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Abstract: Image mosaicking which is a process of constructing multiple orthoimages into a single
seamless composite orthoimage, is one of the key steps for the production of large-scale digital
orthophoto maps (DOM). Seamline determination is one of the most difficult technologies in the
automatic mosaicking of orthoimages. The seamlines that follow the centerlines of roads where no
significant differences exist are beneficial to improve the quality of image mosaicking. Based on
this idea, this paper proposes a novel method of seamline determination based on road probability
map from the D-LinkNet neural network for urban image mosaicking. This method optimizes the
seamlines at both the semantic and pixel level as follows. First, the road probability map is obtained
with the D-LinkNet neural network and related post processing. Second, the preferred road areas
(PRAs) are determined by binarizing the road probability map of the overlapping area in the left and
right image. The PRAs are the priority areas in which the seamlines cross. Finally, the final seamlines
are determined by Dijkstra’s shortest path algorithm implemented with binary min-heap at the pixel
level. The experimental results of three group data sets show the advantages of the proposed method.
Compared with two previous methods, the seamlines obtained by the proposed method pass through
the less obvious objects and mainly follow the roads. In terms of the computational efficiency, the
proposed method also has a high efficiency.
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1. Introduction

Orthoimages have increasingly become a popular visualization product and planning instrument
for integrating the rich information content of images with the geometric properties of maps (ground
projection) and can be easily combined with additional information from geographic information
systems (GIS) to create an orthoimage map [1]. However, with the development of technology, the
orthoimage spatial resolution becomes higher, and the coverage area of an individual orthoimage is
typically very small Thus, image mosaicking is a necessary process of constructing multiple images
into a large-scale and single seamless composite image. This process has been applied in a wide
variety of applications such as environmental monitoring, agricultural monitoring, and disaster
management [2,3]. Orthoimages are typically orthorectified by the Digital Terrain Model (DTM) of
the same geographical area. The quality of DTM directly affects the accuracy of orthorectification.
Objects not contained in the DTM cannot be orthorectified correctly. Those objects would appear at
different locations in the overlapping area and cause visual discontinuities in image mosaicking. An
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ideal seamline should avoid such objects [1,4–8]. A seamline is the line along which overlapping
areas will be mosaicked. Each pixel in the final mosaicking result is represented entirely by only one
orthoimage based on which side of the seamline it lies on. Seamline is also helpful when overlapping
areas have significant differences in features. When mosaicking orthoimages, seamline determination
is one of the most difficult technologies for compositing a single seamless orthoimages. The purpose of
seamline determination is to find the seamlines with the minimal intensity and gradient differences in
the overlapping area. In this paper, our work focuses on automatic seamline determination for urban
image mosaicking.

In order to minimize the transition of the final mosaic image, the ideal seamline should avoid
crossing obvious objects as much as possible and go along the objects which have small relief
displacement. Differential expression is essential for seamline determination, which is a measure of
the difference between left and right image overlap areas [1,7]. The method based on differential
expression is the basic method of seamline optimization. The method first measures the difference
between the overlap region images to form a difference matrix, and then uses the path search algorithm
to obtain the final optimized seamline. According to the differential expression algorithm and the path
search algorithm, the recently proposed seamline determination algorithms are as follows.

Milgram [9] defined the “best” seamline point for each line of the overlapping area that minimizes
the sum of the gray differences between the left and right images. Afek and Brand [10] integrated
global feature matching and local transformation into seamline determination. Soille [11] used the
mathematical morphology and marker-controlled segmentation paradigm to determinate the seamlines.
The difference (geometric and radiometric discontinuities) can be minimized if the seamlines go along
salient image structures.

Kerschner [1] proposed a “two snake” method for seamline determination. The main idea is to
design a double snake model, through mutual attraction of the two snake lines, and finally form a snake
line to obtain an optimized seamline. The energy of the double snakes is defined based on similarity.
The seamlines go along the region of maximum similarity. The criteria for regions of similarity are
color similarity (hue and intensity) and texture similarity (orientation and magnitude of gradients).
Wang et al. [12] proposed a seamline determination in image mosaicking using improved snakes. The
integrated snake model and Bresenham algorithm was presented, which the Bresenham algorithm was
used to calculation the photometric. This solves the local optimum problem that exists in the snake
model to some extent, but not completely.

