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Abstract: Autonomous motion planning (AMP) of unmanned aerial vehicles (UAVs) is aimed at
enabling a UAV to safely fly to the target without human intervention. Recently, several emerging
deep reinforcement learning (DRL) methods have been employed to address the AMP problem in
some simplified environments, and these methods have yielded good results. This paper proposes
a multiple experience pools (MEPs) framework leveraging human expert experiences for DRL to
speed up the learning process. Based on the deep deterministic policy gradient (DDPG) algorithm,
a MEP–DDPG algorithm was designed using model predictive control and simulated annealing
to generate expert experiences. On applying this algorithm to a complex unknown simulation
environment constructed based on the parameters of the real UAV, the training experiment results
showed that the novel DRL algorithm resulted in a performance improvement exceeding 20% as
compared with the state-of-the-art DDPG. The results of the experimental testing indicate that UAVs
trained using MEP–DDPG can stably complete a variety of tasks in complex, unknown environments.

Keywords: UAV; motion planning; deep reinforcement learning; multiple experience pools

1. Introduction

The number of applications for unmanned aerial vehicles (UAVs) is widely increasing in the civil
arena such as surveillance [1,2], delivery of goods [3,4], power line inspection [5,6], and mapping [7,8].
In the majority of these applications, it is necessary for UAVs to plan their motion such that they can
perform their tasks while avoiding threats in complex, unknown environments.

Many traditional path planning algorithms, such as A* algorithm, visibility graph algorithm, and
free space algorithm, are used to solve the motion planning problem of UAV, but these methods can
usually only achieve good results when the environment or map is known. Under real circumstances,
the task environment of UAV is often unknown or not completely known. Simultaneous localization
and mapping (SLAM) maps the unknown environment according to position and sensor information
of the UAV during its movement in the environment so as to implement the automatic motion planning
of the UAV according to the drawn map. Simultaneous localization and mapping make up for the
limitations of traditional path planning methods in unknown environments, but these kinds of methods
also have a large disadvantage: it is difficult to solve dynamic environment problems. Once the
environment changes, the map needs to be redrawn which will seriously affect the mission efficiency
of the UAV.

With the rise of artificial intelligence, reinforcement learning (RL) has become an effective method
to solve the above problems. Through continuous interaction between the UAV and the environment,
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the UAV trained by RL can efficiently complete tasks in complex environments. With the increasing
complexity of the environment, deep reinforcement learning (DRL) with neural networks can be
applied to environments that are closer to reality. Many studies used DRL to solve the autonomous
motion planning (AMP) problem of UAV and achieved good results, but these studies still have some
shortcomings: (1) the models of the UAV and environment can be more complex and realistic; (2) the
convergence speed and convergence results of the algorithm can be improved.

To address these problems, explorations and experiments were conducted in this study. The main
contributions of this study are as follows:

1. Construction of a complex 3D simulation environment for AMP.

A universal environment based on the parameters of the real UAV was built. The UAV, obstacles,
etc., in this environment were decided in equal proportion according to actual situations. The complete
kinematics model of the UAV enables the environment to better simulate real situations. By changing
the environment, simulations of many different tasks can be implemented to test the performance of
the algorithm.

2. A multiple experience pools DRL (MEP-DRL) framework was designed to solve the AMP problem
in complex, unknown environments.

“Experience” usually refers to a set of data containing state, action, reward, and other information
in RL. The agent optimizes its action strategy through continuous learning of experiences. The quality
of the experiences determines the effectiveness of the training. Therefore, in order to improve the
quality of the experiences learned by the agent, multiple experience pools are used to store different
kinds of experiences in this paper. In the learning process, dynamically adjusting the proportion of the
learning experiences obtained from each experience pool not only solves the AMP problem but also
effectively improves the convergence efficiency and results.

3. A method combining model predictive control (MPC) and simulated annealing (SA) to generate
expert experiences was introduced.

The AMP problem is a very complicated decision-making problem. In real situations, expert
experiences can greatly improve UAV control. An MPC-SA architecture is designed, in which the
MPC predicts the future, and then the SA selects the best outcome from the predicted results, thereby
achieving a good simulation of expert experiences.

The remainder of this paper is structured as follows: The related work is discussed in Section 2.
The AMP problem of a UAV is formulated in Section 3. Section 4 presents the proposed MEP–DDPG
algorithm. The simulation environment is introduced in Section 5. The training and testing experiment
results are presented and discussed in Section 6. Finally, Section 7 concludes this paper and envisages
some future work.

