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Abstract: A Round Robin exercise was implemented by ESA to compare different classification
methods in detecting clouds from images taken by the PROBA-V sensor. A high-quality dataset of
1350 reflectances and Clear/Cloudy corresponding labels had been prepared by ESA in the framework
of the exercise. Motivated by both the experience acquired by one of the authors in this exercise and
the availability of such a reliable annotated dataset, we present a full assessment of the methodology
proposed therein. Our objective is also to investigate specific issues related to cloud detection when
remotely sensed images comprise only a few spectral bands in the visible and near-infrared. For this
purpose, we consider a bunch of well-known classification methods. First, we demonstrate the
feasibility of using a training dataset semi-automatically obtained from other accurate algorithms.
In addition, we investigate the effect of ancillary information, e.g., surface type or climate, on accuracy.
Then we compare the different classification methods using the same training dataset under different
configurations. We also perform a consensus analysis aimed at estimating the degree of mutual
agreement among classification methods in detecting Clear or Cloudy sky conditions.

Keywords: cloud detection; PROBA-V; statistical learning; machine learning; cumulative
discriminant analysis; K-Nearest Neighbor; neural networks

1. Introduction

Despite the large existing literature, cloud detection from images taken by sensors onboard
satellites is still an area of very active research. This is essentially due to three main reasons: (i) Cloud
detection is an important preliminary step of remotely sensed image processing because clouds affect
sensor measurements of radiance emitted by surface up to make data unreliable for a wide range of
remote-sensing applications that use optical satellite images; (i) Cloud detection by itself is a difficult
problem (even for experts attempting to visually detect clouds from signatures and/or images) in some
conditions as transparent or semi-transparent clouds and in general when the contrast between the
cloud and the underlying surface is poor; and (iii) Despite consolidated guidelines for cloud detection
algorithms (e.g., use of infrared bands, preliminary removal of noninformative bands), development of
new sensors with different hardware capabilities in terms of spatial, spectral and temporal resolution
claims for specific algorithms or adaption of existing ones (e.g., re-estimate of new thresholds).
In particular, a dramatic progress in the technology was availability of hyper-spectral sensors able
to take images up to 8K bands [1,2]. While these instruments promise to gather unprecedented
information from surface and atmosphere, however, they challenge low-dimensional conventional
algorithms for cloud detection not so much for scalability and computational resources required
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but as for physical and theoretical implications of hyper-spectrality. In particular, really informative
bands must be selected in advance to face the curse of dimensionality inherent in statistical estimation
(dimensionality reduction). Actually, a manual selection of spectral bands and estimate of thresholds
for bands themselves or some couples of theirs is not conceivable anymore, therefore innovative
methods for automatic feature extraction from the hyper-spectral images are sought.

In the case of low-dimensionality, as in PROBA-V considered in the present paper, the dimension
reduction problem is generally not a concern and all spectral bands are considered (Experiments not
reported in this paper confirm that best accuracy is achieved when all PROBA-V spectral bands are
considered). However, due to the limited amount of information with a so reduced number of bands,
it is important to extract relevant features for cloud detection as effectively as possible.

In all cases, also considering the recent explosive emerging methods, a problem of validation of
methods arises that could help not only in comparing their accuracy but also to understand strengths
and weaknesses of the general cloud detection problem.

Classification exercises are sometimes organized where different algorithms are challenged to
estimate a cloud mask from radiance detected by a specific sensor. Radiance is endowed with labels
on the Clear or Cloudy condition accurately assigned by experts that are blind to the algorithms,
so to be used as a validation of the algorithms themselves. While the main purpose of such exercises
is to develop accurate operational algorithms for specific sensors onboard satellites, an important
side effect is comparison of state-of-art methods on a same, very accurate dataset. In this respect
we mention the Landsat comparison exercise [3] and the ESA Round Robin exercise for PROBA-V
sensor [4]. Such comparisons are an exceptional way not only to compare algorithms, but especially to
discover their weakness in particular climatic/surface conditions and, finally, to progress knowledge
of cloud mask detection.

