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Abstract: Soil water content is one of the most important physical indicators of landslide hazards.
Therefore, quickly and non-destructively classifying soils and determining or predicting water content
are essential tasks for the detection of landslide hazards. We investigated hyperspectral information
in the visible and near-infrared regions (400-1000 nm) of 162 granite soil samples collected from Seoul
(Republic of Korea). First, effective wavelengths were extracted from pre-processed spectral data
using the successive projection algorithm to develop a classification model. A gray-level co-occurrence
matrix was employed to extract textural variables, and a support vector machine was used to establish
calibration models and the prediction model. The results show that an optimal correct classification
rate of 89.8% could be achieved by combining data sets of effective wavelengths and texture features
for modeling. Using the developed classification model, an artificial neural network (ANN) model for
the prediction of soil water content was constructed. The input parameter was composed of Munsell
soil color, area of reflectance (near-infrared), and dry unit weight. The accuracy in water content
prediction of the developed ANN model was verified by a coefficient of determination and mean
absolute percentage error of 0.91 and 10.1%, respectively.

Keywords: granite soils; water content; hyperspectral camera; visible and near-infrared; soil water
characteristic curve; artificial neural network

1. Introduction

Soil type and water content affect the physical and chemical properties of soil, and changes in soil
properties can lead to landslides or debris-flows [1]. The classification of soil types and the prediction
of soil water content are crucial for monitoring landslides and debris-flows [2,3]. Therefore, in order to
effectively detect landslide hazards, it is essential to quickly and non-destructively classify soil and
predicting water content variations arising from the infiltration of rainfall.

Soils have various compositions with different chemical and physical properties [4]. Soil color can
provide information on soil formation history [5] and is a comprehensive indicator of the chemical
composition and physical characteristics of soils. Considering that a significant amount of soil
information can be effectively obtained by interpreting the color of soil, methods based on soil color
are the most common form of soil classification and qualitative detection [6]. Most soils are shades of
black, brown, red, yellow, and white [5]. In Korea, representative forest soils are classified as brown,
yellow, and red forest soils [7]. Therefore, in this study, classification models were developed for these
three colors.
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For most types of slope failure, soil water content plays a critical role as increased pore water
pressure reduces soil strength and increases stress [8]. Accordingly, soil water content measurement is a
subject that has been studied over several decades. A previous study proposed a measurement method
for soil water content using the chemical reaction of calcium carbide [9]. In addition, microwave,
frying pan, and radiometric measurement methods were applied to determine the water content of
sites [10]. However, all of the aforementioned methods are limited, as water content can only be
measured for relatively small areas. To predict disasters such as landslides and debris-flows, it is
necessary to measure variations in soil water content over large areas. Therefore, new technology
needs to be developed for this purpose. In this study, a model for predicting water content variations
in soils was developed using hyperspectral imaging to overcome existing limitations.

Since the early 2000s, near-infrared (NIR) spectroscopy has been widely employed as a useful
tool for the analysis of soil properties [11]. NIR spectroscopy can be used to evaluate the properties of
soil that are not disturbed by light [12,13]. Using these spectral characteristics, hyperspectral imaging
technology has been studied in various fields. In the food industry, hyperspectral imaging technology
has been used for the identification of defects [14]. Valenzuela et al. [15] used visual and infrared (VIR)
hyperspectral imaging to determine the firmness and solid content of blueberries. In medical diagnosis,
Mitra et al. [16] scanned the biliary structure using both fluorescence and hyperspectral imaging
for the classification of different tissues and identification of the biliary anatomy. Hyperspectral
imaging technology has also been used for applications in precision agriculture. Zhang et al. [17]
used hyperspectral imaging technology and deep learning for feature extraction as well as for crop
monitoring to detect diseases, water stress, nutrients, and insect attacks. In this study, we developed a
soil classification and prediction method for soil water content variation that works over large areas
using machine learning methods and hyperspectral imaging in the visible and near-infrared regions
(VNIR, 400-1000 nm). Among the machine learning methods, the artificial neural network (ANN)
model was selected, and the hyperspectral imaging analysis provided the input parameters for the
ANN model.

