if compared with [25] and DSA, but there is a big difference in the end-to-end delay as
discussed in the previous section. The memory requirement of the TV-HORS mechanism is extremely
high as it needs more than 500 KB of memory to store secret keys for the authentication and secure
channel establishment.

Table 6. Memory occupied by the security parameters.

Algorithm Security Parameters (bits)

[5] 3392
[6] 3232
[7] 2208
[9] 3072

[10] 5120
[11] 1632

Proposed 960
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6.4. Security Comparison

Table 7 shows the security comparison of the proposed algorithm against some of the existing
algorithms in terms of the man in the middle attack, impersonation attack, forward secrecy, replay
attacks, mutual authentication feature, formal and informal security validation. It is clear from the
comparative analysis that the proposed algorithm successfully addresses all the described features,
and it is suitable for the smart grid applications.

Table 7. Security comparison of various algorithms.

Algorithm S1 S2 S3 S4 S5 S6 S7

[5]
√ √ √ √ √ √

χ
[6] χ

√
χ

√
χ χ χ

[7]
√

χ χ
√

χ χ χ
[9]

√ √ √ √ √ √
χ

[10]
√ √ √ √ √ √

χ
[11]

√ √ √ √ √ √
χ

[12]
√ √ √ √ √

χ
√

Ours
√ √ √ √ √ √ √

Note: S1.MMA resistance. S2. Resistance against Impersonation attack. S3. Forward secrecy feature.
S4. Resistance against replay attack. S5. Mutual authentication. S6. Informal security validation. S7. AVISPA
security validation.

7. Conclusions

This paper presented a policy-based group authentication approach for smart grid architectures
where multiple SGDs are authenticated by the utility server in a fast, reliable, and secure manner.
Section 4 described the proposed algorithm step-by-step and explained the importance/utilization
of all the important parameters during the registration phase, authentication and key establishment
phases. It also described how to use the access policy during the authenticate process and how to limit
the access of a utility server to the smart grid devices. The formal and information security validation
of the proposed algorithm is carried out with a well-known security validation tool AVISPA and with
a mathematical proof, respectively. Both the security validation approaches verified the soundness
of the proposed algorithm against well known replay attacks, man-in-the-middle attack and forgery
attack. The performance evaluation of the proposed algorithm in Section 6 showed that it generates
less communication overhead, consumes less memory to store the secret parameters and consumes less
computation resources, which makes it a better choice for the resource constrained devices of a smart
grid. This is because the first authentication requires all the steps to be followed, while the subsequent
authentications with the same and other SGDs are done using the authentication token. This approach
has made the proposed mechanism lightweight due to fewer computational requirements and made it
more robust against forgery, man-in-the-middle and replay attacks. The comparison of the security
features of the proposed algorithm with the state of the art showed that the proposed algorithm is
robust to more attacks than the state-of-the-art approaches.

In the future, we will try to further optimise and enhance the standard security protocols for
smart grid communication, where an internet utility server is used to access any internet connected
devices and has the ability to control different functionality of the smart grid devices.

Author Contributions: Conceptualization, S.K. and A.H.A.-B.; Data curation, S.K.; Formal analysis, S.K. and
A.H.A.-B.; Funding acquisition, A.S.A. and A.H.A.-B.; Investigation, A.S.A. and S.K.; Methodology, S.K. and
A.H.A.-.B.; Project administration, A.S.A.; Resources, S.K.; Software, S.K.; Validation, S.K.; Writing—original draft,
S.K.; Writing—review and editing, A.S.A., S.K. and A.H.A.-B. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University,
Jeddah, under Grant No. DF-317-611-1441.

Acknowledgments: The authors gratefully acknowledge DSR technical and financial support.



Sensors 2020, 20, 1581 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Colak, I.; Sagiroglu, S.; Fulli, G.; Yesilbudak, M.; Covrig, C.F. A survey on the critical issues in smart grid
technologies. Renew. Sustain. Energy Rev. 2016, 54, 396–405. [CrossRef]

2. Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid Technologies:
Communication Technologies and Standards. IEEE Trans. Ind. Inf. 2011, 7, 529–539. [CrossRef]

3. Alahakoon, D.; Yu, X. Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey.
IEEE Trans. Ind. Inf. 2016, 12, 425–436. [CrossRef]

4. Fan, C.; Huang, S.; Lai, Y. Privacy-Enhanced Data Aggregation Scheme Against Internal Attackers in Smart
Grid. IEEE Trans. Ind. Inf. 2014, 10, 666–675. [CrossRef]

5. Fouda, M.M.; Fadlullah, Z.M.; Kato, N.; Lu, R.; Shen, X.S. A Lightweight Message Authentication Scheme
for Smart Grid Communications. IEEE Trans. Smart Grid 2011, 2, 675–685. [CrossRef]

6. Wu, D.; Zhou, C. Fault-Tolerant and Scalable Key Management for Smart Grid. IEEE Trans. Smart Grid 2011,
2, 375–381. [CrossRef]

7. Xia, J.; Wang, Y. Secure Key Distribution for the Smart Grid. IEEE Trans. Smart Grid 2012, 3, 1437–1443.
[CrossRef]

8. Park, J.H.; Kim, M.; Kwon, D. Security Weakness in the Smart Grid Key Distribution Scheme Proposed by
Xia and Wang. IEEE Trans. Smart Grid 2013, 4, 1613–1614. [CrossRef]

9. Tsai, J.; Lo, N. Secure Anonymous Key Distribution Scheme for Smart Grid. IEEE Trans. Smart Grid 2016,
7, 906–914. [CrossRef]

10. Odelu, V.; Das, A.K.; Wazid, M.; Conti, M. Provably Secure Authenticated Key Agreement Scheme for Smart
Grid. IEEE Trans. Smart Grid 2018, 9, 1900–1910. [CrossRef]