2. Related Work

A multitude of methods ranging from offline to online methods have been proposed to address
UAVs’ AMP problems. Offline-based methods do not learn during the planning process and maintain
fixed rules or strategies from beginning to end. Many well-known path planning algorithms fall
into this category, the most typical of which is the A* algorithm. Yang [9] described a UAV fast path
planning method that uses an improved sparse A* algorithm to significantly improve the search
efficiency. Wang [10] proposed using an enhanced sparse A* search method based on Dubins path for
UAV path planning that can determine the optimal path with less planning time. Ren [11] proposed
a three-dimensional (3D) UAV path planning algorithm based on using an A* algorithm to solve
the path planning problem in a complex environment. These methods have achieved good results
in specific environments, but they do not perform well when planning in unknown environments.
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In comparison, simultaneous localization and mapping (SLAM), which is one of the online-based
methods, can successfully solve the AMP problem even when the environment is unknown [12–15].
Wang [12] presented a complete navigation system for an indoor UAV that was based on SLAM, and
this system was able to ensure that the UAV could fly along the internal walls of a room without
collisions. Cui [13] combined SLAM with an online path planning module to allow UAVs to navigate
autonomously through a foliage environment. However, since SLAM needs to model the environment
online first, if the environment changes, it could perform poorly. In addition, the efficiency of such
methods depends on the complexity of the environment. The more complex the environment, the
more time it takes to map.

To overcome the shortcomings of the methods described above, other studies [16–19] have
proposed using reinforcement learning (RL), an online learning method, for UAV motion planning.
Reinforcement learning can solve the UAV’s AMP problem with navigating in an unknown environment,
but as the environment becomes more complex and closer to reality, the “dimension curse” problem
limits its development.

In 2013, DeepMind innovatively combined deep learning (DL) with RL to form a new hotspot
in the field of artificial intelligence which is known as DRL [20]. By leveraging the decision-making
capabilities of RL and the perceived capabilities of DL, DRL has been proven to be efficient at controlling
UAV [21–31]. Zhu [21] proposed a framework for target driven visual navigation, this framework
addressed some of the limitations that prevent DRL algorithms from being applied to realistic settings.
Zhang [22] presented a coarse-to-fine approach with RL to address the aspect ratio variation issue for
target tracking in UAV. Bøhn Eivind [23] proposed a DRL controller to handle the nonlinear attitude
control problem, enabling extended flight envelopes for fixed-wing UAVs. Tai [24] designed a mapless
motion planner with DRL which can navigate the nonholonomic mobile robot to the desired targets
without colliding with any obstacles. Pfeiffer Mark [25] presented and analyzed an approach that
combines the advantages of both imitation learning and DRL for target-driven map-less navigation.
Han [26] introduced a double deep Q-Network (Double DQN) [32] that utilized a priority sample replay
method, and this demonstrated better results than DQN [20] and Double DQN when UAVs navigated
through a 3D obstacle avoidance environment. Kersandt [27] used DQN, Double DQN, and Dueling
DQN [33] in the same UAV control mission and compared each of these methods. Singla [28] designed
a deep recurrent Q-Network [34] with temporal attention that exhibited significant improvements
over DQN and D3QN [32] for UAV motion planning in a cluttered and unseen environment. For the
autonomous landing task of UAV, Polvara R [29] introduced a sequential DQN which is comparable
with DQN and human pilots while being quantitatively better in noisy conditions. Wang [30] proposed
a fast recurrent deterministic policy gradient algorithm to address the UAV’s autonomous navigation
problem in a large-scale complex environment. Rodriguez-Ramos Alejandro [31] addressed the
continuous UAV landing maneuver on a moving platform by means of the DDPG algorithm, trained
in simulation, and tested in real flights.

These studies demonstrate that DRL has already successfully addressed several AMP problems,
but as the unknown environment becomes increasing complexity, there are still some challenges that
must be overcome:

1. The models of the UAV and environment are simplified.

Previous studies have focused on UAV navigation. Therefore, the UAV model has been simplified.
For example, in real situations, the motion space of a UAV is continuous, whereas in some studies [26–28],
the motion space of a UAV is considered discrete. Furthermore, the flight speed of a UAV is variable
within a certain range, where Reference [30] regards UAV speed as a fixed value. In addition to these
issues, the environment should also be as realistic as possible. Otherwise, these simplifications of the
UAV model will make the learning process simpler; however, they may lead to poor practicability.

2. The convergence speed and results can be improved.
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It is well known that DRL, which is the approach based on artificial neural networks, involves
many hyperparameters, and its performance is often inextricably linked to the setting of these
hyperparameters. In addition, other factors such as different algorithm frameworks and reward
functions can also have a significant impact on the results. Therefore, it is essential to use appropriate
strategies to optimize these factors and improve the convergence speed as well as the results.

The above problems are discussed and solved in detail in the following sections of this study.

