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Abstract: Non-intrusive load monitoring (NILM) is a cost-effective approach that electrical appliances
are identified from aggregated whole-field electrical signals, according to their extracted electrical
characteristics, with no need to intrusively deploy smart power meters (power plugs) installed for
individual monitored electrical appliances in a practical field of interest. This work addresses NILM
by a parallel Genetic Algorithm (GA)-embodied Artificial Neural Network (ANN) for Demand-Side
Management (DSM) in a smart home. An ANN'’s performance in terms of classification accuracy
depends on its training algorithm. Additionally, training an ANN/deep NN learning from massive
training samples is extremely computationally intensive. Therefore, in this work, a parallel GA
has been conducted and used to integrate meta-heuristics (evolutionary computing) with an ANN
(neurocomputing) considering its evolution in a parallel execution relating to load disaggregation in
a Home Energy Management System (HEMS) deployed in a real residential field. The parallel GA
that involves iterations to excessively cost its execution time for evolving an ANN learning model
from massive training samples to NILM in the HEMS and works in a divide-and-conquer manner
that can exploit massively parallel computing for evolving an ANN and, thus, reduce execution time
drastically. This work confirms the feasibility and effectiveness of the parallel GA-embodied ANN
applied to NILM in the HEMS for DSM.

Keywords: artificial intelligence; home energy management system; nonintrusive load monitoring;
smart home; smart grid

1. Introduction

Electricity is one of the most popular forms of energy used in today’s technically-driven
modern society. The reformation of a traditional power grid upgraded as a smart grid has been
developed in recent years. In a smart grid, electrical energy demands by consumers are continuously
increasing. To meet continuously increasing electrical energy demands, power utilities come up with
Demand Response (DR) programs, which is referred to as Demand-Side Management (DSM). In DSM,
traditionally, Energy Management Systems (EMSs) that respond to DR programs to optimize consumers’
uses of electrical energy so that continuously increasing electrical energy demands by consumers can
be met monitor electrical appliances with an intrusive deployment of smart power meters (smart plugs)
in practical fields of interest. However, constructing such an EMS in a practical field of interest for
DSM would result in a high investment, which comprises annual maintenance costs, to consumers.
In contrast to intrusive load monitoring in EMSs for DSM, technically, Non-Intrusive Load Monitoring
(NILM) being a part of an EMS in a practical field of interest for DSM is a process of decomposing mains’
electricity measurements into each of their constituent individuals with distinguishable electrical
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characteristics from electrical appliances, where aggregated electric energy consumption is measured
by only one single minimal set of plug-panel current and voltage sensors in a practical field of interest
and is decomposed for its breakdown from appliance-level electric energy consumption. NILM, which
is a cost-effective alternative to intrusive load monitoring in EMSs, was first investigated by George
W. Hart et al. [1] at the Massachusetts Institute of Technology with funding from the Electric Power
Research Institute in the early 1980s. NILM has been conducted for DSM in a smart grid [2,3]. With the
use of NILM for DSM in a smart grid, consumers have the opportunity to improve their awareness
of what and when their electrical appliances should operate in response to DR programs [4], where
they keep track of appliance-level electric energy consumption with no intrusive deployment of smart
power meters (smart plugs) for individual electrical appliances. With DSM in a smart grid, power
utilities plan to supply electricity in an optimal way [5].

NILM conducted in EMSs for DSM in a smart grid can be built upon signal processing [6], data
clustering and pattern recognition (a.k.a. machine learning) [2,3,7-16], and/or Artificial Intelligence
(AD) (a.k.a. computational intelligence/deep learning) [17-21]. NILM can be viewed as a load
classification task, and it can be accomplished by Artificial Neural Networks (ANNSs). For example, in
References [20,21], feed-forward ANNSs trained through the conventional gradient-based optimization
methods were conducted and used as load classifiers of NILM to non-intrusively identify electrical
appliances. ANNSs are one of the most promising biologically inspired Al paradigms ever invented.
To an ANN used as a load classifier of NILM, its performance in terms of classification accuracy
depends on its training algorithm. For instance, a Genetic Algorithm (GA), which is a global search
optimization algorithm starting with an initial population of candidate solutions, instead of the
widely-used Gradient Descent (GD) algorithm, a conventional gradient-based optimization algorithm
starting with an initial single guess and taking derivatives for its steps that are proportional to the
negative of the gradient of the cost function addressed, can be used to meta-heuristically train/evolve
the network (the network trained by the conventional GD algorithm is easily fooled by local minima).
Nevertheless, meta-heuristically training/evolving an ANN/deep NN learning from massive training
samples is extremely computationally intensive since GAs are extremely computationally intensive
routines because they search through a large set of candidate solutions involving expensive function
evaluations to find the global (quasi-)optimal solution, whereby the sequential optimization process
could consume many hours or days. Parallel computing is able to improve the computational efficiency
of GAs by exploiting the concurrency of computations involved in the algorithm. Therefore, the aim of
this work is to integrate meta-heuristics (evolutionary computing) with an ANN (neurocomputing)
considering its evolution in a parallel fashion for load disaggregation in a home EMS (HEMS).
A parallel GA-embodied ANN for NILM in an HEMS is developed in this work. To parallelize and,
thus, accelerate a GA incorporated with an ANN and used to evolve/train the connectionism in parallel
for NILM is done in this work. The GA-embodied ANN in this work is processed and accelerated in
consideration of parallel computing. The use of the highly-parallelized GA run on multiple processors
is mandatory to achieve high-performance computing for ANN evolved/meta-heuristically trained
for NILM. NILM can be applied in prognostics and health management where untypical patterns of
electric energy consumption may be caused by the malfunction of an electrical appliance(s) [22]. The
major contributions of this work are outlined as follows.

