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Abstract: This paper proposes a novel method of semantic segmentation, consisting of modified
dilated residual network, atrous pyramid pooling module, and backpropagation, that is applicable to
augmented reality (AR). In the proposed method, the modified dilated residual network extracts a
feature map from the original images and maintains spatial information. The atrous pyramid pooling
module places convolutions in parallel and layers feature maps in a pyramid shape to extract objects
occupying small areas in the image; these are converted into one channel using a 1 × 1 convolution.
Backpropagation compares the semantic segmentation obtained through convolution from the final
feature map with the ground truth provided by a database. Losses can be reduced by applying
backpropagation to the modified dilated residual network to change the weighting. The proposed
method was compared with other methods on the Cityscapes and PASCAL VOC 2012 databases. The
proposed method achieved accuracies of 82.8 and 89.8 mean intersection over union (mIOU) and
frame rates of 61 and 64.3 frames per second (fps) for the Cityscapes and PASCAL VOC 2012 databases,
respectively. These results prove the applicability of the proposed method for implementing natural
AR applications at actual speeds because the frame rate is greater than 60 fps.

Keywords: semantic segmentation; modified dilated residual network; atrous pyramid
pooling module; backpropagation; augmented reality; convolutional neural network; fully
convolutional network

1. Introduction

The Fourth Industrial Revolution is accelerating the research and development of artificial
intelligence and robots that think like humans. Consequently, there is growing interest in research
on the movement, judgment, and operation of virtual reality (VR) and augmented reality (AR),
autonomous driving, medical robots, and drones [1]. The research in these fields is based on the
analysis of images captured by cameras that assume the role of the human eye. The primary task for
image analysis is semantic segmentation, in which labeling is performed to determine the class to
which each pixel belongs [2].

Semantic segmentation is a technique for dividing images into pixels according to pre-learned
classes. It is not merely about categorizing images into classes, but is also a high-level technique for
understanding in its entirety the scenes in images, and is one of the core computer vision technologies
required to understand the visual environment fully [3]. A semantic segmentation algorithm requires
efficient speed for quick interaction or response and high accuracy for accurate judgment. For example,
speedy semantic segmentation and accurate judgment are essential for safe control driving decisions
and collision avoidance in autonomous driving. However, it is difficult to perform accurate semantic
segmentation in real time with photographed images [4]. To solve these problems, a robust algorithm

Sensors 2020, 20, 1737; doi:10.3390/s20061737 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/6/1737?type=check_update&version=1
http://dx.doi.org/10.3390/s20061737
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1737 2 of 18

that is flexible to changes in appearance is needed. At the same time, various situational data must be
considered to distinguish objects from complex backgrounds.

Furthermore, segmentation is applied as an essential element in fields that require real-time image
semantic segmentation such as VR, AR, autonomous driving, medical robots, and drones. In particular,
autonomous driving requires segmentation recognition speeds of 100 frames per second (fps) or greater.
However, AR applications require a segmentation recognition speed of only approximately 60 fps,
which is appropriate for the walking speed of humans. Therefore, the semantic segmentation method
proposed in this study is a suitable solution for AR.

The main contributions of this study are as follows. (1) A diluted residual network process that
extracts feature point maps from the original image using atrous convolution, which transforms the
composition to maximize spatial information and extracts feature points. This improves the accuracy
of semantic segmentation by reducing the loss of space information. (2) An atrous pyramid pooling
module process that applies various atrous convolutions to feature point maps to effectively extract
objects with small areas of the image. In addition, to reduce the time required, the atrous convolution
is placed in parallel to extract the feature points and is then stacked in the shape of a pyramid. During
this process, small feature point maps are stacked equally with up-sampling. When the various
feature point maps are stacked in the pyramid shape, 1 × 1 convolution is applied to make them into
one-channel feature point maps. This improves accuracy because even small objects can be extracted
more accurately. (3) A diluted residual network backpropagation process that compares the semantic
segmentation obtained from the final feature point map with the resulting image provided by the
database and, if a certain error rate occurs, applies it to the convolution performed in the second
process to reduce the error rate, ultimately enhancing the accuracy of the semantic segmentation.