3. Problem Formulation

3.1. UAV‘s AMP

As mentioned earlier, in actual applications of UAVs, AMP is an essential technology that
determines if the UAV can successfully complete the task. If the UAV cannot appropriately control its
own posture and movements, it may result in a failure of the mission and may also cause damage to
surrounding objects. For example, when a UAV is delivering goods, it may cause injury to people or
vehicles if it is flying too low or too fast. Figure 1 is a schematic diagram of an AMP problem from
different perspectives.
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Figure 1. Different perspectives of an AMP problem. Left: top view; Middle and Right: side views
from different perspectives.

The blue cone in the figure represents the range that the UAV can sense through the sensor.
The white hemispheres represent dangerous areas such as buildings in ground search tasks or an
adversary’s radar monitoring range. The green hemisphere represents the final destination that the
UAV needs to reach. In short, the AMP problem is how to make the UAV automatically use the limited
information obtained inside the range of the blue cone to adjust its posture and reach the position of
the green hemisphere efficiently without entering the white hemispheres areas.

3.1.1. Motion Planning Framework for UAVs

In the real world, UAV motion planning can be divided into three modules: navigation, guidance,
and control.

As shown in Figure 2, the three modules of navigation, guidance, and control complete the
motion planning for UAV. The navigation module is primarily responsible for sensing which includes
perceiving environment and estimating the state of the UAV and passing the perceived information to
other modules. The perceived information usually includes the UAV’s position, speed, flying height,
wind speed, target position, etc. The guidance module plays a planning role throughout the closed
loop. It analyzes the information obtained about the UAV and environment, plans the motion of the
UAV in combination with the scheduled flight mission, and outputs the required load factor to the
other modules. When the control module receives the required load factor, the required load factor
will be converted into different actuator commands and then passed to the corresponding actuators.
These actuators, such as engines and rudders, can execute the corresponding commands and achieve
stable control of the UAV.
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Figure 2. Unmanned aerial vehicle (UAV) motion planning framework for real-world applications.

In the simulation environment, the navigation, guidance, and control modules do not operate
independently. As shown in Figure 3, the motion planning module directly replaces the navigation
and guidance modules. In addition, the control module and the UAV model are integrated into
the simulation module. The main work of the motion planning module is integrating the current
information of environment and the UAV and using an offline or the online-based method to plan the
motion of the UAV according to the UAV’s mission. In addition, based on the action to be performed
by the UAV, the motion planning module will calculate the required load factor of this action and
transfer it to the simulation module. The simulation module calculates the UAV’s acceleration, velocity,
and position based on this load factor and then adjusts the attitude of the UAV model and displays it
on the simulation interactive interface.
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3.1.2. UAV Model

Previous studies focused more on the motion planning module and simplified the simulation
module, while the UAV model used in this study was as realistic as possible. Here, this paper assumed
that the velocity direction of the UAV’s velocity was consistent with the direction of the UAV’s axis.
When the motion planning module outputs the required load factor nu at the current moment, according
to the reference [35], the acceleration au at the current moment can be calculated as follows:

au =


aux

auy

auz

 = nu · g =


nux

nuy

nuz

g (1)
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Defining ∆t as the simulation step, the velocity vu at the current moment can be obtained from the
velocity v0 at the previous moment:

vu = v0 + au · ∆t =


v0x + aux · ∆t
v0y + auy · ∆t
v0z + auz · ∆t

 (2)

Similarly, the current UAV position pu can be calculated from the position p0 at the previous
moment:

pu =


pux

puy

puz

 = p0 + vu · ∆t =


p0x + vux · ∆t
p0y + vuy · ∆t
p0z + vuz · ∆t

 (3)

At the same time, the yaw angle ϕu and pitch angle αu of the UAV at the current moment can be
calculated according to the direction of the velocity (Figure 4):

ϕu = atan
(vuy

vux

)
(4)

αu = atan

 vuz√
vux2 + vuy2

 (5)
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So far, all the required UAV information has been obtained. In this paper, the vector ξu =

[pux, puy, puz,ϕu,αu, ‖ vu ‖]
T represents the UAV’s state for calculation and description.

3.2. RL for UAV’s AMP

The UAV’s AMP problem is a typical agent decision-making problem [26], so RL-based approaches
can be used to address it. In 1957, Bellman [36] proposed a model for sequential decisions known as
the Markov decision process (MDP). Almost all RL problems can be modeled as an MDP and shown
as a 5 tuple (S, A, P, R,γ), where S is the state space, which is the set of all states that an agent can
reach in a specific environment; A represents the action space in the environment; P is the probability
of executing an action a from state s to state s′; R represents the reward received by the agent after



Sensors 2020, 20, 1890 7 of 21

executing action a and transiting from state s to state s′ (where a ∈ A and s, s′ ∈ S); γ ∈ [0, 1] is the
discount factor which determines the importance of current or future rewards [37].