e In contrast to the work that was finished in References [12,20,21], this work develops and
applies a parallel GA to meta-heuristically evolve a feed-forward ANN, in order to achieve
its optimal adjustable parameters, optimal trainable weight coefficients including biases, and
speed up the evolutionary process for meta-heuristically training the connectionism for load
classification in NILM conducted as a part of a Home Energy Management System (HEMS) for
Demand-Side Management (DSM). The developed parallel GA-embodied ANN is a revision of
the methodology that was done in Reference [12]. In addition, it is a preliminary design of NILM
toward deep learning.
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e  NILM addressed in this work is a fully-nonintrusive alternative that, during the preliminary stage
of NILM involving the training process of load classification, no instrumentation for (rated) power
consumption on each electrical appliance is required. It is suggested that, in the preliminary
stage of NILM, collected data that need to be learned for load classification can be labeled in a
sensor fusion fashion. Through the NILM with respect to aggregated electric energy consumption,
electrical appliances for their electric power consumption can be deduced/statistically estimated.

The remainder of this work is organized as follows. The methodology of the paralle]l GA-embodied
ANN applied to NILM in an HEMS is presented in Section 2. Section 3 demonstrates the experiment
showing the feasibility of the parallel GA-embodied ANN for NILM in this work. The experiment
is conducted in a real residential environment. Section 4 makes some discussion on the experiment
demonstrated in Section 3, which explores the significance of the experimental results of this work.
Lastly, this work is concluded with its future work in Section 5.

2. Methodology

The developed parallel GA-embodied ANN applied to NILM in an HEMS is presented in this
section. Section 2.1 presents the HEMS deployed in a real residential field for the demonstration of the
developed parallel GA-embodied ANN for NILM. Section 2.2 presents the used ANN and Genetic
Algorithm (GA) hybridized to evolve the connectionism in parallel.

2.1. HEMS

An HEMS conducted in a smart home in a smart grid works as a bi-directional communication
interface between a residential field, which is aware of DR programs, and a power utility, which analyzes
electric power consumption data from grid-tied smart homes, comes up with DR programs, and
optimizes consumers’ uses of electrical energy [23]. A typical HEMS developed and deployed in a smart
home for DSM in a smart grid can be mainly made of (i) a power company-owned smart meter installed
instead of a power company-owned traditional wattmeter, communicated via advanced metering
infrastructure with a power utility’s cloud server, and used to continually gather fine-grained electric
power consumption data from electrical appliances, (ii) a central Home Gateway (HG) communicated
via the Internet with a third-party cloud server for user-centric IoT service-oriented applications and
with the power utility’s cloud server for IP-based DR programs received to homeowners for their
load management, and (iii) electrical appliances monitored. Figure 1 shows the block diagram of the
HEMS [24] with the parallel GA-embodied ANN developed in this work for NILM. In Figure 1, the
HEMS with the developed parallel GA-embodied ANN for NILM was deployed in a residential field,
which is connected with a smart grid for DSM. Since the goal of DSM in a smart grid is to optimize
consumers’ uses of electric power consumption by electrical appliances in fields of interest, the HEMS
with the developed parallel GA-embodied ANN for NILM identifies electrical appliances.

As shown in Figure 1, the HG, the core of the HEMS, is based on an Advanced RISC Machine
(ARM®) Cortex™-A9 embedded system. Moreover, a LAMP (a Linux OS + an Apache® HTTP server
+ a MySQLr relational database + PHP scripting language) stack is configured on it. In the residential
field, the HEMS with the developed parallel GA-embodied ANN for NILM is demonstrated. Wherein,
the HEMS continually acquires power consumption on each of its monitored electrical appliances in an
intrusive manner, whereas the developed parallel GA-embodied ANN identifies it in a non-intrusive
fashion. Data from either the HEMS or the developed parallel GA-embodied ANN for NILM are stored
in the MySQLry\ relational database configured on the HG. The developed parallel GA-embodied ANN
for NILM is implemented in MATLAB® and run on a computer. In the NILM communicated with
the HEMS, a standardized MySQL Connector/Open Database Connectivity (ODBC) driver and LabSQL
Virtual Instruments using the ADO (ActiveX Data Objects) object collection and SQL (Structured Query
Language) in LabVIEW™ are included. ZigBee (the IEEE 802.15.4 standard) [25] is arguably the most
popular technology for creating wireless sensor networks, and it has been included in some of the
latest commercial and academic home automation cases [26-29].
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Figure 1. Block diagram of the home energy management system (HEMS) [24] having the developed
parallel GA-embodied artificial neural network (ANN) for non-intrusive load monitoring (NILM).

By means of a ZigBee wireless communication network built in the HEMS in Figure 1, the HG is
capable of communicating with its monitored electrical appliances for intrusive load monitoring and
remote load control. ZigBee communication-based plug-load smart power meters (smart plugs) are
installed for DSM. Universal Asynchronous Receiver/Transmitter (UART), which is a RS5232 RTU-format
protocol, is used in the HEMS. Lastly, as shown in Figure 1, in the HEMS, Common Gateway Interface
(CGI) is programmed in Perl programming language and configured on the Home Gateway (HG).
Additionally, an HTTP web server is established, where homeowners can interact dynamically with
the HEMS, via the Internet, using a user interface showing detailed electric power consumption
data. Compared to the HEMS [24] as a benchmark, the NILM identifies electrical appliances with no
intrusive deployment of ZigBee communication-based plug-load smart power meters (smart plugs)
in the residential field. The assumption made in Reference [24] is that each electrical appliance
enrolled for DR programs and monitored in the residential field is equipped with a wireless remote
controller such as an infrared (IR) controller [12]. Each electrical appliance is remotely controllable
(its electric power consumption is deduced through NILM). In this sense, in Figure 1, aggregated
electric energy consumption measured by the one single minimal set of plug-panel current and voltage
sensors (installed at the main electrical panel of the residential field) is labeled through sensor fusion
and identified by the developed parallel GA-embodied ANN for NILM in this work. Wi-Fi flows
interpreting occupants’ energy-use patterns [30] in a practical field of interest could also be utilized to
label aggregated electric energy consumption through sensor fusion for NILM. The developed parallel
GA-embodied ANN for NILM is presented in Section 2.2.