One of the authors participated in the ESA Cloud Detection Round Robin exercise (https://
earth.esa.int/web/sppa/activities /instrument-characterization-studies/pv-cdrr). Such exercise was
intended for the PROBA-V sensor onboard the PROBA ESA platforms and suited for land use and
classification, including vegetation, crop monitoring, food security and scarcity prediction, disaster
and biosphere monitoring. PROBA-V has a small number of spectral bands (Blue, Red, NIR and
SWIR) and in particular it lacks a Thermal Infrared band that could have been useful to detect cirrus
clouds. This makes cloud detection from its images challenging. ESA and the Belgian Science Policy
Office organized a dedicated Round Robin exercise to inter-compare the performances of different
cloud detection algorithms for PROBA-V. The Round Robin exercise provided the participants with a
large dataset of PROBA-V images (331 for almost 8 Billion scenes) covering all seasons, most surface
types, different world zones and most cloud types (In this paper, we shall refer to pixel as the single
element of the image matrix provided by the sensor with its field of view, including the corresponding
geographical coordinates, and to scene as the set of corresponding information for that pixel, namely
spectral radiance, sky condition, surface, climatic zone). The key data of the exercise is a set of 1350
scenes, blind to participants that have been manually labelled by experts, claimed to sample the
most important types of clouds (gold standard). A more detailed description of the exercise and main
conclusions are reported in [4].

The framework proposed by the authors for the Round Robin exercise includes a statistical
classification method (Cumulative Discriminant Analysis, CDA [5]), a training set semi-automatically
obtained from cloud masks estimated for concurrent sensors, and grouping data in almost
homogeneous surface types. In particular, our framework was the only one within the exercise
that did not use a manual dataset obtained by expert annotation to train the classification. Instead it
was relying on a semi-automatic training obtained as the result of consolidated and acknowledged as
reliable cloud masks with comparable spatial resolution as the target cloud mask (MODIS and SEVIRI).
The only intervention required is spatial and temporal co-registration of the training cloud mask with
the target cloud mask. In view of the fact that this training cloud mask is not obtained by expert
judgement but by another algorithm, it will be defined as a silver standard. On the one hand quality of
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the silver standard cannot be compared with the accuracy of a gold standard. However, in this respect
we also recall that even very accurate cloud masks annotated by experts are affected by judgement
error that in best cases is estimated around 4-7% [3]. On the other hand, the much larger size of
the training dataset and its wide coverage can represent a much larger number of cloud and surface
conditions. This result cannot be obtained by manual training, naturally limited by human resources.
This strategy appears in our opinion as a natural path when methods requiring large training datasets
are involved. It is mainly the case of deep learning algorithms. In this respect we mention [6] who
use the results of an algorithm (CFMask [3]) to train their deep RS-Net model for Landsat 8 images,
and [7] based on AVIRIS cloud mask. Massive use of such a silver standard dataset for cloud detection
was pioneered in [8] in our knowledge.

Another qualifying part of our framework was grouping of scenes into homogeneous zones
selected basing on the surface type. It is frequent that algorithms for cloud detection are trained
separately for different types of the underlying surface (e.g., land or water); other approaches are
possible, for example introducing climatic information as in [5].

Aim of the present paper is first to show a full and detailed analysis of our framework and
of the results within the Round Robin exercise, assessing its performance under several cloud and
surface conditions.

In addition the availability of a very accurate gold standard allows one to quantitatively analyze
weaknesses and strengths of cloud detection under a framework in which also the same training
dataset is shared among classification methods. In particular, we address the following questions:
(a) to compare prototypes of selected cloud detection algorithms well known in the literature; (b) to
assess the feasibility of a silver standard to train cloud detection; (c) to assess the role of surface and/or
climatic information on the accuracy of cloud detection. Finally, a consensus analysis is performed
aimed at estimating the degree of mutual agreement among classification methods in detecting Clear
or Cloudy sky conditions.

2. Data and Methods

2.1. PROBA-V Data

PROBA-V (PRoject for On-Board Autonomy-Vegetation) is a global vegetation monitoring
mission [9], launched in 2013 to assure the succession of the Vegetation instruments onboard the
French SPOT-4 and SPOT-5 Earth observation missions. The satellite follows a Sun-synchronous orbit
at a height of 820 km, achieving a daily global coverage, except the equatorial region (within 35° of
the Equator) where coverage is guaranteed every two days. The optical instrument onboard provides
from 1/3 km to 1 km-resolution data products. It captures a Blue band (centered at 463 nm), a Red
band (centered at 655 nm), a Near-Infrared band (centered at 845nm), and a Short-wave Infrared band
(centered at 1600 nm). The data of the traditional Vegetation products, as provided by PROBA-V, are
freely accessible for all users. The new, higher resolution products of PROBA-V elder than 1 month
share the same full, free and open data policy. Details on the technical characteristics of PROBA-V of
interest for the present work are reported in Table 1.