The interaction process between the UAV and the environment can be constructed using MDP:
At each discrete time step t, the state of the UAV is st, and the action at is performed based on this
state. After this time step, the UAV receives the reward rt from the environment and reaches the next
state st+1. The action selected by the UAV at each time step is determined by π, which is the collection
of policies. For example, an element π(a|s) from π represents the probability that the UAV takes an
action a at a certain state s. The goal of RL is to find the optimal policy π∗, and to obtain the largest
cumulative reward Rt if policy π∗ is followed:

Rt =
T∑

t′=t

γt′−tr(st′, at′) (6)

where T represents the end time step of an episode.
The state-action value function Qπ(s, a) represents the expected episode cumulative reward

obtained by the UAV when performing the action a in accordance with the policy π in the current
state s:

Qπ(s, a) = E[Rt|st = s, at = a,π] (7)

When the optimal policy π∗ is followed:

Q∗(s, a) = max
π

E[Rt|st = s, at = a,π] (8)

From the Bellman equation [36]:

Q∗(s, a) = E
[
rt+1 + γmax

at+1
Qπ(st+1, at+1)

∣∣∣∣∣st = s, at = a
]

(9)

Constantly iterating Formula (9) will eventually converge the state-action value function to obtain
the optimal policy [38]:

π∗ = argmax
a∈A

Q∗(s, a) (10)

The state-action value function can only be used to address the discrete action space problem,
because in continuous spaces finding the greedy policy requires an optimization of at at every timestep;
this optimization is too slow to be practical with large, unconstrained function approximators and
nontrivial [39]. While in the real world, the action space of a UAV is continuous, which requires the
addition of some policy-based RL methods. These are explained in Section 4.

4. MEP–DDPG for Motion Planning

4.1. DDPG

RL methods are mainly classified into two types of value-based methods and policy-based
methods. Value-based methods output the state-action values and select the action with the highest
value. Common methods in this type include Q-learning [40] and DQN. Policy-based methods directly
output the probability of the next action, and select the action based on the probability. This type of
method is suitable for non-continuous and continuous motion problems. A typical method of the
policy-based methods is policy gradient [41].

Lillicrap [39] used the idea of extending DQN based on Q-learning to transform the deterministic
policy gradient (DPG) [42] and proposed a DDPG algorithm based on the actor–critic framework. In
the actor–critic framework, the actor network chooses action based on probability. The critic network
evaluates the action selected by the actor network. The actor network then modifies the probability of
action selection based on the evaluation of the critic network. Because of this framework, DDPG could
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handle problems with both high-dimensional continuous state space and high-dimensional continuous
action space [43]. In DDPG, the double-network structure cuts off the correlation and improves the
learning efficiency of the neural networks. Consequently, there are target-net and eval-net in both the
actor network and the critic network.

The critic network updates the network parameters by minimizing the loss function L
(
θQ

)
:

 L
(
θQ

)
= 1

N
∑
i

(
yi −Q

(
si, ai

∣∣∣θQ
))2

yi = r(si, ai) + γQ′
(
si+1,µ′

(
si+1

∣∣∣θµ′)∣∣∣∣θQ′
) (11)

where θQ and θQ′ represent the parameters of eval-net and target-net in the critic network respectively,
θµ
′

means the parameters of target-net in actor network, N is the number of experiences used to learn.
The actor network uses the Monte Carlo sampling method to approximate the expected value and

approximates its network parameters using the chain rule:

∇θµ J ≈
1
N

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)

∇θµµ(s|θµ)|si (12)

where θµ represents the parameters of the eval-net actor network.
During the training process, only the eval-net parameters are required, and the parameters of the

target-net are soft-updated by eval-net at regular intervals:

θ′ ← τθ+ (1− τ)θ′ (13)

where the range of τ is [0, 1].
This soft-updated method makes the problem more similar to supervised learning, which improves

its stability.
The DDPG also uses the experiences playback mechanism [20] to store the experience (st, at, rt, st+1)

generated by the interaction between the actor network and the environment in the experience pool.
During network training, samples are randomly selected from the experience pool each time there is
a network parameter update. However, the experiences in the experience pool are not all useful for
learning. In particular, during the early stages of training, a majority of the samples in the experience
pool are not useful. Improving the quality of each sampling experience will have a significant impact
on the efficiency of the DDPG algorithm.

4.2. MEP–DDPG Framework

As mentioned in Section 3, UAV motion planning represents a complicated problem. In practice,
UAVs are often controlled by operators on the ground using remote control equipment. When using
RL to realize UAV’s AMP, if we can add human expert experiences to the learning process, the UAV
may learn better strategies by combining expert experiences with the experiences it has explored. An
MEP–DDPG framework is designed to incorporate expert experiences into the DRL process.