The hyperspectral imaging analysis was conducted to confirm the change in reflectance according
to soil color. The successive projections algorithm (SPA) was applied to select the effective wavelengths
among the hyperspectral data. SPA is a commonly used algorithm for wavelength selection in
multivariate calibration and classification [18]. The algorithm reduces multiple collinearity and
redundancy in the full wavelength and selects only a few wavelengths with useful information, which
helps to reduce the amount of data, simplifying calculations and allowing for the development of simple
and powerful models [19,20]. A combination of image texture features and hyperspectral analysis was
shown to increase the accuracy of soil color classification [21]. In the image classification model, the
most common and effective method for texture feature analysis is the gray level co-occurrence matrix
(GLCM) [22,23]. Textural features based on gray-tone spatial dependencies have general applicability
in image classification. Textural features contain information regarding image texture characteristics
such as homogeneity, gray-tone linear dependencies, contrast, number, the nature of the boundaries
present, and the complexity of the image [23].

In this study, (1) soil color was classified using hyperspectral image analysis and texture features,
and (2) an ANN model was developed to predict variations in soil water content. The developed
methodologies and the results of this study can be used to analyze water content variations of soil
through remote sensing.

2. Materials and Methods

2.1. Study Area Descriptions

The study areas are located in the southern part of Seoul (Mt. Umyeon: 37.45° N, 126.9° E; Mt.
Guryong: 37.47° N, 127.06° E; Mt. Daemo: 37.48° N, 127.08° E), as shown in Figure 1. The study areas
consist of granitic gneiss.
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Figure 1. Location map showing the corresponding study area sample locations.

A total of 162 granite soil samples were sampled from the study areas. In this study, granite soil
samples were categorized into three types based on color. The details are shown in Table 1. Figure 2
shows the red, green, and blue (RGB) images of the three granite soil samples. The soil samples were
collected within a depth of 30 cm from the surface. First, a sieve analysis was performed using soil that
passed through a No. 40 sieve (0.425 mm). The soils were also dried at 110 °C in an oven for 24 hours.

Table 1. Types of soil samples.

Type Sample Number
Brown soils 61
Yellow soils 52
Red soils 49

(a) (b) (c)
Figure 2. Red, green, and blue (RGB) images of (a) Brown, (b) Yellow, and (c) Red soils after No. 40

sieve analysis.
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2.2. Hyperspectral Camera System

The hyperspectral camera system was composed of a hyperspectral camera, a complementary
metal-oxide semiconductor (CMOS) sensor, six 150W halogen lamps, and a 40 x 20 Lab-scanner
(Spectral Imaging Ltd., Oulu, Finland, Figure 3a). The hyperspectral camera used in this study was
a SPECIM FX10 (Spectral Imaging Ltd.) which uses the pushbroom scanning method. The main
characteristics of the hyperspectral camera are shown in Table 2. The Lumo Recorder software
(Middleton Spectral Vision, Middleton, WI, USA) provided scanning speed (computer numerical
control (CNC) USB controller), and a hyper-cube data recorder provided exposure time, binning mode,
wavelength range, and image acquisition [24]. The hyperspectral cameras were placed in a dark
room to minimize errors. The soil samples were placed into Schale dishes with a diameter of 60 mm.
The Schale dishes were placed on the Lab-scanner for image acquisition. Hyperspectral images can be
acquired with spectral and image information. To acquire clear and error-free hyperspectral images,
the scanning speed of the Lab-scanner, the exposure time of the camera, and the height between
the lens of the camera and the sample were set to 13.7 mm/s, 29.22 ms, and 30.0 cm, respectively.
The hyperspectral images were analyzed with ENVI Classdic5.5 (ITT, Visual Information Solutions,
Boulder, CO, USA) [25]. A schematic diagram of the hyperspectral camera is shown in Figure 3b.

Hyperspectral camera

Halogen lamp

Sample

Computer
system

Moving scanner

(b)

Figure 3. Hyperspectral camera system: (a) hyperspectral camera in the laboratory and (b) schematic

diagram of the hyperspectral camera.

Table 2. SPECIM FX10 main characteristics.