We consider as input data 331 images released by ESA and provided by the organizers of the
Round Robin exercise. These images are PROBA-V Level 2A products with Top-of atmosphere
reflectance (the four PROBA-V bands radiometrically and geometrically corrected and resampled at
333 m). They conform a complete globe acquisition from four different dates covering the four seasons
in 2014. PROBA-V scenes are endowed with a sea/land mask and an algorithm for snow /ice detection.
The total number of valid scenes available in the 331 files is 7,731,538,861, the remaining ones being off
sensor view, sun glint or missing reflectance.
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Table 1. Technical characteristics of PROBA-V sensor.

Characteristic Value

Orbit Sun-synchronous polar orbit, 98.73° inclination, 820 km altitude
35°-75°N and 35°-56°S daily

Coverage

35°N-35°S every 2 day

100 m at Nadir, 350 m full field of view

Field of view 102°, 2250 km swath
Resolution

visual and infrared detector
Blue band 447-493 v
Red band 610-190 v
Near-Infrared band 773-893 v
Product resolution 1km,1/3 km

short-wave infrared detector
Short-Wave Infrared band  1570-1650 vm
Product resolution 1km,2/3 km

2.2. Validation Dataset (Gold Standard)

40f 24

All participants of the Round Robin exercise for PROBA-V cloud detection algorithm were
provided with a small dataset consisting of 1350 scenes, manually collected, classified and labelled
by an expert user. Since obtained by an expert, the dataset can be fully defined as a gold standard.
The scenes are a subset of the full PROBA-V dataset collected from 4 different images and labelled
with the following categories: Clouds (totally Cloudy, opaque clouds; semi-transparent clouds; other
turbid atmosphere, e.g., dust, smoke); Clear sky (over water; snow/ice; other cases); spatially mixed
clouds (over land; water; ice).

This small dataset comprises 30% totally Cloudy, 32% semi-transparent and 38% Clear cases.
The relationship between land and water scenes is about 70:30 (land:water). The detailed distribution

of categories is reported in Table 2. Figure 1 shows the world distribution of the dataset.

Table 2. Distribution of the labelled scenes in the gold standard dataset provided to all the participants
in PROBA-V Round Robin exercise.

Category # Scenes  Percentage
Totally Cloudy 400 30%
Semi-transparent clouds 438 32%
Total Cloudy scenes 838 62%
Clear sky water 192 14%
Clear sky land 205 15%
Clear sky snow/ice 67 5%
Turbid atmosphere (no cloud) cases 23 2%
Other Clear cases 25 2%
Total Clear scenes 512 38%
Floating ice 67 5%
Glint 59 4%
Cloud shadow 46 3%
Total 1350 100%
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Figure 1. Global surface map as provided by GlobCover (22 classes). The superimposed black dots
represent the pixels belonging to the gold standard dataset in the PROBA-V Round Robin exercise.

We mention that a second dataset of 53,000 scenes was prepared during the ESA project. It served
as a basis for comparing algorithms participating in the Round Robin exercise [4]. However, this
dataset has never been revealed to participants, even after the end of the exercise [10].

2.3. Training and Validation Dataset

To produce the training and validation sets in the PROBA-V exercise needed by the classification
methods we rely on the cloud masks provided by consolidated algorithms endowed with SEVIRI and
MODIS data. We assign labels to all the PROBA-V scenes for which both algorithms can provide labels,
as reported in the following in detail.

2.3.1. SEVIRI Cloud Mask

Processing data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor onboard
MSG satellites provides a cloud mask dataset at 15 min temporal resolution [11] with a spatial resolution
of 3Km sub-satellite that degrades far from the equator and from the Greenwich meridian. The data
are provided with regional coverage within a radius of about 60 degrees around the point at zero
latitude and longitude. No data are provided for the hemisphere including Americas, Oceania and
most Asia. The grid of the SEVIRI cloud mask is 3712 x 3712 pixels; the number of valid cloud mask
pixels is about 12M.

SEVIRI cloud mask provides four different labels: Clear over sea, Clear over land, Cloudy,
uncertain. We considered for the training set only Clear and Cloudy SEVIRI scenes, so to represent the
distribution of Clear and Cloudy conditions more accurately without influence of the other conditions.
Moreover, since SEVIRI and PROBA-V scenes need to be co-located, we resampled the SEVIRI grid of
pixels to a uniform grid in latitude and longitude. This choice preserves the original space resolution
close to the center of the SEVIRI images. Of course, far from the center the finer resolution of the new
grid is fake and the SEVIRI cloud mask is simply repeated within the coarser grid. Technically the
procedure is equivalent to a Nearest Neighbor interpolation. Then we include in the training dataset
only the PROBA-V scenes for which the closest SEVIRI pixel with respect to time and space provides a
certain (i.e., Clear or Cloudy) label. Figure 2 shows an example of SEVIRI cloud mask.
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Figure 2. Example of SEVIRI cloud mask.