2. Literature Review

Among the early studies on the accuracy of semantic segmentation, histograms of oriented
gradient (HOG) [5] and scale-invariant feature transform (SIFT) [6] performed semantic segmentation
through the recognition of handcrafted features using a classifier such as support vector machine
(SVM) [7]. Subsequently, instead of handcrafted features and classifiers, studies have focused on
deep convolutional neural networks (CNNs) that extract and classify data-driven features using
large-scale learning. These studies of data-based classification achieved higher performance than
existing studies in various computer vision fields. Recently, however, studies of semantic segmentation
using deep learning have begun receiving attention. Deep learning-based methods that show excellent
results in image recognition and classification and semantic segmentation are being developed. Image
classification methods perform classification on entire images, whereas image segmentation methods
perform segmentation in small pixel units and therefore require considerable memory and high
accuracy, resulting in high computational complexity. To address this problem, four representative
network structures are used in semantic segmentation [8]. The first involves learning using a pyramid
structure by changing input images in various scales. The second obtains results by up-sampling
through pooling and decoding using the step-by-step encoding of feature maps. The third is a network
structure that changes the filtering kernel itself to achieve high accuracy, even with diverse sizes. The
last is a structure that combines information to obtain new features after pooling feature maps in
various resolutions.

Meanwhile, in consideration of the need for real-time semantic segmentation algorithms [4,9–11],
three main approaches have been applied to improve the speed and accuracy of semantic segmentation
algorithms. The first approach, presented in the paper “ICNet for Real-Time Semantic Segmentation on
High-Resolution Images” by Wu et al. in 2018, reduces computation complexity by cutting or resizing
input images in a limited scale [12]. This method is simple and effective, but the accuracy, in terms of
indicators and visualization, decreases near boundaries. The second approach rearranges the channels
of the network to increase the inference speed in the network, instead of adjusting the scale of the
input images [9,10,13]. However, this diminishes the spatial capacity of the algorithm. Finally, efficient
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neural network (ENet) [10] increases the speed of the algorithm in the final stage of the network, but
this approach has the disadvantage of lowering the accuracy of semantic segmentation because the
down-sampling work in the last step is renounced.

All of the above approaches reduce accuracy while increasing speed. Accuracy in a semantic
segmentation algorithm requires assigning the accurate category label to each pixel and the difficulty
in achieving accuracy is closely related to the diversity of images and labels. The current semantic
segmentation methods are based on the fully convolutional network (FCN) because it has no limit on
the size of the input images and more spatial information can be kept [14]. Below, we examine the
representative semantic segmentation methods that are currently being used.

The new paradigm of FCN with the decoder (CNN)–decoder structure that differs from that
of deep neural networks [15–18] has appeared in the semantic segmentation field. The first paper
on FCN was published by Long et al. under the title “Fully Convolutional Networks for Semantic
Segmentation” [14]. It has since been cited by numerous studies because the FCN showed excellent
performance in semantic segmentation without using any difficult techniques. The representative
networks (VGGNet, AlexNet [15], GoogleNet) of existing classification methods have problems where
the fully connected layer at the end can only receive inputs of a certain size and the location information
disappears when it passes through the fully connected layer. The FCN was developed based on
the idea that the fully connected layer can be replaced with a 1 x 1 convolution, with which the
location information can be retained. In an FCN, the size of the input images is not limited because
every network is a convolution network. Furthermore, because entire images are processed at once
rather than in patch units, the required time is shortened by the effect of reduced computation.
Thus, the method is still widely used. However, one disadvantage of the FCN combined with
1 × 1 convolution, in the end, is that, because images are reduced through pooling, it is difficult to
preserve detailed location information because the values of the feature map correspond to the many
pixel values of the result images. To overcome this problem, networks with a U-shape structure,
in which the information is applied before the image reduction is applied to the result have been
published [9,14,19–21]. Among them, Ronneberger et al. published “U-net: Convolutional Networks
for biomedical image segmentation” in 2015 [21]. The structure of U-net has added skip connection,
gradual up/down-sampling, and other features.