Ma and Sun [13] proposed a seamlines optimization for image mosaicking with airborne light
detection and ranging (LiDAR). According to the raw laser scanning dataset, the high ground objects
of the overlap area were identified as the obstacle. Then, the A* algorithm was used to determine the
final seamlines, and the seamlines were kept away from these obstacles in the registered images. Wang
and Wan [14–16] presented a seamline determination with the aid of vector roads for the first time. In
this approach, firstly, with the help of the vector roads and their widths, the seamlines will go along
the centerlines of roads with a large width as much as possible and avoid crossing the obvious objects.
Finally, the shortest path algorithm is applied to determine the final seamline. Chen et al. [17] first
used the Digital Surface Model (DSM) and Digital Terrain Model (DTM) to derive an Orthoimage
Elevation Synchronous Model (OESM) that accurately reflected the pixel of each digital orthophoto
image, and then obtained the final optimized seamline using the Dijkstra algorithm. Wang et al. [2]
used vector building maps to determine the seamlines, which guaranteed the seamlines avoiding the
crossing of buildings as much as possible. Different from the method of tracking vector roads, the
seamlines determined by this method went along the middle line between buildings in order to avoid
crossing the obvious objects, especially for high-rise buildings.

Using the normalized difference vegetation index (NDVI) and morphological building index
(MBI), Pan et al. [18] introduced ground object classification into the seamline optimization method. In
this approach, based on ground object classes, three types of areas, that is, obstacle areas, preferred
areas, and general areas, are further formed. Then, each type of region is assigned a different weight to
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optimize obtained pixel-size costs. Finally, Dijkstra’s algorithm is carried out to search the shortest
path as the final seamlines based on previously determined pixel-size costs in overlapping areas.

Chon et al. [19] first sought the maximum difference by minimizing the maximum, and then used
Dijkstra’s algorithm to determine the final seamlines. The method, which is based on minimizing the
maximum difference, measures the difference by a local region. It first calculates the Normalized Cross
Correlation (NCC) of the central pixel in this window, and makes the contrast between the normalized
correlation coefficients by exponential stretching of further expansion. Then, using the strategy of
minimizing the maximum difference on the basis of the difference matrix, the seamline is prohibited
from crossing the region, and finally the final optimized seamline is obtained by the Dijkstra algorithm.

Pan et al. [6] used image segmentation to determine seamlines for orthoimage mosaicking in
an urban area for the first time. This method uses segmentation to improve seamline determination.
Firstly, the preferred regions were selected according to the spans of objects segmented by the mean
shift algorithm. Then, Dijkstra’s shortest path algorithm was adopted to determinate the final seamline.
Since this method was proposed, several object-based methods have been used to optimize seamlines.
After that, Pan et al. [20] introduced the region change rate (RCR) into seamline optimization for
orthoimage mosaicking. The change rate of the regions acquired by the mean shift segmentation
algorithm were defined by the percentage of the changed pixels. This method determined the
seamlines at object-level and pixel-level. Wang et al. [7] adopted watershed segmentation for seamline
optimization at both the object and pixel level. Using normalized cross correlation, the obvious
objects, such as buildings, were excluded from the preferred objects areas at the object level. Dijkstra’s
algorithm found the final seamlines in the preferred objects areas at the pixel level.

Li et al. [21,22] first adopted the graph cuts energy minimization framework to find the optimized
seamlines. The image color, gradient magnitude and texture were combined in the smooth energy
functions in the graph cuts energy minimization framework. The determined seamlines passed through
the areas of a smooth texture, such as roads, woodlands, and green lands. Li et al. [23] proposed an
automatic seamline optimization based on graph cuts in UVA image mosaicking.

Yuan et al. [24] proposed a seamline optimization based on the disparity image by the semi-global
matching (SGM) algorithm. After obtaining the disparity image, the mathematical morphology method
was employed to deal with the noises and small holes of the disparity image in order to determine the
non-ground area. Finally, an improved greedy snake algorithm was adopted for the final seamlines.
Similar to that algorithm, Pang et al. [25] introduced dense matching into seamline determination.
Firstly, the SGM was used to estimate the disparity of each pixel. Next, the obstacle and non-obstacle
areas were determined by a predefined threshold. Finally, Dijkstra’s algorithm was adopted to optimize
the final seamlines in avoiding crossing the obstacle area as much as possible.

Based on the integrated deep convolutional neural network (CNN) and graph cuts energy
minimization framework, Li [26] proposed a novel algorithm to optimize seamlines for image
mosaicking. Different from the previous method [22], this method defined similarity energy terms
of the graph cut using the semantic classification classified by the CNN instead of using the color,
gradient, or texture.

In our paper, we propose a novel method of seamline determination based on a road probability
map which is extracted by the D-LinkNet neural network for urban image mosaicking. This method
optimizes the seamlines at both the semantic and pixel level. Firstly, the D-LinkNet neural network
is adopted to obtain the road probability map of the overlapping area in the left and right image
respectively. Secondly, the preferred road areas (PRAs) are determined by binarizing the road probability
map of the overlapping area both in the left and right image. The PRAs are priority areas which the
seamlines cross. Finally, the final seamlines are determined by Dijkstra’s shortest path algorithm
implemented with binary min-heap at pixel level.