2.2. NILM Based on a Parallel GA-Embodied ANN to Fully-Nonintrusively Identify Electrical Appliances
Consuming Electric Power

NILM is a load disaggregation technique that aims to identify electrical appliances as well as
estimate their power consumption from aggregated electric energy consumption by multiple electrical
appliances [18], which can be defined by Equation (1).

N .
v = 21.21 xp-Pi4 e 1)

where y; represents the aggregated observable power consumption by all electrical appliances at time
slice t in a practical field of interest, N is the total number of major electrical appliances, x'; denotes
the operational state, {0, 1} in one mode, of electrical appliance i at time slice f with its rated power
consumption P;, and ¢; accounts for total power consumption by small loads at time slice ¢, which is
treated as background noise.
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The goal of NILM/load disaggregation in Equation (1) is to build an Artificial Intelligence (AI)
model that can find the correct x/; from y¢. In this work, the Al model is constructed with a feed-forward
ANN meta-heuristically trained by a parallel Genetic Algorithm (GA).

The workflow of the NILM utilizing the developed parallel GA-embodied ANN in this work
is depicted in Figure 2. The NILM consists of data acquisition that acquires electrical signals from
one single minimal set of plug-panel current and voltage sensors, feature extraction that extracts
electrical features for load classification (in feature extraction, more technically, feature data can be
transformed from a data space to a feature space for dimensionality reduction), and load classification
that conducts Al to identify electrical appliances from feature data (electric power consumption on
electrical appliances and electrical energy demands by homeowners can be deduced). Both aggregated
current and voltage signals are simultaneously acquired via data acquisition where signals sensed
by one single minimal set of plug-panel current and voltage sensors are conditioned and digitized
by a data acquisition device. After aggregated current and voltage signals are sampled, sampled
data are analyzed through feature extraction and load classification. A common NILM framework,
known as event-based NILM, involves a process of event detection that detects appliance events by
abrupt power changes for feature extraction and load classification. In the NILM in Figure 2 in this
work, the process of feature extraction and load classification is performed periodically. Electrical
appliances are identified every time slice t. The NILM in this work is an eventless NILM. In practice,
an Al-based paradigm in NILM is developed where (i) its training stage is intrusive as fields of
interest are instrumented for (rated) power consumption on each of electrical appliances and (ii) its
test/validation stage is not intrusive as no instrumentation for (rated) power consumption on each
electrical appliance is required (plug-load smart power meters (smart plugs) used in the training stage
of NILM are removed). The NILM in Figure 2 is a fully-nonintrusive alternative that, during the
preliminary stage of the NILM involving the training process of the ANN for load classification, no
instrumentation for (rated) power consumption on each electrical appliance is required (only the types
as labels of electrical appliances enrolled initially with user intervention and monitored by the NILM
are required). Electrical appliances are labeled through sensor fusion [30] (electrical appliances can be
deduced/statistically estimated, for their electric power consumption, through the NILM with respect
to aggregated electric energy consumption).

user intervention, a NILM based on a parallel GA-embodied Fully-noninirusive load classification
preliminary NILLM process ANN in an HEMS of electrical appliances
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Figure 2. Workflow of the non-intrusive load monitoring (NILM) using a parallel genetic
algorithm (GA)-embodied Artificial Neural Networks (ANN) for NILM in this work. The NILM is
fully-nonintrusive that no instrumentation for (rated) power consumption on electrical appliances

is required during the preliminary stage of the NILM involving the training process of the ANN for
load classification.
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Figure 3 also depicts the detailed NILM pipeline proposed and referenced during the experiment
in this work. In the NILM in Figures 2 and 3, electrical features extracted from acquired and aggregated
current and voltage signals in feature extraction and used as the input variables of the feed-forward
ANN in load classification are steady-state electric power quantities P (real power) and Q (reactive
power) [31]. This is contrary to steady-state electrical features. Transient electrical features are electrical
features by an event-based NILM with event detection and feature extraction [31,32]. The feed-forward
ANN identifies electrical appliances based on their steady-state behavior. In this work, P and Q are
considered, as an NILM considering only P cannot distinguish electrical appliances with similar P
draws (additionally, transient electrical features extracted can be used as additional/supplementary
electrical features [31,32]). In the NILM in Figures 2 and 3, load classification is implemented by a
feed-forward ANN, which is a multi-layer perceptron. The feed-forward ANN conducted in the
NILM learns from training samples collected on-site during the training stage of the connectionism.
The training stage of the connectionism is an off-line training process, where (1) collected data are
labeled through sensor fusion and (2) the connectionism is evolved by a parallel GA. On-line load
classification is performed on-site (every time slice f) once the connectionism has been well trained.
The preliminaries regarding ANNs and GAs are outlined in Sections 2.2.1 and 2.2.2. The developed
parallel GA-embodied ANN in Figure 3 is presented in Section 2.2.3 for NILM in this work.

Off-line training
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appliances can be deduced with no
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Figure 3. A detailed NILM pipeline in this work.