In addition to U-net, there are many methods that use changed U-shapes. Some of them create
U-shape networks using the deconvolution layer [9,19]. The global convolution network [22] combines
the U-shape structure with a “large kernel.” LRR [20] uses the Laplacian pyramid reconstruction
network. To improve performance, refine net [19] adds an improved multi-path structure. The U-shape
structure has the advantage of maintaining the spatial information better than the FCN, but it still
has limitations in restoring the lost spatial information. The biggest problem of FCN and U-net is
that the size of the feature map is reduced, and much location information is lost. As this problem
is caused by network pooling, algorithms to replace pooling have been studied [23–26]. Among
them, Yu et al. published “Multi-Scale Context Aggregation by Dilated Convolutions” in 2015 [23].
Dilated convolution originates from the atrous algorithm, which is used in the wavelet decomposition
algorithm, and is also called atrous convolution. Dilated convolution has the advantages of increasing
the size of the receptive field with no loss in resolution and it controls the amount of computation by
filling all parts, except the red points, with zero.

Furthermore, the size of the feature map extracted by using dilated convolution is four times
larger than that obtained when using general convolution [26]. However, one disadvantage is that
every step must be tested through experiments in the process of deciding on a threat. To address
the problem that the loss of location information seen whenever pooling is performed is different for
each filter size (even when dilated convolution is used); methods to extract information for each filter
and then combine them later have been studied. The spatial pyramid pooling network (SPPNet) was
presented by He in 2015. SPPNet uses the bag of words (BoW) [27] concept, in which objects can be
distinguished better when many small features are used, instead of depending on thick and strong
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features for classifying specific objects. As with BoW, SPPNet uses small feature maps derived from
multiple steps of pyramids as input for the fully connected layer. The final convolutional layer of an
existing neural network such as ZFNet [28] is converted into a pyramid pooling layer, and in the final
pyramid layer, the results of the last convolutional layer are divided into multiple steps of pyramids.

Chen et al. proposed the atrous spatial pyramid pooling (ASPP) module that collects situation
information from various regions in the images [25]. PSPNet utilizes the pyramid scene pooling
(PSP) module, which includes various standards of the average pooling layer [29]. DeepLabv3 uses
the ASPP module with global average pooling to extract the situation information of images [26].
According to a paper published by Zhang et al. in 2017, the adaptive image situation information is
obtained by improving the neural network using scale adaptive convolution [30]. The discriminative
feature network (DFN) encodes the situation information of images by adding global pooling to the
U-shape structure [31]. Chen et al. announced DeepLabv3+, which combines encoder/decoder, dilated
convolution (atrous convolution) and spatial pyramid pooling, which were used in the research on
semantic segmentation [32]. DeepLabv3+ can arbitrarily control the resolution of the feature map
extracted from the encoder, which is impossible in the general encoder–decoder structure, using
atrous convolution. Furthermore, it applies depth-wise separable convolution to the ASPP module
and decoder.

There are many reasons for using the dilated convolution and atrous pyramid pooling module as
methods for accurate semantic segmentation in this study. First, the accuracy of semantic segmentation
can be improved by reducing the loss of spatial information. Second, small objects can be extracted
more accurately through convolutions of various rates. Thus, we used dilated convolution and the
atrous pyramid pooling module to achieve semantic segmentation accurately. In addition, we further
improved the accuracy of semantic segmentation by introducing backpropagation.

3. Novel Method of Semantic Segmentation Applicable to Augmented Reality (AR)

In this study, we used a modified dilated residual network, atrous pyramid pooling module, and
backpropagation to improve the accuracy of semantic segmentation. Specifically, we first applied
dilated convolution and the atrous pyramid pooling module to improve accuracy by extracting feature
maps that retain considerable spatial information. Second, we improved accuracy by repeatedly
performing backpropagation with an accuracy value in terms of mean intersection over union (mIOU)
desired by the user. Figure 1 shows the overall structure of the proposed novel method of semantic
segmentation applicable to AR.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 19 

 

existing neural network such as ZFNet [28] is converted into a pyramid pooling layer, and in the final 
pyramid layer, the results of the last convolutional layer are divided into multiple steps of pyramids.  