The remainder of this paper is organized as follows: Section 2 describes the proposed seamline
determination for urban image mosaicking based on a road probability map from the D-LinkNet neural
network, where Section 2.1 introduces road probability map generation by D-LinkNet. Section 2.2
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presents the determination of PRAs, and Section 2.3 introduces pixel-level seamline determination;
Section 3 describes the experimental results and analysis, where Section 3.1 presents the experimental
data and platform and Section 3.2 presents the seamline determination results and analysis. Section 4
draws the conclusions.

2. Materials and Methods

The major difficulty issue of seamline determination is to define the differential expression of the
overlapping area more accurately. A cost image is generally adopted to express the difference of the
overlap image. Most seamline determination methods use the pixel-by-pixel or local regular subimages
to define the differential expression, and it is difficult to measure the difference accurately [6,7]. Object
recognition is considered to be helpful for differential expression. If object recognition has been solved
perfectly, we can set the areas with the high differential expression highest cost, such as buildings. Then,
the seamlines can be guaranteed not to go across stand-alone objects such as buildings. However, object
recognition is a complicated problem [6]. With the help of a vector roads network, some approaches
have used vector roads to optimize the seamlines, in which the seamline follows the centerlines of
roads with a large width as much as possible and avoids crossing the obvious objects. Such seamlines
are benefited to maintain the integrity of objects and improve the quality of image mosaics [14–16].
Based on this idea, we utilized a road probability map from the D-LinkNet neural network to optimize
the seamline determination.

The process flow for the proposed method is shown in Figure 1. The proposed algorithm optimizes
the seamlines at the semantic and pixel level. The D-LinkNet neural network is adopted to achieve the
road probability map of the overlapping area both in the left and right image. At the semantic level,
the PRAs are determined by binarizing the road probability map. In this step, most of the roads will be
included in the PRAs. The PRAs are the priority areas which the seamlines cross. At the pixel level, the
Dijkstra’s shortest path searching algorithm is adopted to find the final seamlines.
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2.1. Road Probability Map Generation by D-LinkNet

2.1.1. Block Road Probability Map Generation by D-Linknet

Road extraction from high-resolution images is a basic application of remote sensing, which has
attracted the attention of both academics and industry for a long time [27,28]. With the development
of deep learning and contribution of specialized datasets from the remote sensing community,
convolutional neural networks (CNNs) have been broadly used as alternatives to traditional methods for
visual recognition tasks in remote sensing, including building detection [29], road segmentation [30–32],
and topological map generation [33]. In our research, we focus on the main part of road extraction—road
probability map generation—and model it with a convolutional neural network.

D-LinkNet [34] is adopted as a basic CNN model of the proposed method due to its excellent
performance in 2018’s DeepGlobe road extraction challenge and broad use as the baseline in road
segmentation tasks [35]. It uses the typical encoder-decoder architecture inherited from LinkNet and
adds the delated convolution part to acquire and ensemble multi-scale features to enlarge the receptive
field, which is able to handle a road’s properties, such as connectivity, complexity, and long span, to
some extent [36]. Specifically, ResNet34 [37] is pretrained on ImageNet [38] and used as the encoder
part of D-LinkNet, and several dilated convolution layers with skip connections are placed in the
center part to enhance the reception ability. The decoder part uses transposed convolution [39] layers
to conduct upsampling, restoring the resolution of the feature map from one that is downsampled to
the original one. The architecture of the D-LinkNet is presented in Figure 2.
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In practice, considering the large size of satellite and aerial images, clipping is necessary to
generate image patches with a proper and fixed size (e.g., 1024 × 1024), to make sure that D-LinkNet
implementation works under a constrained computation ability and the output of separated patches
has been integrated into the final result. In addition, a small size of overlap between neighboring
patches should be considered and part of the redundant output within overlap areas should be
discarded, as misclassification often happens at the border pixels of a patch given that the receptive
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field is constrained by the edge. As for the training step of deep learning, we utilized transfer learning
to accelerate the whole train process, and data augmentation of the DeepGlobe road dataset [35] to
promote the network’s learning ability.

Some road probability map generation by D-LinkNet is shown in Figure 3. Each size of the sample
image is 1024 × 1024 pixels. The lighter the gray value of the pixel value in the image, the higher the
probability that it will be recognized as a road.Sensors 2020, 20, x FOR PEER REVIEW 6 of 23 
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2.1.2. The Post Processing of Road Probability Map Generation

When processing high-resolution remote sensing images, due to the limitations of memory and
other factors, block processing is required to extract the roads using D-Link. If the block extraction
results are directly stitched together, this may lead to obvious visible transitions. The stitched result is
shown in Figure 4a. There are obvious visible transitions in the stitched result. Figure 4a is the result of
directly stitching the image according to the size of 1024 × 1024 pixels. In order to eliminate obvious
visible transitions, this paper ensures a certain overlap between adjacent blocks during blocking. The
overlap provides a foundation for the subsequent elimination of obvious visible transitions. When
blocking, the width of the overlapping area is 511 pixels.
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After processing according to the blocking principle to obtain the road extraction result, the post
processing can be performed to eliminate obvious visible transitions on both sides of the seamline. In
this paper, there are only vertical and horizontal seamlines. This kind of processing is performed on
the two sides of the stitching point line by line (or row by row) within the artificially specified width
range (the width of the range must be smaller than the width of overlap region). The method used is
as follows:

OIi
L = Oi

L + (Oi
L −Oi

R)K
OIi

R = Oi
R + (Oi

R −Oi
L)K

K = i/W 0 ≤ i ≤W − 1
(1)

where Oi
L is the gray value of the pixel in the left (top) road probability map, Oi

R is the gray value of
the pixel in the right(bottom) road probability map, OIi

L is the processed gray value of the pixel in the
left(top) road probability map, and OIi

R is the processed gray value of the pixel in the right(bottom)
road probability map. W is the width of the smooth area, and K is the weight [40].

In this process, the gray values of the two images to be stitched are weight averaged pixel by pixel
to be used as the gray values after stitching. The weights used vary linearly and inversely within the
calculation range. This process can basically eliminate the obvious difference near the stitched line,
which is shown in Figure 4b. Compared with Figure 4a, there are no obvious visible transitions in
Figure 4b.

2.2. Preferred Road Areas Determination

After the generation of the road probability map in the overlapping area in both the left and
right image, the accuracy of detecting preferred road areas is determined by the road probability
threshold for binarization. In order to estimate the road probability threshold adaptively, we used
the Otsu’s method [41,42] to estimate the value of the road probability threshold. Otsu’s method is
used to perform automatic image thresholding. The algorithm returns a single intensity threshold
that separates pixels into two classes: foreground and background. This threshold is determined by
minimizing the intra-class intensity variance, or equivalently, by maximizing the inter-class variance.
We estimated the road probability threshold in the overlapping in the left and right image respectively.
The method used is as follows Equations (2)–(4):

IL(x, y) ∈ PRALs

true PL(x, y) >= T1

f alse otherwise
(2)

IR(x, y) ∈ PRARs

true PR(x, y) >= T2

f alse otherwise
(3)

I(x, y) ∈ PRAs

true IL(x, y) ∈ PRALs and IR(x, y) ∈ PRARs

f alse otherwise
(4)

where IL(x, y) is the pixel in the road probability map of the overlapping area in the left image. IR(x, y)
is the pixel in the road probability map of the overlapping area in the right image; PL(x, y) is the value
of IL(x, y); IR(x, y) is the value of IR(x, y); I(x, y) is the pixel of the overlapping area; PRALs represents
the preferred road areas of the overlapping area in the left image; and PRARs represents the preferred
road areas of the overlapping area in the right image. PRAs represents the preferred road areas. T1
and T2, which are estimated by Otsu’s method, are the road probability threshold of the overlapping
area in the left image and right image, adaptively.
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2.3. Pixel-Level Seamline Determination

2.3.1. Pixel-Level Cost Determination

After the determination of the PRAs, pixel-level seamline determination is used to determine the
final seamlines. The two intersecting pixels of the image borders are confirmed as the start and end
points [19].

Similar to Chon et al. [19], the Normalized Cross Correlation (NCC) is adopted to quantify the
difference between the overlapping area of two images at the pixel level. Considering the efficiency, the
quick NCC is calculated with Equation (5) using the 5× 5 windows. i and j are coordinates in the image
coordinate system. IL(i, j) and IR(i, j) are the gray values of the overlapping area in the left and right
image at (i, j), respectively. The cost value is computed in Equation (6), which has a range of 0–1.0.

QNCC(x, y) =

x+2∑
i=x−2

y+2∑
j=y−2

IL(i, j)IR(i, j) −
1

25

x+2∑
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y+2∑
j=y−2

IL(i, j)
x+2∑

i=x−2

y+2∑
j=y−2

IR(i, j)√√
[
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i=x−2

y+2∑
j=y−2

IL(i, j)2
−

1
25

(
x+2∑

i=x−2

y+2∑
j=y−2

IL(i, j))
2

][
x+2∑

i=x−2
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j=y−2

IR(i, j)2
−

1
25

(
x+2∑

i=x−2

y+2∑
j=y−2

IR(i, j))
2

]

(5)

cost(x, y) = 0.5− 0.5×QNCC(x, y) (6)

The final pixel-level cost of pixel (x, y) in the overlapping area between images is defined as:

DE(x, y) =

w× cost(x, y) I(x, y) ∈ PRAs

cost(x, y) otherwise
(7)

where I(x, y) is the pixel of the overlapping area in the left and right image. If I(x, y) belongs to PRAs,
the cost value should be multiplied by w. w is the weight for pixels in PRAs, which is assigned a value
much lower than 1.0. With such weight processing, this makes sure that the difference in the road area
can be relatively small, so the seamlines will pass through roads as much as possible.