Parameter Value
Spectral Range 400 nm~1000 nm
Spectral Bands 224
Spatial Sampling 1024 px
Spectral Full width at half maximum 5.5 nm
Field of view (o) 38°
Camera Signal to noise ratio (Peak) 660:1
Dimensions 150 x 85 x 71 mm
Weight 1.26 kg

2.3. Image Correction

Hyperspectral images were obtained using the line scanning technique of the hyperspectral
camera system. Each sample was placed on a slider table and scanned line by line to obtain an initial
hyperspectral image. After capturing the hyperspectral image, a dark reference and a white reference
were taken. The normalization process removed the noise value from the hyperspectral image and
converted it to a relative value with 100% reflectance of the white reference. The white reference
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was obtained from a Teflon whiteboard with 99% reflectivity, and the dark reference was obtained by
turning off the light source and completely covering the camera lens with a cap. The reflectance (%) of
the sample obtained based on the white reference was calculated using the following equation:

Raw!! — Dark!t 12
Reflectance = ——————— X — 1
White!2 — Dark!2 ~ t1 M
where the Raw reflectance is the reference measured on an actual object, Dark is the dark reference, White
is the white reference, t1 is the integration time in a white reference, and {2 the integration time in a

dark reference [26].

2.4. Region of Interest (ROI) Selection

First, the background parts of the hyperspectral images of each soil sample, except the soil, were
removed (Figure 4b). Afterward, only the remaining soil was selected as the region of interest (ROI), as
shown in Figure 4c. The ROI can be manually selected using geometric shapes, such as a rectangle,
circle, or polyline, drawn using the ROI tool in ENVI Classic5.5 [25]. When the ROI is selected, the
background is removed automatically. The reflectance values of all pixels in the ROI were averaged to
generate a single average reflectance value. To reduce spectral noise and error, the beginning and end
of the spectrum were removed, and only wavelengths within 400-1000 nm (204 bands) were used.
The same procedure was repeated for all ROI images of the 162 soil samples.

|

(a) (b) (o)

Figure 4. Soil image showing the “region of interest (ROI)” representing the average selected pixels:
(a) hyperspectral image (specimen from Mt. Guryong), (b) remaining image, and (c) the region of
interest in the granite soil.

2.5. Spectral Feature and Image Texture Feature Extraction

2.5.1. Spectral Pre-Processing

In this study, two steps were used to extract spectral features. Firstly, spectra were pre-processed
through three pre-processing methods, after which effective wavelengths were selected using SPA.

The spectral curve of the sample may include a certain amount of noise caused by physical and
chemical factors and the data acquisition equipment. This noise can reduce the signal-to-noise ratio
(SNR) and resolution of the signal, reducing the accuracy and precision of the calibration model. Various
pre-processing methods have been proposed for effective pretreatment. Selecting the appropriate
pre-processing method according to the characteristics of the data and the purpose of the experiment
helps to improve the performance of the regression model [27].

The pre-processing methods can be largely divided into scatter correction and spectral derivation.
Scatter correction methods correct the effects of atmospheric scattering and include Multiplicative
Scatter Correction (MSC) and Standard Normal Variate (SNV). MSC performs calibrations assuming
the average value at each wavelength as the ideal value, and SNV normalizes each spectral curve to
the standard deviation of the entire spectral curve to eliminate the effects of scattering [28]. Spectral
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derivation methods include first derivative and second derivative methods [29]. In this study, the first
and second derivatives were used with the exception of the scattering correction method, as the test
was at a laboratory scale.

2.5.2. Selection of Effective Wavelength

In hyperspectral images, bands may be too numerous, depending on the wavelength. Therefore,
an effective wavelength should be selected to reduce the calculation load and eliminate redundant
information. SPA is considered an effective wavelength selection method that can minimize
multicollinearity among variables. Therefore, SPA was used for effective wavelength selection
to improve the prediction accuracy and calculation speed of the classification models [30]. This
procedure was conducted in the MATLAB software (The MathWorks 2014, Inc., Natick, MA, USA) [31].

2.5.3. Image Texture Feature Extraction

Texture features were extracted using a gray-level co-occurrence matrix (GLCM). A GLCM creates
a matrix from a particular image and calculates how often a pixel with gray-level (grayscale intensity)
value i occurs horizontally adjacent to a pixel with value j. GLCMs involve several properties and
parameters for texture feature extraction [32]:

(1) Contrast: Returns a measure of the intensity contrast between a pixel and its neighbor over the

entire image:
Con = Z Z M(i, j) )

(2) Correlation: Returns a measure of how correlated a pixel is to its neighbor over the entire image:

..M.’._I2
o Yo L 113] (i,j) -1 )

(3) Energy: Returns the sum of the squared elements in the GLCM:

E= \/Z 0 M2(1 7) 4)

(4) Homogeneity: Returns a value that measures the closeness of the distribution of elements in the
GLCM to the GLCM diagonal:

N-1 Mz]
H=Y"" Z] O Tr-] )

The GLCM textures included contrast, correlation, energy, and homogeneity extracted from four
directions (0°, 45°, 90°, and 135°), and a distance of one pixel was applied [33]. A total of 204 gray-scale
images were obtained, and when the texture features were calculated for all grayscale images, large
amounts of duplicate information were generated. Therefore, in this study, the texture features were
extracted only from gray-scale images for each effective wavelength.