Chen et al. proposed the atrous spatial pyramid pooling (ASPP) module that collects situation 
information from various regions in the images [25]. PSPNet utilizes the pyramid scene pooling (PSP) 
module, which includes various standards of the average pooling layer [29]. DeepLabv3 uses the 
ASPP module with global average pooling to extract the situation information of images [26]. 
According to a paper published by Zhang et al. in 2017, the adaptive image situation information is 
obtained by improving the neural network using scale adaptive convolution [30]. The discriminative 
feature network (DFN) encodes the situation information of images by adding global pooling to the 
U-shape structure [31]. Chen et al. announced DeepLabv3+, which combines encoder/decoder, 
dilated convolution (atrous convolution) and spatial pyramid pooling, which were used in the 
research on semantic segmentation [32]. DeepLabv3+ can arbitrarily control the resolution of the 
feature map extracted from the encoder, which is impossible in the general encoder–decoder 
structure, using atrous convolution. Furthermore, it applies depth-wise separable convolution to the 
ASPP module and decoder. 

There are many reasons for using the dilated convolution and atrous pyramid pooling module 
as methods for accurate semantic segmentation in this study. First, the accuracy of semantic 
segmentation can be improved by reducing the loss of spatial information. Second, small objects can 
be extracted more accurately through convolutions of various rates. Thus, we used dilated 
convolution and the atrous pyramid pooling module to achieve semantic segmentation accurately. 
In addition, we further improved the accuracy of semantic segmentation by introducing 
backpropagation. 

3. Novel Method of Semantic Segmentation Applicable to Augmented Reality (AR) 

In this study, we used a modified dilated residual network, atrous pyramid pooling module, 
and backpropagation to improve the accuracy of semantic segmentation. Specifically, we first applied 
dilated convolution and the atrous pyramid pooling module to improve accuracy by extracting 
feature maps that retain considerable spatial information. Second, we improved accuracy by 
repeatedly performing backpropagation with an accuracy value in terms of mean intersection over 
union (mIOU) desired by the user. Figure 1 shows the overall structure of the proposed novel method 
of semantic segmentation applicable to AR. 

 

 
Figure 1. Overall structure of the proposed semantic segmentation method. Figure 1. Overall structure of the proposed semantic segmentation method.



Sensors 2020, 20, 1737 5 of 18

3.1. Acquiring Semantic Segmentation Image

To acquire the semantic segmentation images, the objects must be manually classified and labeled
using general images obtained with a camera (as shown in Figure 2). However, we used two standard
databases for objective evaluation of the semantic segmentation method.
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The Cityscapes [33] database is composed of images labeled as objects for complex scenes in many
different cities, as shown in Figure 3. In this study, we acquired images provided by the Cityscape
database to evaluate the semantic segmentation method objectively.
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Figure 3. Cityscape database image.

The PASCAL VOC 2012 [34] database is composed of 20 classes in total; Figure 4 shows images
from each class. In this study, we acquired the images provided by the PASCAL VOC 2012 database to
evaluate the semantic segmentation method objectively. The sizes of all semantic segmentation images
used in this experiment were adjusted to 513 × 513 for consistency.
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3.2. Modified Dilated Residual Network

Convolution is the most representative algorithm for extracting features from images while
maintaining as much spatial information as possible. One of the methods, atrous convolution, was
named from the French word “atrous” (having a hole). Influenced by wavelet analysis, zero-padding
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was added in the filter to increase the window size without increasing the number of weights. Atrous
convolution captures large features with the same amount of computation as that used in general
convolution and can extract more spatial features by using atrous convolutions with various expansion
ratios in parallel. Equation (1) describes the case in which the rate is one, representing general
convolution, and Equation (2) describes the case in which the rate is larger than one, representing
atrous convolution. Figure 5 illustrates the atrous convolutions in which the rate is one, two, or three.
In Equations (1) and (2), F is a discrete function, k is a discrete filter of size (2r + 1)2, and l is a dilation
factor [23].