2.3.2. Shortest-Path Searching

After the final pixel-level cost determination, similar to Pan et al. [6], in order to minimize the
difference of the seamlines, the proposed method uses the differential cost to calculate the local cost
between neighboring pixels when applying Dijkstra’s algorithm to search for the shortest path. The
differential cost is defined in Equation (8).

demn,pq =
∣∣∣DE(m, n) −DE(p, q)

∣∣∣ (8)

where (m, n) and (p, q) are adjacent pixels; DE(m, n) and DE(p, q) are the pixel-level costs of pixels (m, n)
and (p, q), respectively, which are calculated in Equation (7). Let near(m, n) be the eight neighboring
nodes of (m, n), DCost(m, n), and DCost(p, q) be the global minimum costs from the start pixel to (m, n)
and (p, q), respectively. Then:

DCost(m, n) = min
{
demn,pq + DCost(p, q); (p, q) ∈ near(m, n)

}
(9)

Dijkstra’s algorithm is a classic global optimization method which solves the single-source
shortest-path problem for arbitrary directed graphs G = (V, E) with unbounded non-negative weights
[43,44]. Given a source vertex s in a weighted directed graph G = (V, E) where all edges are nonnegative,
the pseudo-code for Dijkstra’s algorithm is presented in Algorithm 1. Dijkstra’s algorithm uses
a data structure for storing and querying partial solutions sorted by distance from the start. The
computational complexity of the original Dijkstra’s algorithm is Θ(

∣∣∣V∣∣∣·∣∣∣V∣∣∣+∣∣∣E∣∣∣) , if the min-priority
queue is implemented by an ordinary linked list. |V| is the number of nodes in the graph and |E| is the
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number of edges in the graph. The computational complexity depends on how to the min-priority
queue is implemented. In order to improve the efficiency of Dijkstra’s algorithm, similar to Wang
et al. [7], the proposed method implements the min-priority queue with a binary min-heap. The
pseudo-code for Dijkstra’s algorithm with a binary min-heap is presented in Algorithm 2. The
computational complexity of the improved Dijkstra’s algorithm is Θ((

∣∣∣V∣∣∣+∣∣∣E∣∣∣) · lg∣∣∣V∣∣∣) [7].

Algorithm 1 Dijkstra’s algorithm

1 Dijkstra(G, s)
2 dist[s] = 0
3 for each vertex v∈V
4 if v , s
5 dist[v] =∞

6 pre [v] = undefined
7 S = Ø
8 Q = V
9 while Q , Ø do

10 u = extract_min(Q)
11 S = S∪{u}
12 for each vertex v∈Adj(u) do
13 dist[v] = min(dist[v], dist[u]+w(u, v))
14 pre[v] = u

Algorithm 2 Dijkstra’s algorithm with Binary Min-heap

1 Dijkstra_Binary_Min-heap(G, s)
2 dist[s] = 0
3 for each vertex v∈V
4 if v , s
5 dist[v] =∞

6 pre [v] = undefined
7 Q.add_with_min-priority(v, dist[v])
8 S = Ø
9 Q = V

10 while Q , Ø do
11 u = extract_min_with_min- priority(Q)
12 S = S∪{u}
13 for each vertex v∈Adj(u) do
14 dist[v] = min(dist[v], dist[u]+w(u, v))
15 pre[v] = u
16 Q.decrease_min-priority(v, dist[v])

3. Experimental Results and Analysis

3.1. Experimental Data and Platform

The experiment consists of two parts. The first part uses the D-LinkNet neural network to generate
the road probability map. The second part determines the seamline based on this road probability map.

The D-LinkNet neural network was trained and tested with a single NVIDIA GeForce GTX 1080Ti
using the TensorFlow library in python in Linux. The training set was composed of 6226 images from
the DeepGlobe Road Extraction dataset [35] and 1000 image sets of data for manually marking roads
with 0.5-m resolution remote sensing images. The image size was 1024 × 1024. Details for training
a D-LinkNet-34 network are as follows: Batchsize = 1, epoch = 200, train_best_loss = 50, learning_rate
= 2 × 10−4, and the loss function defined as a mixture of binary cross entropy loss representing the
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error between pixels with a dice coefficient loss suitable for the error between batches based on the
IOU(intersection over union) as an evaluation index. The output of the neural network is the probability
of judging whether the pixel belongs to a road. It took almost 50 h to complete the network training.
Once the network training is completed, the network can be applied to other datasets of different areas.
After training, the error train loss is 0.18796 and the accuracy rate is 0.81204.