2.5.4. Classification Models and Regression Analysis

A Support Vector Machine (SVM) was used to establish classification models based on the texture
features and effective wavelength. SVMs are used to handle classical two-class pattern recognition
problems. An SVM is a supervised machine learning algorithm that can be used for both classification
and regression tasks [27], but is mainly used in classification models. The 162 hyperspectral images
of granite soils were randomly assigned to the training set and testing set with a 7:3 ratio, which
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is equivalent to a total of 38 calibration samples and 16 validation samples for brown soil samples;
32 calibration samples and 14 validation samples for yellow soil samples; and 29 calibration samples
and 13 validation samples for red soil samples. First, the effective wavelength was selected using SPA,
after which the texture feature corresponding to the effective wavelength was extracted using the
GLCM. Finally, a classification model was constructed using the SVM algorithm.

2.5.5. Prediction of Soil Water Content Variation

As in the case of the classification model, the hyperspectral data of the 162 granite soil samples
were divided into training and testing sets with a 7:3 ratio. An ANN is a powerful computational
technique used for the capturing and modeling of nonlinear and complex relationships of variables
embedded in a small set of data [34]. In addition, an ANN is a type of non-linear processing system
that is perfectly appropriate for a widespread domain of applications [35]. ANNSs utilize connected
artificial neurons, and its inherent behaviors can be explained by training the input parameters using
the neurons, which results in nonlinear mapping [36]. Such networks can achieve a high level of
accuracy without requiring large amounts of training data. The accuracy of prediction seems to be more
dependent on the number of layers in the neural network than the number of neurons [37]. For these
reasons, among the various machine learning methods that use neural networks, this study utilized an
ANN for the prediction of the soil water content. ANNSs are structured with three layers: an input layer,
a hidden layer, and an output layer. Three parameters were selected for the ANN input layer, and soil
water content was selected for the ANN output layer. One of the input parameters was soil color using
the Munsell color chart, which was converted from the RGB values. The most common method of
determining soil color is through comparison with the Munsell color chart [38,39]. Another parameter
was the area of reflectance (NIR). In the VNIR region, the area of reflectance (NIR, 800-1000 nm) is
suggested as having a strong correlation with soil water content [40]. The final parameter was dry unit
weight, which considers the physical properties of the soil. Moreover, dry unit weight also has strong
correlations with water content [41]. To construct an optimal ANN structure, the number of neurons in
the hidden layers was changed from one to eight, and several combinations of transfer functions were
considered (Table 3).

Table 3. Combinations of transfer functions.

Number of Neurons Combination of Transfer Functions

log sigmoid—pure linear

log sigmoid—log sigmoid

s log sigmoid—tan sigmoid

tan sigmoid—pure linear

tan sigmoid—log sigmoid

tan sigmoid—tan sigmoid

2.6. Overall Developed Workflow

The overall flowchart of the study procedure is shown in Figure 5. Hyperspectral image analysis
was performed on a total of 162 granite weathered soil samples. After image correction and ROI
selection, the effective wavelength was selected through pre-processing and the use of SPA in the
spectral feature extraction step. Next, texture features were extracted using a GLCM in the image
texture feature step. Based on the GLCM and selected effective wavelength, an SVM-based classification
model was developed to determine the color of the soil sample, which is represented as a Munsell soil
color. The 162 hyperspectral images of the granite soils were randomly assigned to the training set and
testing set with a 7:3 ratio. The ratios of the calibration validation samples for brown soils, yellow soils,
and red soils were 38:16, 32:14, and 29:13, respectively. An ANN model was developed to predict the



Sensors 2020, 20, 1611 8 of 15

variation of soil water content using the Munsell soil color, the dry unit weight of the soil, and the area
of reflectance (NIR) obtained from the hyperspectral image analysis.

Hyperspectral image
analysis

l

Image correction & selection
of region of interest
(RO

No.40 Sieve analysis

Spectral feature extraction Image texture feature
(Pre-processing & extraction by gray-level co-

successive projections occurrence matrix (GLCM)
algorithm)

!