(F ∗ k)(p) =
∑

s+t=p

F(s)k(t). (1)

(
F∗lk

)
(p) =

∑
s+lt=p

F(s)k(t). (2)
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The accuracy decreases if semantic segmentation is performed with small feature maps obtained
using a general convolution network. Figure 6 shows the difference between performing semantic
segmentation through down-sampling, convolution, and up-sampling and performing semantic
segmentation through atrous convolution. The illustration of general convolution shows that the
resolution of semantic segmentation is decreased by up-sampling, with loss of spatial information.
However, atrous convolution can minimize the loss of spatial information and increase the resolution
by performing convolution with a large receptive field.
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In this study, feature maps were extracted using a modified dilated residual network constructed by
modifying the ResNet-101-step network structure to improve accuracy. The modified dilated residual
network learns long-distance features without depending on the pooling function by expanding the
kernel with empty weights, and maintains more detailed elements of a higher space frequency even
without pooling. Figure 7 shows the structure of the modified dilated residual network applied in this
study. The network was built by converting the convolution of Group 4 and Group 5 of the Resnet-101
steps to dilated convolution with two and four rates. Through this, feature maps with better spatial
information can be extracted.
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3.3. Atrous Pyramid Pooling Module

R-CNN [35], a representative segmentation method, generates several thousand extract region
proposals with a selective search for images and then performs segmentation through CNN. However,
R-CNN has the disadvantage that it takes a long time because CNN must be applied to each of several
thousand extract region proposals. To address this problem, SPP was applied to the feature maps
extracted from the last layer of convolution instead of from the pooling layer. The SPP module extracts
variously sized features through convolution and global max pooling by applying various strides for
the feature maps obtained through convolution. In this process, vectors of the same size are output even
if images of various sizes are input, if the segmentation size is the same. Subsequently, various feature
maps are combined into a pyramid and the resulting image is obtained again through convolution. In
2017, the pyramid scene parsing network (PSPNet) was published at the Computer Vision and Pattern
Recognition (CVPR) Conference. In PSPNet, the PSP obtains four images of dimensions 1 × 1, 2 × 2,
3 × 3, and 6 × 6 through image pooling from feature maps, and performs segmentation of various
objects by stacking feature maps of a wide range in a pyramid shape through convolution.

The modified dilated residual network described in Section 3.1 creates feature maps by only
extracting important features, while preserving the features of the space domain from the entire input
images. However, to increase accuracy in semantic segmentation, it is critical to extract even small
objects accurately. In the current semantic segmentation field, segmentation is very difficult when small
objects are arranged in a complicated fashion. Therefore, to solve this problem, we used the atrous
pyramid pooling module, which was transformed from the pyramid sense pooling of the PSPNet.
The atrous pyramid pooling module, illustrated in Figure 8, has the following characteristics. Feature
maps are extracted by applying five types of atrous convolutions to the 28 × 28 feature maps obtained
through the modified dilated residual network in parallel. The atrous convolutions applied here



Sensors 2020, 20, 1737 8 of 18

consist of general convolution with rate = 1, atrous convolutions with rate = 3, rate = 6, and rate = 9,
and image pooling applied to the extracted feature maps. Subsequently, a pyramid is stacked with
these five feature maps, and 1-channel feature maps are extracted by applying a 1 × 1 convolution to
extract even small objects accurately.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 19 

 

here consist of general convolution with rate = 1, atrous convolutions with rate = 3, rate = 6, and rate 
= 9, and image pooling applied to the extracted feature maps. Subsequently, a pyramid is stacked 
with these five feature maps, and 1-channel feature maps are extracted by applying a 1 × 1 
convolution to extract even small objects accurately. 

 
Figure 8. Structure of the atrous pyramid pooling module applied in this study. 

In this study, we employed the atrous pyramid pooling module that maintains the spatial 
information of various sizes by applying convolutions of various rates, and we observed improved 
accuracy. 