As shown in Figure 5, multiple experience pools included in MEP–DDPG are used to store
different types of experiences. At each time step t, the UAV performs the action at, and through
interaction with the environment, an experience (st, at, rt, st+1) is generated. According to the method
of generating this action (whether generated under the guidance of experts or not under the guidance
of experts), this experience is put into different experience pools. It is assumed that expert experiences
are generated under the guidance of different human experts. However, different experts may have
different UAV motion planning policies. For example, Expert 1 requires the UAV to always maintain
a slow speed and fly cautiously, whereas Expert 2 requires UAV to fly at the maximum speed when
the threats are not detected, etc. Under the framework of MEP–DDPG, the experiences generated
by a UAV interacting with the environment under the guidance of Expert 1 is stored in experience
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pool 1, the experiences generated under the guidance of Expert 2 is stored in experience pool 2, and
so on. The expert experiences generated under the guidance of X − 1 different experts are stored in
X − 1 different experience pools, and the experiences gained by the UAV is stored in experience pool
X. During the learning time, a total of N experiences are sampled from X different experience pools
to form a batch according to a certain sampling strategy. The parameters of the critic network are
updated by minimizing the loss function L

(
θQ

)
(Formula (11)). The strategy gradient method is used

to update the parameters of the actor network (Formula (12)). Then, the parameters of the target-net in
both actor network and critic network are updated by the soft update method. The above process is
performed at each time step, and the cycle is repeated until the networks reach convergence.
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In the early stages of training, because the UAV knows nothing about the environment, most
of the experiences gained by randomly taking actions to interact with the environment is not useful.
Therefore, this MEP–DDPG framework uses expert guidance to generate expert experiences and stores
them into the corresponding experience pool based on a certain proportion η. As the training process
progresses, η gradually decreases to 0 while the learning method gradually returns to the initial DDPG
in the second half of the training.

Because the UAV learns higher-quality experiences (expert experiences) in the early stages of
training, this means that the parameters of the neural network are quickly adjusted to reach a good
state. This method not only avoids falling into a local optimal solution in the early stages of training,
but also greatly improves the convergence speed of the neural networks.
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4.3. MPC-SA for Expert Experiences

During each training process, the UAV interacts with the environment millions of times. If a real
expert guides the motion of the UAV to provide expert experiences, it will require a significant amount
of manpower and time. Therefore, an MPC-SA framework is proposed, which can simulate human
experts by using limited information and provide expert guidance for the UAV’s training.

4.3.1. Model Predictive Control

According to references [44–46], the main idea of MPC is rolling optimization. Using the UAV’s
AMP as an example and assuming that UAV’s actions are discrete, only three actions can be selected
at each moment: deflecting to the left by a certain angle, deflecting to the right by a certain angle, or
maintaining the current direction.

As shown in Figure 6, assuming the current time is t = 0, all possible action sequences from t = 0
to t = n − 1 can be enumerated (only the possible action sequences for n = 3 are shown). In other
words, at each time step, all possible action sequences for the next 3 time steps are enumerated. From
these, it is easy to select the optimal action sequence which is shown in red in Figure 6. By executing the
red action sequence, the UAV was able to approach the target as quickly as possible without colliding
with the obstacle. However, only let the UAV perform the first action in this sequence, which was to
deflect to the right by a certain angle at time t = 0. Consequently, it reached the position shown at time
t = 1 in the figure. Then, predict the action sequences of the next 3 time steps and let the UAV execute
only the first action again. This process was repeated until the UAV finds the target and completes
its mission.
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In this way, the MPC rolling optimization method was used to plan the UAV’s motion. This not
only helps the UAV select the optimal action at each time step but also avoids failure to complete the
task due to the changes in the environment. However, in practice, the action space of the UAV at each
time step is continuous, which means that there are countless action sequences that can be selected. It
is impossible to list all the action sequences one by one, so it is necessary to use some optimization
methods to choose a better action sequence.

4.3.2. Simulated Annealing

Simulated annealing is an optimization algorithm proposed by Kirkpatrick [47] in 1983 that
includes two steps. First, a solution is randomly selected to start the process, and then a random
perturbation is generated in order to obtain a new solution. Second, the objective function is used to
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judge whether the new solution is good or bad, and each new solution is selected to be accepted or
rejected according to the following Formula (14):

p =

1 i f E(xnew) < E(xold)

exp
(
−

E(xnew)−E(xold)
T

)
i f E(xnew) ≥ E(xold)

(14)

where p is the probability of choosing the new solution to take the place of the old one, while E(x) is
the objective function value of the solution x. By simulating the process of object cooling, the process
described above is continuously repeated until the cycle ends and the final solution is obtained.