In general, solutions of many engineering problems are similar to a black box, which is an
opaque system used to empirically establish the relationship between input and output variables
without the knowledge of its internal working model. ANNSs date back to 1943. A mathematical
model of artificial neurons was proposed in Reference [33]. ANNSs, which are connectionist systems,
are one of the approaches that can empirically establish the relationship between input and output
variables without the knowledge of its internal working model. ANNSs are inspired by biological neural
networks that constitute animal brains. They are one of the most promising biologically inspired Al
paradigms ever invented. In this work, a standard feed-forward ANN is employed. Figure 4 depicts
the employed standard feed-forward three-layered ANN. For the topological design of the network,
its architecture by the hyperparameters, which are the number of hidden layers and the number of
artificial neurons conducted in each hidden layer, can be determined based on trial and error, which
can also be determined through some heuristics [12]. Usually, it is true that the more hidden artificial
neurons the feed-forward multi-layer ANN has, the more accurate the neural network is [12].
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Figure 4. A standard feed-forward and multi-layer ANN as a connectionism mimicking the biologic
neural network and consisting of an input layer including at least one hidden layer and an output
layer. Usually, the more hidden artificial neurons the neural network has, the more accurate the neural
network is.

Deep Neural Networks (NNs) having multiple hidden layers [34-36] can be employed, over
fog-cloud analytics [2,37,38], for NILM in this work. The employed feed-forward ANN, which is
structured by three different types of layers including input, hidden, and output layers consists of an
interconnected group of artificial neurons with trainable weight coefficients, v;; and wj;, in Figure 4. Ina
teed-forward and multi-layer ANN in Figure 4, the number of artificial neurons in a hidden layer(s) can
be determined by the approaches proposed in References [39,40]. A supervised and iterative learning
process such as the widely-used GD algorithm [41] that was originally proposed in Reference [42] can be
used to train the ANN learning model from collected training samples of input-output data pairs. Once
the ANN is well-trained, its weight coefficients are ultimately adjusted such that its outputs against
their expected values are satisfied with a satisfactory level of accuracy. The widely-used GD algorithm
can be conducted for use of training an ANN with back-propagation. Nevertheless, its performance
in terms of classification accuracy depends on the training algorithm adopted. Neuro-evolution is a
research field of Al It conducts evolutionary computing to meta-heuristically render a certain aspect
of the design of ANNSs designed and used for practical applications. A GA [43,44] briefly introduced
in Section 2.2.2 can be used to train an ANN [45]. However, training an ANN/deep NN learning from
massive training samples is extremely computationally intensive. Hence, a parallel GA described in
Section 2.2.3 is conducted and used to integrate meta-heuristics (evolutionary computing) with an
ANN (neurocomputing), the connectionism in Figure 4, considering its evolution in a parallel execution
and relating to load classification for NILM in this work. Hybridizing a GA with an ANN is to develop
a problem solver for NILM by looking at and mimicking the human brain (neurocomputing) and the
evolution mechanism (evolutionary computing), as the human brain, which is the product of millions
of years of evolution, is the most useful and powerful problem solver in the universe. A parallel GA
instead of a standard GA can exploit massively parallel computing for training an ANN and, thus,
reduce computation time drastically.

222.GA

GAs are based on the principle of biological evolution. They are a stochastic, population-based
meta-heuristic optimization algorithm that searches for the global (quasi-)optimal solution randomly,
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through genetic operations, involving crossovers and mutations that provide genetic diversity, among
population members, based on (natural) selection.

GAs that mimic the process of biological evolution are proven to be effective in many optimization
problems addressed. In GAs, two different types of operations are used: genetic operations and
evolution operation. Where genetic operations involve crossover and mutation operations and evolution
operation involves selection operations mimicking natural selection, the Darwinism-Darwin’s theory
of biological evolution, and being the driving force of evolution. Different selection strategies and
genetic operators can be designed and implemented for GAs. Refer to Reference [43] for more details
about a standard GA. In a GA used to address an NP-hard/NP-complete discrete or continuous
optimization problem, a population of chromosomes (called individuals as candidate solutions in
a search space) is evolved through selection, crossover, and mutation operations toward the global
(quasi-)optimal solution. Figure 5 shows the typical evolutionary cycle of a GA.

-
@ Chromosomes &

Mutation

new
population

Generation

(¢ter+1) Offspring

A

fitness decoding

¥

Figure 5. A typical evolutionary cycle of a genetic algorithm (GA).

In a GA in Figure 5, a proportion of the existing population in the current generation (generation
iter) is reproduced and used to breed a new population for the next generation. Where,

e  Selection selects chromosomes based on a fitness-based selection/proportional selection procedure
and fitter solutions (with relatively high fitness) are typically more likely to be selected (candidate
solutions are evaluated through a fitness function),

e crossover exchanges subparts of two chromosomes, roughly mimicking biological recombination
between two haploid organisms, and

e  mutation randomly alters values of genes in some chromosomes. An arbitrary bit of a chromosome
is changed from its original state. In a GA, the population size depends on the nature of the
problem addressed, but, typically, the population contains several hundreds or thousands of
chromosomes/candidate solutions. Chromosomes are generated at random in the initial population.
The generational process is repeated until a termination condition has been met. For example,
the generational process will terminate when the pre-specified maximum number of generations
is reached.
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2.2.3. Parallel Evolutionary Computing-Parallel GA

A GA can be used to meta-heuristically train an ANN, the connectionism in Figure 4, without
the use of any gradient information (for the connectionism with continuous activation functions, it
is an appropriate compromise to hybridize the meta-heuristics with a gradient method such as the
widely-used GD algorithm. An initial genetic search is followed by a gradient method). The basic
concept behind this technique is as follows.