The proposed determination of the seamline method was implemented by C++ programming
on a portable computer with four Intel(R) Core(TM) i7-6700HQ CPU at 2.60 GHz, 16.0 GB of internal
memory, and a mechanical hard drive with a 1 TB capacity, a 32 MB cache, and a 7200 r/min speed
for data processing. The Geospatial Data Abstraction Library (GDAL), which is a widely used open
source library, was adopted to read and write a large variety of raster spatial data formats. w was the
weight for pixels in PRAs which is shown in Equation (7). The proposed method was performed with
w = 0.001. In our practice, the value of w was determined by our experience.

In order to verify the algorithm proposed in this paper, three sets of aerial images were selected
for experiments. An overview of the three sets of data is shown in Table 1. Among them, the coverage
of Dataset A is the central urban area of a large city; the coverage of Dataset B is the suburb of a big
city, and the coverage of Dataset C is the center of a medium-sized city.

Table 1. Basic information of the datasets.

Dataset Image Resolution Imaging Size Coverage Features

Dataset A 0.5 3030 × 2067 × 3 Central area of a big city
Dataset B 0.2 2438 × 4824 × 3 Suburb of a big city
Dataset C 0.3 2212 × 2693 × 3 Central area of a medium-sized city

3.2. Seamline Determination Results and Analysis

In order to compare the effect and efficiency of the algorithm of our proposed approach, Dijkstra’s
algorithm [43] and the OrthoVista method (INPHO, 2005) were selected to compare with the proposed
algorithm. Dijkstra’s algorithm is one of the earliest and simplest algorithms. OrthoVista is one of
the most widely used professional mosaicking products in the world, which is a desktop software of
INPHO’s digital photogrammetric system [45].

Figure 5 illustrates the experiments of PRAs determination and the intermediate results for Dataset
A. Figure 6 illustrates the experiments of PRAs determination and the intermediate results for Dataset B.
Figure 7 illustrates the experiments of PRAs determination and the intermediate results for Dataset C.

In Figures 5–7, (a) illustrates the overlapping area of the left image; (b) illustrates the overlapping
area of the right image; (c) illustrates the road probability map of the overlapping area of the left image;
(d) illustrates the road probability map of the overlapping area of the right image; (e) illustrates the
PRAs of the overlapping area; and (f) illustrates the NCC cost of the overlapping area. Figures 5c,
6c, and 7c illustrate the road probability map of the overlapping area of the left image of Datasets
A, B, and C, respectively. The larger the pixel value, the more likely it is to be determined as a road.
Figures 5d, 6d, and 7d illustrate the road probability map of the overlapping area of the right image of
Datasets A, B, and C, respectively. The larger the pixel value, the more likely it is to be determined as a
road. Most of the roads in the orthoimages are extracted. In order to enhance the appearance of the
road probability map, the stretch method of histogram equalize is used to adjust the value of the road
probability map. Because of the differences between the overlapping area of the left and right image,
the road probability maps obtained by them are also not the same, which are illustrated in (c) and
(d) of Figures 5–7. With the help of the Otsu method [41,42], the preferred road areas of the left and
right image are determined by the road probability threshold for binarization, respectively. The final
PRAs of the overlapping are defined from the preferred road areas of left and right image by Equation
(4). In Figures 5e, 6e, and 7e, the white areas are the PRAs of the overlapping areas, which are the
priority areas that the seamlines pass. Most roads of the overlapping area are included in the PRAs,
which meets our requirement. Figures 5f, 6f, and 7f illustrate the NCC cost of the overlapping area of
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Datasets A, B, and C, respectively. The greater the brightness value of a pixel, the greater the NCC cost.
The NCC cost is an effective method for assessing the difference of the pixel-level.
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overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC) cost of
the overlapping area.



Sensors 2020, 20, 1832 12 of 23
Sensors 2020, 20, x FOR PEER REVIEW 12 of 23 

 

  

(a) (b) 

  

(c) (d) 

Figure 6. Cont.



Sensors 2020, 20, 1832 13 of 23
Sensors 2020, 20, x FOR PEER REVIEW 13 of 23 

 

  

(e) (f) 

Figure 6. Experiments of preferred road areas (PRAs)determination for Dataset B: (a) the overlapping 
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the 
overlapping area of the left image, (d) the road probability map of the overlapping area of the right 
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of 
the overlapping area. 

  

(a) (b) 

Figure 6. Experiments of preferred road areas (PRAs) determination for Dataset B: (a) the overlapping
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the
overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of the
overlapping area.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 23 

 

  

(e) (f) 

Figure 6. Experiments of preferred road areas (PRAs)determination for Dataset B: (a) the overlapping 
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the 
overlapping area of the left image, (d) the road probability map of the overlapping area of the right 
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of 
the overlapping area. 

  

(a) (b) 

Figure 7. Cont.



Sensors 2020, 20, 1832 14 of 23

Sensors 2020, 20, x FOR PEER REVIEW 14 of 23 

 

  

(c) (d) 

  

(e) (f) 

Figure 7. Experiments of preferred road areas (PRAs)determination for Dataset C: (a) the overlapping 
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the 
overlapping area of the left image, (d) the road probability map of the overlapping area of the right 
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of 
the overlapping area. 