Because random perturbations are added into the solution process, the SA can move out of the
local optimum to determine the global optimal solution. The SA algorithm is used to select among the
action sequences predicted at each time step. Figure 7 shows some of the selection processes of the
UAV in different states:Sensors 2020, 20, x FOR PEER REVIEW 11 of 20 
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Since the dimension of the action space was too high when n ≥ 2 in the MPC, here this paper set
n = 1 to visualize the decision process which means that the UAV chose the optimal one among all
possible action sequences at the current time step and executed it. At each time step, the required load
factor of the UAV was a three-dimensional vector whose value range in each direction was [−1, 1].
As shown in Figure 7, the action space of the UAV at each moment was a cube, in which there were
countless actions that could be selected. Each action sequence was evaluated according to the objective
function in the SA algorithm and assigned a color; the darker the color, the better the action sequence.
The role of SA was to choose the action sequence with the highest quality (the darkest color) in this
continuous action space as much as possible.

4.4. MEP–DDPG Algorithm

The experiences generated by the MPC-SA can provide a good approximation for the experiences
of human experts. These experiences were placed in different experience pools, and a certain sampling
strategy was used for sampling. After applying the DDPG algorithm to train the UAV, the MEP–DDPG
algorithm could finally formed (Algorithm 1):
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Algorithm 1: MEP–DDPG Algorithm

Randomly initialize critic network Q
(
s, a

∣∣∣θQ
)

and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q′ and µ′ with weights θQ′
← θQ , θµ

′

← θµ

Initialize experience pools R1, R2 · · ·RX
for episode = 1, M do

Initialize a random processN for action exploration
Receive initial observation state s1

for t = 1, T do
According to probability η, select action at = µ(st|θµ) +Nt based on current policy and exploration noise or

select action at by MPC-SA
Execute action at and observe reward rt and observe new state st+1

Store experience (st, at, rt, st+1) in specific R depending on the source of at.
Follow a specific sampling policy, sample a random minibatch of N experiences (si, ai, ri, si+1) from

R1, R2 · · ·RX
Set

yi = ri + γQ′
(
si+1,µ′

(
si+1

∣∣∣θµ′)∣∣∣∣θQ′
)

Update critic by minimizing the loss:

L =
1
N

∑
i

(
yi −Q

(
si, ai

∣∣∣θQ
))2

Update the actor policy using the sampled policy gradient:

∇θµ J ≈
1
N

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)∇θµµ(s|θ

µ)|si

Update the target networks:
θQ′
← τθQ + (1− τ)θQ′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

At each time step t, the UAV chose an action at based on the existing strategy or according to
the MPC-SA based on a certain probability η. Subsequently, the UAV executed this action at at the
current state of the environment st and obtained the environmental feedback reward rt and the next
state st+1. Next, according to the source of the action at, it stored the experience (st, at, rt, st+1) in a
corresponding experience pool R for the learning process. During the learning time, a total of N
experiences were sampled from all experience pools to form a minibatch following a certain policy.
Finally, the parameters of each network were updated according to the DDPG’s soft update method.

5. Training and Testing Environment

To achieve conditions similar to real-world conditions, this study designed a 3D simulation
environment based on the parameters of the real UAV. At present, countries around the world have
made progress in the research of UAVs and created advanced UAVs. These advanced UAVs can be
used in many different tasks such as: disaster monitoring, anti-smuggling, environmental protection,
meteorological observation, forest fire prevention and geological survey, etc. The ranges of some main
parameter of these advanced UAVs are shown in the Table 1:
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Table 1. The ranges of some main parameter of some advanced UAVs.

Parameter Range

maximum flying height 7000–12,000 m
maximum flight speed 220–370 km/h
maximum flight time 20–40 h
maximum load factor 20–30

maximum take-off weight 3–7 t

Based on these parameters, a 120 × 90 × 10 km3 simulation environment in equal proportions
was constructed. The programming language used to build the platform was Python 2, and the
display interface was implemented by using the visualization toolkit. Figure 8 shows the simulation
environment from different perspectives:
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Figure 8. The simulation environment as shown from different perspectives. Left: top view; Right:
main view.

In this environment, the white hemispheres represent the danger areas and the green hemisphere
represents the target. The mission of UAV was to fly as low as possible and reach the target area as
quickly as possible without entering the danger areas. The UAV’s maximum flight speed was 103 m/s
and the maximum load factor was 25. In addition, the acceleration of gravity in the environment was
set at a fixed value of 9.8 m/s2. The radiuses of the threat areas ranged from 5–10 km while the radius
of the target area was 3 km.

For detection, Nr line segments were used to simulate lidar. As shown in Figure 9, Nr blue line
segments were used to sense the information in environment. Each line segment can calculate the
distance d from the UAV to the obstacles or boundaries. In addition, when an object is detected by a
line segment, the blue color will change to red as an alert. The monitoring distance of lidar is set to 50
km in the experiments.
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represent the position of the target. Therefore, the system state 𝑠 = [𝑝்௫ − 𝑝௨௫, 𝑝்௬ − 𝑝௨௬, 𝑝்௭ −𝑝௨௭, 𝜑௨, 𝛼௨, ‖𝒗௨‖, 𝑑ଵ, 𝑑ଶ, ⋯ , 𝑑ே] with a total of 𝑁 + 6 elements was fed into the critic network, and 
an action 𝑎௧ = [𝑛௨௫, 𝑛௨௬, 𝑛௨௭] was the output. 