3.4. Backpropagation 

In our method, if the loss rises above a certain amount, it is reduced through backpropagation. 
Backpropagation is performed by comparing the input image and the result of applying the modified 
dilated residual network, but the result of the atrous pyramid pooling module may affect the 
accuracy. Therefore, backpropagation is performed (Figure 9) by using the loss obtained from 
comparing the result of the atrous pyramid pooling module with the ground truth provided by the 
database. 

 
Figure 9. Structure of the backpropagation applied in this study. 

The backpropagation process is as follows. The CNN extracts features while the filter slides the 
input data, compresses them by max pooling or average pooling, and sends them to the next layer. 

Figure 8. Structure of the atrous pyramid pooling module applied in this study.

In this study, we employed the atrous pyramid pooling module that maintains the spatial
information of various sizes by applying convolutions of various rates, and we observed
improved accuracy.

3.4. Backpropagation

In our method, if the loss rises above a certain amount, it is reduced through backpropagation.
Backpropagation is performed by comparing the input image and the result of applying the modified
dilated residual network, but the result of the atrous pyramid pooling module may affect the accuracy.
Therefore, backpropagation is performed (Figure 9) by using the loss obtained from comparing the
result of the atrous pyramid pooling module with the ground truth provided by the database.
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The backpropagation process is as follows. The CNN extracts features while the filter slides the
input data, compresses them by max pooling or average pooling, and sends them to the next layer.
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The general structure of the CNN causes the process to repeat. The input is a 5 × 5 matrix, in which
xij denotes the element in the ith row and jth column. When convolution is performed on this input
with a filter size of 3 × 3, the output has the size 2 × 2. Figure 10 illustrates an example in which 3 × 3
convolution is performed when the input image is 5 × 5, indicating that the value y11 is output by the
convolution of x11, x12, x13, x21, x22, x23, x31, x32, and x33.
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Figure 10. Example of convolution.

Figure 11 shows backpropagation based on the convolution structure. In the forward process,
x11 performs convolution only with weight w11 of the 3 × 3 filter; backpropagation is only performed
once. This backpropagation process can be represented in a Karpathy calculation graph, as shown in
Figure 11. The gradient of x11 can be determined by multiplying the inflow gradient δ11 by the local
gradient (w11), which indicates the change in the other party. Likewise, the gradient of w11 can be
determined by multiplying the inflow gradient δ11 by the local gradient (x11).
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Figure 11. Karpathy calculation graph of x11 backpropagation.

When we examined x22 using the same method, it can be seen that the amount of computation
increased compared to x11, but the calculation process was the same. Figure 12 shows the
backpropagation Karpathy calculation graph of x22.

Figure 13 shows a simpler method of calculating the gradient, because it is difficult to substitute the
backpropagation method every time. The gradient of the input vector can be obtained by performing
convolution of the gradient matrix by inverting the elements of the filter used when creating the
convolution layer. For example, the gradient of x11 can be determined using Equation (3), and the
operation marked by a red square in Figure 13 can be expressed, as in Equation (3).

x11 = w11 × δ11. (3)
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For the gradient of the filter, the first element of the inflow gradient matrix, δ11, is connected with
x11, x12, x21, and x22. Hence, the gradient of the filter can be determined by multiplying the inflow
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gradient (δ11, δ12, δ21, δ22) by the local gradient. Equation (4) is the equation used to obtain the slope
δω11 of weight ω11.

xw11 = x11δ11 + x12δ12 + x21δ21 + x22δ22. (4)

Figure 14 shows the loss that results in the repetitive learning process for the Cityscapes database.
A total of 1525 datasets were learned, and the smallest loss in 10,000 epochs was selected.
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4. Result and Discussion

In this study, we evaluated the time required for the proposed semantic segmentation method,
according to the number of segmentations and the crossing rate (accuracy) between the predicted
boundary box and the ground truth boundary box. In the learning process, the Cityscapes database
and the PASCAL VOC 2012 database were learned by applying the modified dilated residual network
and the atrous pyramid pooling module. In the performance process, semantic segmentation was
performed based on the learned data.