A complete set of trainable weight coefficients, v;; and wj;, in the connectionism in Figure 4,
is encoded in a real-number string, which has an associated fitness indicating its effectiveness.
An illustration showing that trainable weight coefficients of an ANN are encoded in order as a
chromosome for a genetic search is given in Figure 6. Layered trainable weight coefficients are arranged
from a matrix to a vector, and a concatenation of the vectors is built. For a genetic search, fitness can be
simply given by —E, where E is the function value of a cost function for an ANN decoded and evaluated
for its trainable weight coefficients. To evaluate a chromosome, the GA decodes it as an ANN (its genes,
trainable weight coefficients, are assigned in a network of a given architecture). Then, the decoded
ANN is run over collected training samples. Lastly, computed E is returned (the decoded ANN
plays the role of an evaluation function in the GA). With an initial population of randomly-generated
chromosomes started, successive generations are constructed through evolution. Fitter chromosomes
are more likely to survive and to participate in genetic operations based on selection. Unlike the
widely-used Gradient Descent (GD) algorithm, the GA performs a global search. It is not easily fooled
by local minima.

(2] ()

from a matrix from a matrix
to a vector to a vector

a concatenation of the vectors

e e = = e = =]

Figure 6. A chromosomal design encoding a feed-forward artificial neural network (ANN) as a
chromosome. A chromosome (genotype) completely describes an ANN (phenotype).

Evolving an ANN run over massive training samples for fitness evaluation during evolution is
computationally intensive. One of the ways to speed up a GA as a parallel GA is a parallelism to
execute evolutionary computing in a parallel execution. A parallel GA is an algorithm that works
in a divide-and-conquer manner. Evolving an ANN run over massive training samples for fitness
evaluation during evolution can be accelerated by a parallel GA. GAs are innately a parallel algorithm,
which can be run on a multi-core processor. For a parallel GA used to evolve an ANN for NILM in
this work, the process of fitness evaluation during evolution is distributed among multiple processors
as workers. The evaluations of fitness to an architecture-given ANN considering potential weight
coefficients are executed, in parallel, across multiple Central Processing Units (CPUs) on a single
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computer. The flowchart illustrating the computational routines involved in the parallel GA for a
multi-core processor/computer is depicted in Figure 7.
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Figure 7. Flowchart of a parallel GA used to evolve an ANN for NILM in this work. In the GA, function
evaluations/routines are farmed out to different processors. They are done simultaneously.

In a GA, selection chooses individuals, as parents, to be reproduced for the next population in the
next generation. In the parallel GA in Figure 7, a stochastic uniform selection lays out a line in which
each parent corresponds to a section of the line of length that is proportional to its scaled fitness value,
where a ranking method that scales raw fitness values based on the rank of each individual rather than
its raw fitness value is considered for fitness scaling.

In a GA, fitness scaling that converts raw fitness values into scaled ones falling in a range that
is suitable for selection is needed because, in a proportional selection procedure, there would be a
tendency for a few super chromosomes that dominate the selection procedure to make the algorithm
converge prematurely. A practical variant of the reproduction process of constructing a new population
is to allow the best haploid organism(s) from the existing population/current generation to carry over
to the next population/generation, unaltered. It is known as an elitist strategy, which can be used to
guarantee that the solution quality will not decrease during evolution. In the parallel GA in Figure 7,
an elitist strategy is considered. In this work, the fitness function is clarified as —E, where E is the
averaged Sum of Squared Errors (SSE) of an architecture-given ANN for NILM. In the algorithm,
an ANN with its weight coefficients is drawn from a chromosome, a concatenation of real-valued
numbers representing the trainable weight coefficients, for fitness evaluation. Additionally, function
evaluations/routines are farmed out to and executed in parallel across multiple CPUs on a single
computer. The loop run for each ANN executed over training samples for its averaged SSE/fitness
evaluation is also parallelized.

In a GA, crossover is used to combine individuals, who are parents chosen through selection, to
form children for the next population in the next generation. In the parallel GA in Figure 7, a scattered
crossover operator applied on two parents as two different ANNs for load classification in NILM

e creates a random binary vector as a mask,

e  picks genes from the first parent, where indexing of the created vector is 1s,

e  picks genes from the second parent, where indexing of the created vector is Os, and

e combines the genes to form a new individual as a new/potential ANN for load classification in
NILM. The scattered crossover is illustrated in Figure 8.
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Figure 8. A scattered crossover operator applied on two individuals.

In a GA, a mutation that creates mutated individuals is used to make small random changes in
individuals. In the parallel GA in Figure 7, a gaussian mutation operator applied on an individual
replaces a gene value of an individual with a random number taken from a Gaussian distribution
where its mean is 0 and its standard deviation is determined by a scale parameter specifying the
initial standard deviation and a shrink parameter controlling how the standard deviation shrinks as
generations go by.

In Figure 7, the iterative evolutionary cycle of the parallel GA applying the genetic operators
after the selection procedure is completed will continue until the maximum number of generations is
met. The genetic operators facilitate and guide an efficient GA search where the crossover operator
facilitates exploration of the GA search, while the mutation operator facilitates exploitation of the GA
search. Additionally, they achieve the twin goal of maintaining population diversity and sustaining
the convergence capacity of the algorithm.