Figure 8 illustrates the experiments of seamline determination of the three different methods for 
Dataset A. Figure 9 illustrates the experiments of seamline determination of the three different 
methods for Dataset B. Figure 10 illustrates the experiments of seamline determination of the three 
different methods for Dataset C. The three methods were tested without a down-sampling strategy. 

In Figures 8–10, (a), (c), and (e) illustrate the seamlines determined using Dijkstra’s algorithm, 
OrthoVista and the proposed algorithm, respectively; (b), (d), and (f) illustrate the details of the white 
boxes in (a), (c), and (e), respectively. The ideal seamline should avoid crossing obvious objects, such 

Figure 7. Experiments of preferred road areas (PRAs) determination for Dataset C: (a) the overlapping
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the
overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of the
overlapping area.

Figure 8 illustrates the experiments of seamline determination of the three different methods for
Dataset A. Figure 9 illustrates the experiments of seamline determination of the three different methods
for Dataset B. Figure 10 illustrates the experiments of seamline determination of the three different
methods for Dataset C. The three methods were tested without a down-sampling strategy.

In Figures 8–10, (a), (c), and (e) illustrate the seamlines determined using Dijkstra’s algorithm,
OrthoVista and the proposed algorithm, respectively; (b), (d), and (f) illustrate the details of the white
boxes in (a), (c), and (e), respectively. The ideal seamline should avoid crossing obvious objects, such
as buildings, as much as possible and go along the objects which have small relief displacement, such
as a road, river, grass, or bare land [6]. From the seamline detection results of the three data sets and
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especially the details of the white boxes, compared with the two previous methods, the seamlines
determined by the proposed method mainly go along the roads where no significant differences exist.
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In many related studies, it is difficult to find a general method for automated quantitative
assessment of the seamline quality. Therefore, similar to the evaluation method in other relevant
studies [2,6,7,25], the quantitative index applied in the proposed method is the number of times that
seamlines cross obvious objects. The seamlines which have a smaller number of times are considered
ideal seamlines. In order to compare the efficiency of the different algorithms fairly, all the algorithms
were implemented without a down-sampling strategy and parallel computing strategy. The comparison
results of the three different methods in the three groups of test data are shown in Table 2.

Table 2. Comparison of previous methods with the proposed method.

Dataset Method Number of Obvious
Objects Passed Through Processing Time (s)

1
Dijkstra’s 5 329.770

OrthoVista 9 13.000
Proposed 1 21.387+∆

Dijkstra’s 6 1033.976
2 OrthoVista 6 21.000

Proposed 0 38.353+∆

Dijkstra’s 2 568.329
3 OrthoVista 11 9.000

Proposed 2 8.612+∆

The coverage area of Dataset A is located in the central urban area of large cities, for which the
spatial resolution is 0.5 m. There are many high-rise buildings, overpasses, residential areas, and
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other buildings in the image. Such objects are the objects which the ideal seamlines should bypass.
The seamline determination by Dijkstra’s algorithm crossed five obvious objects, which is shown in
Figure 8a. It crossed four bridges and an overpass, which is illustrated in Figure 8b. The seamline
determination by the OrthoVista algorithm crossed nine obvious objects, which is shown in Figure 8c.
Figure 8d shows that the seamline crossed several bridges and a buildings. Seamline determination
by the proposed algorithm crossed one building, which is shown in Figure 8e. The details of the one
crossed building are illustrated in Figure 8f. As shown in Figure 5e, during the optimization of the
seamline at the semantic level, the proposed algorithms almost included the roads in PRAs. By giving
the PRAs area a smaller weight, which is shown in Equation (7), the seamline mainly passes through
the PRAs, and the final seamline is mainly along the roads, bypassing most of the areas with large
relief displacement.

The coverage area of Dataset B is located in the suburbs area of large cities, for which the spatial
resolution is 0.2 m. There is much agricultural land, woodland, and bare land in the image. There
are some original villages and factories in it. A main road runs from north to south. The seamline
determination by Dijkstra’s algorithm crossed six obvious objects, which is shown in Figure 9a. The
details of the crossed buildings are illustrated in Figure 9b. The seamline determination by the
OrthoVista algorithm crossed six obvious objects, which is shown in Figure 9c. The details of the
crossed buildings are illustrated in Figure 9d. Seamline determination by the proposed algorithm
crossed no obvious objects and was along the north–south main road, which is shown in Figure 9e.
The details of the crossed buildings are illustrated in Figure 9f. As shown in Figure 6e, during the
optimization of the seamline at the semantic level, the proposed algorithms almost included the roads
in PRAs. By giving the PRAs area a smaller weight, which is shown in Equation (7), the seamline
mainly passes through the PRAs, and the final seamline is mainly along the roads, bypassing most of
the areas with large relief displacement.