11. He, D.; Wang, H.; Khan, M.K.; Wang, L. Lightweight anonymous key distribution scheme for smart grid
using elliptic curve cryptography. IET Commun. 2016, 10, 1795–1802. [CrossRef]

12. Mohammadali, A.; Sayad Haghighi, M.; Tadayon, M.H.; Mohammadi-Nodooshan, A. A Novel
Identity-Based Key Establishment Method for Advanced Metering Infrastructure in Smart Grid. IEEE Trans.
Smart Grid 2018, 9, 2834–2842. [CrossRef]

13. Doh, I.; Lim, J.; Chae, K. Secure Authentication for Structured Smart Grid System. In Proceedings of the
2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
Santa Cantarina, Brazil, 8–10 July 2015; pp. 200–204. [CrossRef]

14. Saxena, N.; Choi, B.J.; Lu, R. Authentication and Authorization Scheme for Various User Roles and Devices
in Smart Grid. IEEE Trans. Inf. Forensics Secur. 2016, 11, 907–921. [CrossRef]

15. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Cyber Security for Smart Grid Communications.
IEEE Commun. Surv. Tutor. 2012, 14, 998–1010. [CrossRef]

16. Tsang, P.P.; Smith, S.W. YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy SCADA
Systems. In Proceedings of the Ifip Tc 11 23rd International Information Security Conference, Milano,
Italy, 7–10 September 2008; pp. 445–459.

17. Perrig, A.; Canetti, R.; Tygar, J.D.; Song, D. Efficient authentication and signing of multicast streams over
lossy channels. In Proceeding of the 2000 IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
14–17 May 2000; pp. 56–73. [CrossRef]

18. Cairns, K.; Hauser, C.; Gamage, T. Flexible data authentication evaluated for the smart grid. In Proceedings
of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver,
BC, Canada, 21–24 October 2013; pp. 492–497. [CrossRef]

19. Dolev, D.; Yao, A.C. On the security of public key protocols. In Proceedings of the 22nd Annual Symposium
on Foundations of Computer Science, Nashville, TN, USA, 28–30 October 1981; pp. 350–357. [CrossRef]

20. Viganò, L. Automated Security Protocol Analysis With the AVISPA Tool. Electron. Notes Theor. Comput. Sci.
2006, 155, 61–86. [CrossRef]

21. Automated Validation of Internet Security Protocols and Applications (AVISPA). Artificial Intelligence
Laboratory, DIST, University of Genova: Genoa, Italy. Available online: http://www.avispa-project.org/
(accessed on 26 September 2019).

http://dx.doi.org/10.1016/j.rser.2015.10.036
http://dx.doi.org/10.1109/TII.2011.2166794
http://dx.doi.org/10.1109/TII.2015.2414355
http://dx.doi.org/10.1109/TII.2013.2277938
http://dx.doi.org/10.1109/TSG.2011.2160661
http://dx.doi.org/10.1109/TSG.2011.2120634
http://dx.doi.org/10.1109/TSG.2012.2199141
http://dx.doi.org/10.1109/TSG.2013.2258823
http://dx.doi.org/10.1109/TSG.2015.2440658
http://dx.doi.org/10.1109/TSG.2016.2602282
http://dx.doi.org/10.1049/iet-com.2016.0091
http://dx.doi.org/10.1109/TSG.2016.2620939
http://dx.doi.org/10.1109/IMIS.2015.32
http://dx.doi.org/10.1109/TIFS.2015.2512525
http://dx.doi.org/10.1109/SURV.2012.010912.00035
http://dx.doi.org/10.1109/SECPRI.2000.848446
http://dx.doi.org/10.1109/SmartGridComm.2013.6688006
http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.1016/j.entcs.2005.11.052
http://www.avispa-project.org/


Sensors 2020, 20, 1581 18 of 18

22. Grainger, B.M.; Reed, G.F.; McDermott, T.E.; Mao, Z.H.; Kounev, V.; Tipper, D. Analysis of an offshore
medium voltage DC microgrid environment Part I: Power sharing controller design. In Proceedings of the
2014 IEEE PES T D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [CrossRef]

23. Rivest, R.L.; Hellman, M.E.; Anderson, J.C.; Lyons, J.W. Responses to NIST’s Proposal. Commun. ACM 1992,
35, 41–54. [CrossRef]

24. Kounev, V.; Tipper, D.; Yavuz, A.A.; Grainger, B.M.; Reed, G.F. A Secure Communication Architecture for
Distributed Microgrid Control. IEEE Trans. Smart Grid 2015, 6, 2484–2492. [CrossRef]

25. Khan, S.; Khan, R. Elgamal Elliptic Curve Based Secure Communication Architecture for Microgrids.
Energies 2018, 11, 759. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TDC.2014.6863405
http://dx.doi.org/10.1145/129902.129905
http://dx.doi.org/10.1109/TSG.2015.2424160
http://dx.doi.org/10.3390/en11040759
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Contributions
	Paper Organization

	Literature
	Preliminaries
	Threat Model
	Algorithm Overview
	System Model
	Elliptic Curve Description and Notations

	Proposed Algorithm
	Setup
	Registration
	Smart Grid Device Registration
	Utility Server Registration
	Cert Generation
	Public/Private Key Generation

	Access Policy
	Authentication and Session Key Establishment

	Security Analysis
	Formal Security Analysis Using AVISPA
	Informal Security Analysis
	Man-In-The-Middle Attack (MMA)
	Replay Attacks
	Forgery of the apID
	End-To-End Security


	Simulation Setup and Results
	Communication Cost
	Cost of Cryptographic Operations
	Memory Cost
	Security Comparison

	Conclusions
	References