3. Experiment

The experiment conducted to validate the feasibility of the developed parallel GA-embodied
ANN for NILM in this work is demonstrated in this section. The HEMS employing the parallel
GA-embodied ANN proposed for NILM and presented in Section 2 was deployed in a real residential
field. As referenced in Figure 3, Figure 9 shows the experimental setup of the HEMS, as a benchmark/the
ground truth, with the NILM. In this experiment, electrical appliances identified by the developed
parallel GA-embodied ANN for NILM in Line Branch 1 (L1) of the electrical wiring in the residential
field include an electric rice cooker (~1.10 kW), an electric water boiler (~0.90 kW), a steamer (~0.80 kW),
and a TV (~0.22 kW). For the HEMS [24] that intrusively identified the electrical appliances in the
residential field, ZigBee communication-based plug-load smart power meters (smart plugs) were
installed. For the NILM, in this work, that non-intrusively identifies the electrical appliances in the
residential field, the aggregated current and voltage signals were acquired and collected from the
main electric panel of the residential field by a National Instruments (NI)™ 9225 data acquisition
device. An active current transformer that generates output voltage that is proportional to its input
current was connected to L1. Its output voltage was wired to the data acquisition device. The
electricity was also directly wired to the data acquisition device. The computer used to run the NILM
developed in this work, presented in Section 2.2, and implemented in MATLAB® is an Acer Predator
G3-710 Intel® Core™ i7-6700 CPU (@ 3.40GHz) quad-core desktop computer where the memory size,
RAM, is 16GB. At each time slice, such as ¢ = 1 min., taking an electrical feature reading, the NILM
identifies the electrical appliances, where a feed-forward ANN hybridized with a parallel GA is used.
The feed-forward ANN hybridized with a parallel GA is configured as follows.
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Figure 9. Experimental set-up of the home energy management systems (HEMS) [24] with the NILM
in this work.

e Input layer: the total number of artificial neurons in the input layer of the connectionism is 2
due to the two extracted electrical features, P and Q. Each artificial neuron in this layer comes
with an identity-style activation function. Training samples conveyed to the connectionism are
normalized within the interval [-1, 1].

e Hidden layer: only one single hidden layer is considered. It consists of 25 artificial neurons.
Each artificial neuron in this layer is aroused with a sigmoid-style activation function. That is,
artificial neurons used in this layer are the most basic computational sigmoid neurons [46,47]
(there are many other nonlinear formulas, nonlinearities, that can be implemented as nonlinear
activation functions for feed-forward multi-layer ANNs). In deep NNs conducting a many-layered
structure of hidden layers, one shortcoming of the sigmoid neurons is the gradient vanishing
problem [46-48].

e  Output layer: the total number of artificial neurons in the output layer of the connectionism is
4 due to the four electrical appliances monitored. Each artificial neuron in this layer serves as
an appliance indicator that the operational ON/OFF status of the electrical appliances, at time
slice ¢, is indicated. Its output is based on the round() function rounding its input argument to the
nearest integer 0 (indicating status OFF) or 1 (indicating status ON). The style of the activation
functions used by the artificial neurons in this layer is the same as that of the activation functions
used by the artificial neurons in the hidden layer.

e Cost function: averaged Sum of Squared Errors (SSE) is adopted. In this experiment, a parallel
GA instead of the widely-used GD algorithm is conducted and used to train the configured
feed-forward ANN/connectionism. The configured feed-forward ANN is evolved, which
is parallelized.

In this experiment, a total of 960 data instances are examined. Figure 10 shows the feature
space addressed by the configured feed-forward ANN evolved in parallel. The feature space is of
extracted electrical features P and Q. Parameters specified for the parallel GA used in this experiment
to evolve/train the configured feed-forward ANN run over the 960 data instances for load classification
in the NILM are below. The population size, pop_size, is 1,000. In addition, a random initial population
is created with a uniform distribution, where the uniform distribution is in the initial population
range [-10, 10] and where the total length of each chromosome is 179 (= (2 + 1) X 25 + (25 + 1) x 4).
The stochastic uniform selection is used, and, for this proportional selection procedure, the algorithm
scales raw fitness values based on the rank of individuals instead of their raw fitness value. Moreover,
the elitist strategy is conducted. A total of top (0.05 X pop_size) individuals/chromosomes in the existing
population are guaranteed to survive to the next population. The scattered crossover operator is used.
The crossover fraction of the population is 0.65. The gaussian mutation operator is used. The mutation
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rate is 0.01. The maximum number of generations is 500. Lastly, the fitness function is clarified as -E,
where E is the adopted cost function of the configured feed-forward ANN.
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Figure 10. Feature space being of P and Q. The entire space is addressed by the configured feed-forward
ANN, with/without the parallelism, in this work. A total of 12 load combinations including the
scenarios in which the four electrical appliances are the mutually exclusive load combinations that
need to be addressed.

In this experiment, the evolutionary trajectory obtained by the parallel GA is shown in Figure 11.
As shown in Figure 11, the average SSE obtained was 0.38. The trained weight coefficients by the
parallel GA for the configured feed-forward ANN are shown in Appendix A. The averaged SSE of
0.38 was obtained, as shown in Figure 11. Table 1 shows the load classification results obtained by the
configured feed-forward ANN trained/evolved by the parallel GA. In Table 1, the load classification
rate is defined and computed, for electrical appliances, as Equation (2).

ZteT xi (2)

In Equation (2), T in T denotes the total number of time slices in a day and xly (teT=1{1,2,3,..t,
..T}) is 1 if electrical appliance i is correctly identified by the NILM. Otherwise, it is 0 (x'; can be used
to statistically estimate kWh of electrical appliance i).

In Table 1, the computation time consumed by the parallel GA-embodied ANN is also shown, and
itis 6.94 min. A total of 501,000 function evaluations/routines meaning that totally 501,000 feed-forward
ANN s differing in their weight coefficients are examined and done in a parallel execution where the
number of workers started up and used on the Acer Predator G3-710 Intel® Core™ i7-6700 CPU (@
3.40 GHz) desktop computer (RAM: 16 GB) for parallel computing is 4. As shown in Table 1, in this
experiment, the configured feed-forward ANN is also trained by the widely-used GD algorithm, where
an averaged SSE of 0.17 was achieved (the achieved load classification rates are unacceptable), as
shown in Figure 12. It is also meta-heuristically trained/evolved by a standard GA, where its training
is very time-consuming. As shown in Table 1, the HEMS utilizing the configured feed-forward ANN
meta-heuristically trained/evolved by the parallel GA (a parallel GA is used to meta-heuristically
train adjustable weight coefficients of an architecture-given feed-forward ANN in parallel) gets an
acceptable level of NILM accuracy. The configured feed-forward ANN trained by the widely-used GD
algorithm is easily fooled by local minima and the configured feed-forward ANN meta-heuristically
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trained/evolved by a standard GA instead of the widely-used GD algorithm is highly consumed
in computation time (the undertaken NILM in this experiment throws an acceleration of up to 48x
achieved with four workers on the computer for parallel computing).