The coverage area of Dataset C is located in the central urban area of a medium-sized city, for
which the spatial resolution is 0.5 m. In the image, in addition to buildings and residential areas, there
is much agricultural land and woodland. The seamline determination by Dijkstra’s algorithm crossed
two obvious objects, which is shown in Figure 10a. It crossed two buildings, which is illustrated
in Figure 10b. The seamline determination by the OrthoVista algorithm crossed 11 obvious objects,
which is shown in Figure 10c. Figure 10d shows that the seamline crossed several buildings. Seamline
determination by the proposed algorithm crossed two obvious objects, which is shown in Figure 10e.
The details of the two crossed buildings are illustrated in Figure 10f. As shown in Figure 7e, during
optimization of the seamline at the semantic level, the proposed algorithms almost included the roads
in PRAs. By giving the PRAs area a smaller weight, which is shown in Equation (7), the seamline
mainly passes through the PRAs, and the final seamline is mainly along the roads, bypassing most of
the areas with large relief displacement.

In summary, due to the use of D-LinkNet, the roads were almost extracted and the PRAs were
determined, which are shown in Figures 5e, 6e, and 7e. The seamline obtained by our method had the
best result and passed through the less obvious objects and mainly went along the roads.

In practice, efficiency has to be taken into consideration. The processing time are recorded in
the fourth column of Table 2. This shows that the seamlines determined by Dijkstra’s algorithm
took around 644.025 s on average. OrthoVista’s method was better. It took around 14.333 s on
average. The seamlines determined by the proposed method took around 22.784 +∆s on average. This
processing time for the proposed method consists of two parts. The first part is the time required for
extracting the road probability map using D-LinkNet, and the second part is the time required for
seamline optimization. ∆ represents the time required for training the network and extracting the
road probability map. It took around 50 h. Regardless ∆, the proposed and OrthoVista methods are
at the same level. Compared with Dijkstra’s and OrthoVista’s methods, ∆ of the proposed method
includes the network training time and road probability map extraction time. The network training
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time accounted for most of ∆. Although network training takes some time, once processed completely,
it can be used to extract the road probability map for other data.

Figure 11 shows the experiments of seamline determination for Dataset A with different values of
w. A quantitative comparison of seamlines determined by the proposed method for Dataset A with
different values of w was conducted, as shown in Table 3. w is the weight for pixels in PRAs, which is
shown in Equation (7). With such weight processing, this makes sure that the difference in the road
area can be relatively small, so the seamlines will pass through roads as much as possible. In our paper,
we suggested setting w to 0.001. According to Table 3, an acceptable seamlines determination result
can be obtained by setting w to 0.001 for Dataset A.
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Figure 11. Experiments of seamline determination for Dataset A with different values of w: (a) w is
0.001 (red line) and w is 0.1 (cyan line), (b) w is 0.001 (red line) and w is 0.01 (cyan line), (c) w is 0.001
(red line) and w is 0.0001 (cyan line), and (d) w is 0.001 (red line) and w is 0.00001 (cyan line).

Table 3. Comparison of the proposed method with different values of w for Dataset A.

The Values of w Number of Obvious
Objects Passed Through Processing Time (s)

0.1 11 24.522+∆
0.01 4 18.602+∆
0.001 1 21.387+∆

0.0001 1 25.461+∆
0.00001 1 25.491+∆

4. Conclusions

In this paper, an automatic seamline determination method was presented for urban image
mosaicking based on road probability map from the D-LinkNet neural network. The road probability
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map was used to improve the seamline determination. This method optimizes the seamlines at both
the semantic and pixel level. At the semantic level, the PRAs are determined by binarizing the road
probability map. In this step, most of the roads are included in the PRAs. At the pixel level, Dijkstra’s
algorithm is adopted to find the final seamlines. To improve the efficiency, the minimum heap is
adopted to store the graph in the form of adjacency lists and extract the minimum efficiently [7]. Three
group data sets of aerial orthoimages with different ground resolutions located in different cities were
used to test and validate the proposed method in this paper. The comparative experimental results
show the advantages of the proposed method. Compared with two previous methods, the seamline
obtained by the proposed method had the best result in that it passed through the less obvious objects
and mainly followed the roads. In terms of the computational efficiency, the proposed method also
has a high efficiency. Moreover, the proposed method can easily be applied to the seamlines network
determination framework easily [3,46,47].

Nevertheless, the proposed method may be improved in the future as follows: (1) Road probability
map generation by D-LinkNet may have a significant influence on the final seamline determination.
Therefore, more training samples should be made to better train the D-LinkNet neural network. (2)
The proposed algorithm can be applied to the seamline network determination framework [3,46,47] to
construct a single seamless composite image automatically.
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