To avoid the sparse reward problem in RL, the reward function was set as follows: 
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where 𝐷 and 𝐷௨ are the previous and current relative distances between UAV and the target, 
respectively; 𝛥𝜑 and 𝛥𝜇 represent the yaw angle and the pitch angle between UAV’s direction and 
target, respectively; 𝐻௩ is the maximum height of the simulation environment ; 𝑑௩ represents 
the average of 𝜉. These 5 sub items in Formula (15) represent the contributions of distance, angle, 
height, threat, and velocity to the rewards, respectively, and the contribution rates can be tuned by 𝜆ଵ，𝜆ଶ ⋯ 𝜆ହ. 

6. Experiments and Tests 

6.1. Training in Static Environments 

During the entire training process, the hyper parameters were set as follows: 
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Figure 9. Blue line segments show the sensor range of the UAV. (a,b): ground (boundary) detected;
(c,d): obstacle detected.

At each time step t, an environment state vector ξe = [d1, d2, · · · , dNr]
T was calculated

and used to form the state st together with ξu and ξT, where ξT =
[
pTx, pTy, pTz

]T
,
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and pTx, pTy, pTz represent the position of the target. Therefore, the system state s =[
pTx − pux, pTy − puy, pTz − puz,ϕu,αu, ‖ vu ‖, d1, d2, · · · , dNr

]
with a total of Nr + 6 elements was fed

into the critic network, and an action at =
[
nux, nuy, nuz

]
was the output.

To avoid the sparse reward problem in RL, the reward function was set as follows:

r(s, a) =


ra i f arrive the target area

rc i f collied or out o f range

λ1
(
Dpre −Dcur

)
+ λ2

(
−

∆ϕ+∆µ
8

)
+ λ3

(
1− puz

Henv

)
+ λ4dave + λ5 ‖ vu ‖ every step

(15)
where Dpre and Dcur are the previous and current relative distances between UAV and the target,
respectively; ∆ϕ and ∆µ represent the yaw angle and the pitch angle between UAV’s direction and
target, respectively; Henv is the maximum height of the simulation environment; dave represents the
average of ξe. These 5 sub items in Formula (15) represent the contributions of distance, angle, height,
threat, and velocity to the rewards, respectively, and the contribution rates can be tuned by λ1,λ2 · · ·λ5.

6. Experiments and Tests

6.1. Training in Static Environments

During the entire training process, the hyper parameters were set as follows:

1. DDPG algorithm:

Nr was 32, which indicates that there were 32 line segments used to simulate lidar, and the input
layer of the actor network had 38 nodes. The actor network had two hidden layers with 100 nodes
for each and one output layer with three nodes, while the critic network had two hidden layers with
100 nodes for each and one output layer with 1 node. The learning rates of the actor and the critic
networks were 0.0001 and 0.001, respectively. The soft update rate τ of the actor network was 0.1 and
the τ of the critic network was 0.2. The discount factor γ was 0.9. The optimizer was Adam. The
size of experience pool was 50,000 and the batch size was 256. The parameters in the reward function
(Formula (15)) were: ra = 100, rc = −200, λ1 = 20, λ2 = 20, λ3= 10, λ4 = 40, and λ5 = 10.

2. MEP–DDPG algorithm:

For the SA part, the objective function was set according to Formula (16):

fSA = ρ1
(
Dpre −Dcur

)
+ ρ2Dobs (16)

where Dobs represents the distance between the UAV and the nearest obstacle that can be detected, and
the values of ρ1 and ρ2 are 100 and 200, respectively. The number of extra experience pools for storing
expert experiences was 1, and the capacity was 50,000. The sampling policy in multiple experience
pools was as follows: k was the proportion of the experiences sampled from the expert experience
pools, and its initial value was 100%. During the training process, the value of k decreased by 0.002%
at each learning time until it was reduced to 10%. This ensured that at the beginning of the training,
a majority of the learning experiences came from the expert experience pools, and only 10% of the
experiences came from the expert experience pools in the second half of the training process. All other
hyperparameters were the same as those used in the DDPG algorithm.