1.8
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1.4
1.2

averaged SSE

0.8
0.6
0.4 o SANY
0.2
0
00N N O OMON S T d 00NN AN OO MONNS d00Wn AN WO MmOINS~S <
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I A AT A AN AN AN AN NN OO O T
Generations
e the best average

Figure 11. Evolution trajectory obtained by the parallel GA for the configured feed-forward ANN in
this experiment. The algorithm determines the value of fitness as the inverse of E: the lower the error is,
the higher the fitness is.

Table 1. Load classification rates obtained in this experiment.

Load Classification Rates by Different AI Approaches (%) Improvement in
Load Classification
Electrical Rate (%)
Appliances the configured the configured the configured
ANN trained by = ANN evolvedbya  ANN evolved by
the GD algorithm standard GA the parallel GA

electric rice cooker 94.06 74.06 85.62 —8.44
electric water boiler 44.27 79.17 92.81 +48.54
steamer 55.73 88.54 90.10 +34.37
TV 47.19 89.69 83.23 +36.04
Computation time 6.68 336.52 2 6.94 -
(mins)
Improvement in - - —329.58 -
computation time !
(mins)

1 The undertaken NILM in this experiment throws an acceleration of up to 48X achieved with four workers started
up and used on the Acer Predator G3-710 Intel® Core™ i7-6700 CPU (@ 3.40 GHz) computer (RAM: 16 GB) for
parallel computing. 2 A total of 501,000 function evaluations were done in a serial execution. In total, 501,000
feed-forward ANNS differing in their weight coefficients were examined.
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Figure 12. Training trajectory obtained by the widely-used GD algorithm for the feed-forward ANN
in this experiment. This plot implies that only 15,000 feed-forward ANNSs differing in their trainable
weight coefficients were examined for NILM in this work.

In order to improve the load classification results, by the ANN evolved by the parallel GA against
the GA, in Table 1, the parallel GA starts with 5000 randomly-generated initial chromosomes to
meta-heuristically train the feed-forward ANN, since it is usually argued that a small population size
could guide a GA to poorly search for the global optimal solution. The resulting averaged SSE is
0.25 (the load classification rates are improved) and the elapsed time is 29.91 min. More workers can
be configured and used to substantially accelerate the algorithm, as shown in Table 2. The parallel
GA starting with 5000 randomly-generated initial chromosomes (the population size: 5000) takes
29.91 min. The computation time by the standard GA versus the parallel GA in this experiment
increases exponentially, as shown in Figure 13. The parallel GA considering a population size of 5000
specified meta-heuristically evolves the configured feed-forward ANN for load classification with an
acceleration of up to 135 X achieved against the standard GA, in order to improve the optimization
accuracy and substantially reduce the execution time. As seen in Figure 13, it took the standard GA a
very long time to evolve the configured feed-forward ANN.

In the last part of this experiment, the feed-forward ANN is meta-heuristically trained by a
parallel GA where the population size specified is 7500 and the maximum number of generations
specified is 1000. Figure 14 shows the evolutionary trajectory of the parallel GA. The resulting averaged
SSE shown is 0.1909. The optimal weight coefficients trained by the parallel GA for the configured
feed-forward ANN used for load classification of NILM in this work are shown in Appendix B. In order
to quantitatively evaluate the parallel GA for its performance in terms of convergence accuracy, this
experiment executes the algorithm for 10 trials. Wherein, the resulting mean and standard deviation
are 0.2341 and 0.0452, respectively. Consequently, the load classification rates obtained from the best
trial of the 10 runs of the algorithm in this experiment are outlined in Table 3. As shown in Table 3
and compared with the overall load classification rate that was obtained in Reference [12], the overall
load classification rate in this work is improved by 3.46%. On-line load monitoring is performed
on-site, as the feed-forward ANN evolved by the parallel GA has been well trained through the off-line
training process.
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Table 2. Improved load classification rates by the parallel GA-embodied ANN, in this experiment,
considering 2,505,000 feed-forward ANNSs differing in their trainable weight coefficients.

Population Sizes
(the maximum number of generations: 500)

5000
(501 001(? (f)gnction 2000 (2,505,000
! . (1,002,000 function evaluations) function
evaluations) :
evaluations)
the configured ANN evolved by the standard GA
. . 1
Computation time 336.52 745.65 4043.23
(mins)
Averaged Sum of
Squared Errors (SSE) 040 040 047
the configured ANN evolved by the parallel GA
Computation time 6.94 12.20 2991
(mins)
Averaged SSE 0.38 0.36 0.25
Load classification rates by the configured ANN evolved by the different
- . . DA Improvement
types of GA considering the different sizes of population (%) in load
classification
rate (%)
Electrical appliance the configured ANN evolved by the  the configured ANN evolved by
standard GA the parallel GA
(population size: 1000) (population size: 5000)
electric rice cooker 74.06 83.75 +9.69
electric water boiler 79.17 94.69 +15.52
steamer 88.54 90.83 +2.29
TV 89.69 98.96 +9.27

! The computation time increases exponentially. Meta-heuristically training/evolving the configured feed-forward
ANN in a serial/sequential execution is extremely computationally intensive.