Classification models based on
support vector machine (SVM)

Area of reflectance

(Near-infrared) Munsell soil color chart Dry unit weight

Artificial neural network

Soil water content

Figure 5. Overall flowchart showing the sequence of steps involved in the procedure of soil classification
and the artificial neural network (ANN) for the prediction of soil water content.

3. Results and Discussion

3.1. Comparison of Pre-Processing Methods

In this study, the first and second derivatives were selected as pre-processing methods. Table 3
shows the prediction accuracies of the pre-processing methods.

As shown in Table 4, the second derivative method was more accurate than the first derivative
method. Therefore, the second derivative method was selected as the pre-processing method.

Table 4. Accuracy of the pre-processing methods.

Pre-Processine Method Calibration Prediction
J (Support Vector Machines) (Support Vector Machines)
First Derivative 77.8 76.9
Second Derivative 82.2 80.8

3.2. Selection of Effective Wavelength

SPA was used to select the effective wavelength from the total wavelength spectrum in VNIR.
Eight variables were determined based on the minimum root mean square error of validation (RMSEV).
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Figure 6 shows that eight wavelengths (432, 537, 622, 687, 729, 765, 915, and 952 nm) were effectively
obtained in the VNIR range (435-898 nm). In the spectrum, 432 nm shows blue (430-475 nm), 537 nm
shows green (495-575 nm), 622 nm shows red (620-680 nm), 687 nm shows red-edge (680—-690 nm),
729-765 nm indicates N-H stretching of the amino acids, and 915 nm and 952 nm correspond to
carbohydrates and O-H stretching, respectively [42].

952nm

Reflectance

432nm
035 } } f 0 t + t t f : } {
0 2 4 6 8 10 12 400 450 500 550 600 650 700 750 800 850 900 950 1000
Number of variables included in the model .
Wavelength (nm)
(a) (b)

Figure 6. Selection of effective wavelengths using the successive projections algorithm: (a) Number of
selected variables; (b) Effective wavelengths in visible and near-infrared regions.

The selection of effective wavelengths through the previous analysis notably reduced the number
of wavelengths. SVM models were subsequently constructed based on four input variables. Table 5
provides the SVM model classification results using four input variables. The first variable of the
full wavelength had 204 bands with accuracies of 87.8% for the training set and 84.2% for the testing
set. The second variable with effective wavelengths exhibited accuracies of 80.2% for the training set
and 85.3% for the testing set. The accuracies of the third SVM model with 32 GLCM texture feature
variables (four features X eight bands) were 72.3% for the training set and 69.7% for the testing set.
Lastly, using both the effective wavelengths and texture features achieved accuracies of 92.3% for the
training set and 89.8% for the testing set. Therefore, the effective wavelengths and texture features used
in tandem were considered to be the ideal input variable for the classification of soil types as the fourth
case had higher accuracies for the training and testing sets compared to the other input variables.

Table 5. Hyperspectral imaging for soil type classification with SPA and SVM.

Input Parameters (C, g) ! Training Set Accuracy Testing Set Accuracy
Full wavelength (53.34, 1.52) 87.8 % 84.2 %
Effective wavelengths (38.22,5.4) 90.2 % 85.3 %
GLCM-Texture features (98.73, 1.22) 72.3 % 69.7 %
Effective wavelengths (170.36, 5.33) 92.3 % 89.8 %

+ GLCM-Texture features

1 C is the optimal penalty coefficient and g is the kernel function parameter.

3.3. Optimal ANN Structure for the Prediction of Soil Water Content

Figure 7 shows the correlation coefficients for training and testing according to the transfer
function and number of neurons in the hidden layer. The correlation coefficient ranged between —1 and
1: the closer the absolute value is to 1, the higher the predictive accuracy of the model. As previously
mentioned, the structure of the ANN included three input parameters, eight neurons in the hidden
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layers, and one output parameter. The transfer functions were a log-sigmoid in the first hidden layer,
a tan-sigmoid function in the second hidden layer, and a pure linear function in the output layer.
Bayesian regularization was applied to a back-propagation neural network [43]. Such regularization
reportedly minimizes the over-fitting problem with insufficient data. Figure 8 shows the structure of
an optimal ANN model for the estimation of soil water content.
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0.7
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1 2 3 4 5 6 7
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= a = o
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Number of neuren in hidden layer Number of neuron in hidden layer