The Cityscapes database and the PASCAL VOC 2012 database were used to evaluate the objective
performance of the proposed semantic segmentation method. The hardware used in this experiment
was an Intel(R)Core(TM) i7-9700K 3.60 GHz CPU, 16 GB RAM, and NVIDIA GeForce RTX2080
Ti(V-RAM11GB) GPU. We used JetBrains PyCharm Community Edition 2019.2.4 as the development
tool on the Windows 10 Pro 64-bit operating system. In addition, we used the TensorFlow 1.13.1,
CUDA8.0, and cuDNN 7.6.4 libraries.
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4.1. Cityscapes Database Result

The Cityscapes database is an open standard database of urban street images that has been used as
a benchmark for comparisons in prior studies. It comprises 5000 images in more than 30 classes, taken
on different days and times in more than 50 cities. In this study, we performed semantic segmentation
experiments with all the images in this database.

To evaluate the accuracy and required time, the images of the Cityscapes database were adjusted
for this experiment to a size of 513 × 513. Furthermore, to evaluate the objective reliability of the
proposed semantic segmentation method, it was compared with the results in “Encoder–Decoder
with Atrous Separable Convolution for Semantic Image Segmentation,” published by Chen et al. in
2018 [32].

Table 1 shows the accuracy results for the semantic segmentation method proposed in this paper
and the methods published in other papers in the same environment, based on Chen et al. [32]. As
shown in the table, the proposed semantic segmentation method exhibited higher accuracy than the
other methods. It appears that the DeepLabv3+ proposed by Chen et al. [32] could not perform
semantic segmentation more accurately because it only considers the forward direction and does not
perform backpropagation. The semantic segmentation method proposed in this paper exhibited higher
accuracy than other methods because it performed backpropagation when the mIOU of the final image
was not greater than a certain value.

Table 1. Results of accuracy (mIOU) for the proposed method and methods from the literature on
images in the Cityscapes database.

Method mIOU

ResNet-38 [36] 80.6
PSPNet [29] 81.2

Mapillary [37] 82.0
DeepLabv3 [26] 81.3

DeepLabv3+ [32] 82.1
The Proposed Method 82.8

Figure 16 graphically compares the accuracy (mIOU) for the proposed method and other algorithms
that were evaluated in the same environment by Chen et al. [32]. The figure confirms that the
semantic segmentation method proposed in this paper had a higher accuracy than the other semantic
segmentation methods. Figure 17 shows the experimental results of the semantic segmentation method
proposed in this paper for the Cityscapes database.
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Figure 17. Results from the proposed method for the Cityscapes database photos.

In addition, we measured the required time for the proposed semantic segmentation method with
the Cityscapes database. However, we did not compare this result with those of other methods because
the required time can vary with the performance of the hardware on which the program is executed.
The time it takes to perform semantic segmentation with the images of the Cityscapes database as
input was also measured. Table 2 outlines the frame rate determined by the number of images for
which semantic segmentation was performed by the proposed method with the Cityscapes database,
and it was 61 fps. As the frame rate exceeded 60 fps, it is applicable to the AR field for following
human motion.

Table 2. Frame rate result for the proposed method with the Cityscapes database images.

Database Images Time (s) Frame Rate (fps)

Cityscapes 1525 25 61

4.2. PASCAL VOC 2012 Database Result

The PASCAL VOC 2012 database was used for the PASCAL VOC Challenge. The database
consists of 20 classes in total because the segmentation databases have been increased, or more detailed
comments have been added. In this study, 4318 images with segmentation comments provided by the
database were used. To evaluate accuracy and time, the images used in the experiments were adjusted
to a size of 513 × 513. The objective reliability of the proposed semantic segmentation method was
compared with that of Chen et al. [32].

Table 3 lists the accuracy results for the methods evaluated in Chen et al. [32] and the method
of semantic segmentation proposed in this paper. As shown in the table, the accuracy result for the
proposed semantic segmentation method was higher than those seen with other methods. As with
the Cityscapes case, it appears that DeepLabv3+, as proposed by Chen et al. [32], could not perform
semantic segmentation more accurately because it only considers forward direction and does not
perform backpropagation. The semantic segmentation method proposed in this paper had a higher
accuracy than the other methods because it performs backpropagation when the mIOU of the final
image does not exceed a certain value.
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Table 3. Results of accuracy (mIOU) for the proposed method and methods from the literature on
images in the PASCAL VOC 2012 database.