During the training process, the position of the UAV and the target were randomly generated. All
the algorithms were implemented with Tensorflow and models were trained on Ubuntu 16.04 with a
GeForce RTX 2070 GPU for 5000 episodes. The maximum number of steps per episode was set to 3000.
It took 10–14 h to complete a training with 5000 episodes. Experiments were performed in simulation
environments with different levels of environmental complexity, and the average success rate (the
probability of the UAV successfully reaching the target area in last 500 episodes) and episode average
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reward (the average rewards of all the steps in one episode) were used to evaluate the performance of
the algorithms. The experimental results are shown in Figures 10–12:
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average reward of DDPG and MEP–DDPG.
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The experimental results demonstrated that the convergence speed and convergence results were
better for the MEP–DDPG algorithm than DDPG in different environments. This is because the UAV
learns from higher quality experiences (expert experiences) at the beginning of training, which means
that the parameters of the neural network are quickly adjusted to an optimal state. However, it is
easy to find that the episode average reward of the two algorithms was not significantly different, and
sometimes the average reward for the DDPG was higher than that of the MEP–DDPG. This shows that
the action selected by the DDPG was no worse than the action selected by the MEP–DDPG in each
step, and sometimes it is even better than the MEP–DDPG selected actions. However, at the end of an
episode, the UAV trained by DDPG was not able to reach the target position. The models trained by
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the two algorithms were run 1000 times each, and the average speed of every episode was recorded
(Figure 13):
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Obviously, the UAV trained by DDPG had a higher velocity than that trained by MEP–DDPG,
which leads to the conclusion that in some cases, the UAV trained by DDPG cannot maneuver as safely
as the UAV trained by MEP–DDPG when facing the same threats. This is demonstrated in Figures 14
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It is evident that for the same task, the flight trajectories of UAVs trained by DDPG and MEP–DDPG
in the first half are almost identical. However, due to the faster flight speed, the UAV trained by DDPG
was unable to slow down and climb in a short period of time when facing threats, which resulted in
a failure of the mission. In comparison, the UAV trained by the MEP–DDPG algorithm was able to
easily climb to avoid threats and successfully complete tasks. These results demonstrate that DDPG is
stuck in a local optimal solution, which leads to the excessively fast flight speed of the UAV. In the real
world, flying at a higher velocity is good, because the UAV can complete the task faster; however, the
success of the task and the safety of the UAV are more important. Therefore, the more cautious UAV
trained by the MEP–DDPG algorithm may have a higher reference value.

6.2. Testing for Different Tasks

To test the adaptability of the proposed algorithm, two tasks to simulate what might happen in a
real unknown environment were designed.

6.2.1. Testing for Tasks with Sudden Threats

In a real environment, changes in the dynamic environment can suddenly show up. For example,
when a UAV is delivering an item, a car could suddenly pass by. Therefore, carrying out tasks in the
presence of sudden threats was simulated:

As shown in Figure 16, the initial positions of the UAV and the target were (500, 10, 30), (−430, −5,
0). After the UAV bypassed the first threat at step = 250, a new threat suddenly appeared at (200, −5,
0) (the yellow hemisphere shown on the left in Figure 16b). When the step increased to 900, another
threat suddenly appeared at (−310, 13, 0) (the yellow hemisphere shown on the right in Figure 16d).
Judging from the trajectory of the UAV (red lines) in the figure, the UAV was able to make a good
judgment and pass through the dangerous area safely when faced with sudden threats.
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6.2.2. Testing for Tasks with Moving Target

This test was used to simulate the moving target problem in UAV’s AMP. In many application
scenarios, the target area to be reached can suddenly changes. Changes of the target area may cause
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the failure of the UAV’s task. The following test can simulate this situation. Figure 17 presents the
testing process:
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Figure 17. The trajectory of the UAV at different time step when performing task with moving target.

As shown in the figures above, the initial positions of the UAV and the target were (200, 200,
30), (−170, −410, 0). In Figure 17a, at step = 873, the UAV was very close to the target, but then the
target position suddenly changed to (−450, 300, 0) when step = 900. The UAV quickly turned to adjust
the attitude and fly to the new target position (Figure 17b). When step = 1800, the position of target
changed again to (150, 200, 0) (Figure 17c). When step = 2700, the position of the target changed for the
third time to (500, −400, 0) (Figure 17d). The UAV’s entire flight trajectory (red lines) demonstrated
that, even though the position of the target changed several times, the UAV was still able to reach the
target position safely and accurately. Therefore, the moving target problem was addressed successfully.

7. Conclusions and Future Work

This paper proposed a MEP–DDPG algorithm to address UAV’s AMP problem. By using an
MPC-SA framework to generate expert experiences and multiple experience pools to store expert
experiences, MEP–DDPG can go beyond the local optimum generated during the early stages of training.
Experimental results show that the convergence speed and results of the MEP–DDPG algorithm are
better than those of the DDPG algorithm in several different complex unknown environments. In the
testing process, MEP–DDPG performed well in some common tasks that may occur in real situations.

In the future, we intend to add additional complex tasks such as multi-target tracking to our 3D
simulation environment. In addition, we plan to make the location and scope of the threat change over
time to more realistically simulate some application environments.
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