(a) log-sigmoid and linear functions (b) log-sigmoid and log-sigmoid functions
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Figure 7. Correlation coefficients of training and testing sets: (a) log-sigmoid and linear
functions, (b) log-sigmoid and log-sigmoid functions, (c) log-sigmoid and tan-sigmoid functions,
(d) tan-sigmoid and linear functions, (e) tan-sigmoid and log-sigmoid functions, and (f) tan-sigmoid
and tan-sigmoid functions.
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Soil color
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Area of reflectance
(Near-infrared)

Q Water content

Dry unit weight
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Figure 8. Structure of the artificial neural network (ANN) model for the estimation of soil water content.
3.4. Validation of the Selected ANN Model

In general, mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute
error (MAE), and maximum absolute percentage error (Max-APE) are the indicators used to evaluate
the goodness of fit of predictive models [44]. Among these indicators, MAPE has become increasingly
popular as a performance measure in forecasting [45-47], as it is easy to interpret and understand in
addition to being highly reliable [48]. The coefficient of determination (R?) was calculated for all data
points by comparing the results predicted by the ANN model with the results obtained from laboratory
tests. Higher R? values indicate a reliable model with high predictive performance. The developed
ANN model exhibited good prediction accuracy, generating an R? value of 0.91 and MAPE of 10.1%,
as shown in Figure 9. In addition, the convergence of the ANN for the data variables is described in
Figure 10. The training performance of the ANN was determined to be highest at epoch 28, with a
mean squared error of 1.0321. Therefore, it can be concluded that the ANN model can be successfully
used to predict variations in soil water content accurately.
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Figure 9. Comparison of measured water content versus water content predicted using the ANN model.
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Best Training Performanceis 1.0321 at epoch 28
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Figure 10. ANN convergence performance for training and testing steps.
4. Conclusions

In this study, we demonstrated the potential of hyperspectral techniques for soil classification
and subsequent soil water content estimations. Various pre-processing methods were applied for soil
type classification, and a soil type classification model was constructed using a GLCM and SVM. In
addition, we developed an ANN model that considers soil color, spectral reflectance, and dry unit
weight to improve the estimation of soil water content. The research can be summarized as follows:

(1) A total of 162 granite weathered soil samples were collected from Mt. Umyeon, Mt. Guryong,
and Mt. Daemo in Seoul. Hyperspectral near-infrared images were acquired in 224 bands from
400 to 1000nm. To reduce spectral noise and error, the beginning and end of the wavelength
spectrum were removed and only 204 bands were used.

(2) Thesecond derivative method was selected as the pre-processing method. The classification model
produced the best results with a combination of eight effective wavelengths and GLCM-texture
features of contrast, correlation, energy, and homogeneity. The testing set accuracy of the
classification model was 89.8%.

(3) An optimal ANN model was developed for water content prediction. The ANN had three
input parameters, eight neurons in the hidden layers, and one output parameter. The transfer
functions involved were a log-sigmoid function in the first hidden layer, a tan-sigmoid function
in the second hidden layer, and a pure linear function in the output layer. The developed ANN
model exhibited good prediction accuracy, generating an R2 value of 0.91 and a MAPE of 10.1%.
In addition, the training performance in terms of the convergence of ANN for the data variables
was the highest at epoch 28 with a mean squared error of 1.0321. Therefore, it can be concluded
that the ANN model can be successfully used to predict variations in soil water content accurately.

The aim of this study was to classify soil types and predict soil water content over large areas for
the detection of landslide hazards, which traditionally require considerable time and human power, by
implementing a simple method using hyperspectral imaging. A total of 162 granite soils (Mt. Umyeon,
Mt. Guryong, and Mt. Daemo) were examined for the application of hyperspectral imaging. The results
demonstrated that the developed models were capable of soil type classification and water content
prediction. Presently, as there is a lack of research on the acquisition of soil properties over large
areas using hyperspectral imaging, the proposed method can be used to provide basic data for such
investigations. In addition, drones and the normalized difference vegetation index (NDVI) could be
used to classify soil and measure water content over large areas, enabling disaster prevention. Site
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investigations that consider NDVI and water content will be performed to demonstrate the application
of the developed method. Due to the fact that soil is exposed to various conditions depending on
the weather, the proposed methods may be less accurate than conventional measurement methods.
To overcome these limitations, atmospheric, and radiation correction steps will be specified, and the
latest machine learning techniques will be applied in a future study.
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