Method mIOU

Deep Layer Cascade(LC) [4] 82.7
TuSimple [24] 83.1
Large_Kernel_Matters [22] 83.6
Multipath-RefineNet [38] 84.2
ResNet-38_MS_COCO [36] 84.9
PSPNet [29] 85.4
IDW_CNN [39] 86.3
CASIA_IVA_SDA [40] 86.6
DIS [41] 86.8
DeepLabv3 [26] 85.7
DeepLabv3-JET [26] 86.9
DeepLabv3+(Xception) [32] 87.8
DeepLabv3+(Xception-JET) [32] 89.0
The Proposed Method 89.8

Figure 18 graphically compares the accuracy results for the proposed method and the other
methods evaluated by Chen et al. [32] in the same environment for the images of the PASCAL VOC
2012 database. The figure confirms that the proposed method had a higher accuracy than the other
methods. Figure 19 shows the experimental results of the proposed semantic segmentation method for
the PASCALVOC 2012 database.
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In addition, the required time for the proposed semantic segmentation method was measured for
the PASCAL VOC 2012 database. Again, we did not compare the required time with other methods
because it can vary based on the performance of the hardware on which the program is executed.
Table 4 shows the frame rate for the proposed method determined from the required time and the
number of images for which semantic segmentation was performed for all images of the database; the
result was 64.3 fps. As the frame rate was higher than 60 fps, the proposed method is applicable to the
AR field for following human motion.

Table 4. Frame rate result of the proposed method for the PASCAL VOC 2012 database.

Database Images Time (s) Frame Rate (fps)

PASCAL VOC 2012 17,125 266 64.3
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4.3. Custom Result

The results of the semantic segmentation by taking pictures of various landscapes and adding noise
with a smartphone camera are as follows. Measurement of the mIOU requires accurate background
data for the object. However, specifying and comparing the background directly is not reliable, so there
is no reason for comparison. Figure 20 is the result of performing a semantic segmentation through the
program and determines that the segmentation was adjudged to have been accurately carried out.
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5. Conclusions

In this paper, we proposed a novel method for semantic segmentation applicable to AR. To
evaluate the proposed semantic segmentation method objectively, we used the Cityscapes and PASCAL
VOC2012 databases as representative subjects for semantic segmentation. From these databases, the
original images and the images for which semantic segmentation had been performed were loaded
together. The modified dilated residual network process extracted feature maps through a convolution
network appropriate for semantic segmentation by converting the ResNet-101 steps consisting of
convolutions. Then, the atrous pyramid pooling module using atrous convolutions in a parallel
structure was applied to extract small objects effectively.

To evaluate the objective reliability of the proposed method, it was compared with methods
published in a prior paper using the Cityscapes database and the PASCALVOC2012 database. The
results showed that the accuracy and the frame rate were 82.8 mIOU and 61 fps, respectively, for the
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Cityscapes database, and 89.8 mIOU and 64.3 fps, respectively, for the PASCAL VOC 2012 database.
Analysis of the experimental results for the Cityscapes database indicated that for each new technique,
the mIOU level increased by less than 0.8 or even decreased. Furthermore, for the experimental results
on the PASCAL VOC 2012 database, for each new technique, the mIOU increased by less than 1.2 or
decreased. This shows that since the introduction of deep learning techniques [42], it has become very
difficult to improve the level of the mIOU, a measure of the accuracy of the semantic segmentation.
Therefore, the improved mIOU figures in this paper (Cityscapes: 0.7, PASCAL VOC 2012: 0.8) are
considered satisfactory and meaningful. Thus, the proposed method can be applied to the AR field to
implement AR natural applications capturing human motion because the frame rate exceeds 60 fps.

To address the accuracy problem, further studies are required to accurately separate the background
from complex environments, and on the construction of networks that can be configured effectively for
convolution needs.
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