4500 4043.23
4000
3500
3000
2500
2000
1500

1000

Computation time (mins)

500

1000 2000 5000

Population size

==@==serial parallel

Figure 13. Computation time by the standard GA vs. the parallel GA in this experiment.
The parallel GA against the standard GA has, in computation time, an acceleration of up to
135% (=4043.23/29.91) achieved.
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Figure 14. Trajectory of the parallel GA used to meta-heuristically train the feed-forward ANN. In total,
7,507,500 feed-forward ANNSs differing in their trainable weight coefficients are considered and they
are examined through parallel computing, and the algorithm takes 85.21 mins for the evolution.

Table 3. Load classification rates obtained by the parallel GA embodied and used to meta-heuristically
train the feed-forward ANN in this experiment.

Load Classification Rates by the GA-Embodied
Feed-forward ANN (%)

Electrical Appliances (the maximum number of generations: 1000)
(the population size: 7500)
electric rice cooker 90.00
electric water boiler 95.52
steamer 95.73
TV 99.27
Overall load classification rate (%) 95.13
Overall load classification rate improved ! (%) +3.46

! The overall load classification rate that is obtained in this work is compared with that of the work that was done in
Reference [12].

4. Discussion

This work develops and applies a parallel GA to meta-heuristically evolve a feed-forward ANN
in order to achieve its optimal adjustable parameters, optimal trainable weight coefficients including
biases, and speed up the evolutionary process for evolving it for load classification in NILM conducted
as a part of an HEMS for DSM. A fully-nonintrusive load classification in NILM in this work is
suggested and considered. The detailed NILM pipeline in this work is depicted in Figure 3, and it is
referenced in the experiment conducted in a real residential environment. As demonstrated in Section 3,
shown in Figure 13, and reported in Table 3, the feasibility and effectiveness of the undertaken NILM
that throws an improved overall load classification rate of 95.13% under an achieved acceleration
of up to 135x for its training have been experimentally validated. The immersion of a parallel GA
into a feed-forward ANN used as a load classifier of NILM to non-intrusively identify electrical
appliances for traces of their operation is needed, as (i) the feed-forward ANN used and trained by the
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conventional GD algorithm is easily fooled by local minima and (ii) the sequential optimization process
for meta-heuristically training the feed-forward ANN evolved through evolutionary computing is
extremely computationally intensive. To load classification in the NILM, more electrical features
would be extracted through feature engineering of creating features from raw data, and investigated.
Usually, the better the characterization of data extracted from electrical appliances, the higher the
performance (predictive power) of Al for load classification. The developed parallel GA-embodied
ANN in this work is a revision of the methodology that was done in Reference [12]. In addition, it
is a preliminary design of NILM toward deep learning. Deep NNs in deep learning have become
more attractive Al than ANNS in recent years. In the future, deep NNs having many multiple hidden
layers will be investigated and used, over fog-cloud analytics [2,37,38], by the developed parallel
GA-embodied ANN for NILM in DSM, where distributed Graphics Processing Unit (GPU) computing
can be configured to run parallel evolutionary computing to meta-heuristically train a deep NN across
multiple CPUs and GPUs on a single computer or a cluster of multiple computers.

5. Conclusions

NILM, which is a more cost-effective load monitoring approach than traditional intrusive load
monitoring approaches and a part of HEMS for DSM, is capable of disaggregating aggregated electric
energy consumption into appliance-level power consumption based on electrical features extracted
from electrical appliances and modeled by Al methodology. A feed-forward ANN trained by the
widely-used GD algorithm can be used to address NILM as a load classification task, but it is easily
fooled by local minima. A GA, which is a global search algorithm against the widely-used GD algorithm,
can be used to meta-heuristically train/evolve a feed-forward ANN run over massive training samples
for fitness evaluation, but it is very time-consuming. In this situation, it is necessary to parallelize the
algorithm and, thus, substantially reduce the computation time by speeding up the algorithm. Hence,
in this work, a parallel GA-embodied ANN for NILM in an HEMS has been developed in consideration
of parallel computing where a GA used to meta-heuristically train/evolve a feed-forward ANN run
over massive training samples for fitness evaluation for load classification (off-line training) of NILM
is parallelized and accelerated. On-site collected data learned by the developed parallel GA-embodied
ANN for NILM are labeled through sensor fusion. Fully-nonintrusive load classification in NILM
in this work is suggested and considered. The experimental results reported in this work show the
feasibility and effectiveness of the developed parallel GA-embodied ANN for NILM in the HEMS
in this work. In addition, the undertaken NILM throwing an achieved acceleration of up to 135X is
shown. Lastly, the improvement in the overall load classification rate that is obtained in this work and
compared with that of the work that was done in the previous study is shown.

The parallel GA-embodied ANN in this work is a preliminary design of NILM towards deep
learning. By definition, deep learning is the applications of multi-neuron, multi-layer ANNs always
treated as a black box [49] to perform learning tasks, including regression, classification, clustering,
auto-encoding, and others, through a series of many layers containing initiated neurons for each of
them and combining all features learned by their previous layers across data. ANNs having this
kind of many-layer structures such as two or more hidden layers, building up a hierarchy of ever
more complex and abstract concepts from data are called deep NN [46,47,49]. Deep NNs in deep
learning have become more attractive Al than ANNSs in recent years. In the future, deep NNs having
many multiple hidden layers will be investigated and used over fog-cloud analytics [2,37,38] by
the developed parallel GA-embodied ANN for NILM in Demand-Side Management (DSM), where
distributed GPU (Graphics Processing Unit) computing can be configured to run parallel evolutionary
computing to meta-heuristically train a deep NN across multiple CPUs and GPUs on a single computer
or a cluster of multiple computers.
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