2.3.2. MODIS Cloud Mask

MODIS (MODerate-resolution Imaging Spectroradiometer) sensor flies onboard Earth
Observation System Terra and Aqua satellites on polar orbits. There are two MODIS Cloud Mask L2
data product files: MOD35 [12], containing data collected from the Terra platform, and MYD35 [13],
with data collected from the Aqua platform. The MODIS cloud mask provides fifteen classes (such
as confident Clear over different surface types; possibly Clear; uncertain Clear; Cloudy) that provide
basic surface and cloud type information.

We selected all the MODIS images for the four days of the PROBA-V exercise at 1Km spatial
resolution. Their latitude and longitude grid is not uniform and it is given at a coarser resolution
than the PROBA-V grid. For this reason, the grid of pixels is first interpolated to the full resolution
of the sought PROBA-V cloud mask. Moreover, since the grid of the MODIS images depends on the
granule and therefore is not fixed in time or space, we co-located the coarser MODIS grid into the
PROBA-V uniform grid. Since MODIS orbits are polar, there is not always a good match in time with a
PROBA-V pixel; we considered to be simultaneous only pixels whose acquisition differs at most by 30
min. We tested indeed shorter overlaps of time intervals (15 min and 7 min), and obtained comparable
accuracy in the results. Clearly, the interpolation procedure can generate mixed /uncertain labels on
some scenes in the finer grid. However, as already done for the SEVIRI cloud mask, we included in the
training and validation set only PROBA-V scenes co-located to MODIS ones labelled as Cloudy and
confident Clear. Figure 3 shows an example of MODIS cloud mask.
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Figure 3. Example of MODIS cloud mask co-located to PROBA-V image
PROBAV_L2A_20140321_000512_3_333M_V001 over South Australia.

2.4. Combined SEVIRI and MODIS Cloud Mask

A single cloud mask is obtained from the SEVIRI and MODIS cloud masks of Sections 2.3.1 and
2.3.2 by selecting all scenes for which there was an agreement of both. This choice enhances purity of
the Clear and Cloudy classes for the purpose of classification. Since MSG points at 0° longitude, it can
take images only of Europe, Africa and part of Asia, therefore the merged database completely misses
Americas, almost full Asia and Oceania for which several scenes of the gold standard are present
(see Figure 1). The full joint SEVIRI and MODIS dataset is composed of 65M scenes, of which 40%
labelled as Clear and 60% as Cloudy. This proportion is consistent with the gold standard in Table 2
(62% Cloudy scenes and 38% Clear ones). An extensive analysis through experiments analogous to
the ones described in this paper (not reported for the sake of brevity) confirms that accuracy of the
combined cloud mask outperforms the single ones. In [4] some comparisons are shown for the gold
standard dataset.

2.5. Surface Type

Among the ancillary information that can improve cloud mask detection, a significant contribution
can be given by the characterization of the underlying surface. To sort scenes into homogeneous regions
with respect to their spectral behavior, one can use the sea/land mask endowed with PROBA-V scenes
and an algorithm for snow/ice detection. Moreover, other and more detailed surface classifications can
be considered, such as the GlobCover surface map. GlobCover [14] is a 2005 ESA initiative jointly with
the Joint Research Center of the European Commission, the European Environment Agency, the Food
and Agriculture Organization of the United Nations, the United Nations Environment Program, the
Global Observation of Forest and Land Cover Dynamics and the International Geosphere-Biosphere
Program. The aim of the project is to provide land cover maps from the 300 m MERIS sensor onboard
the ENVISAT satellite mission. We consider the map that covers the period January—-December 2009.
The GlobCover map is provided as an image 55,800x129,600 pixels in an equispaced grid with
range [—65°,80°] for latitude and [—180°,180°] for longitude. The map sorts surface into 22 different
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classes with proper codes; a sample map is shown in Figure 1. To retain the most significant surface
characteristics while avoiding unnecessary details, we group the GlobCover surface classes into the
following five types: Water, Vegetation, Bare Land, Urban, Snow/Ice. They are shown in Table 3
together with their numerosity and percentage of Clear and Cloudy scenes both in the full training
dataset and in the gold standard one.

Table 3. Surface types considered in the paper, their numerosity and percentage of Clear and Cloudy
scenes in both the full joint MODIS and SEVIRI and the gold standard dataset.

Full Dataset Gold Standard Dataset
Surface Type #Scenes Clear Cloudy #Scenes Clear Cloudy
Water 20,746,553 (31.8%)  19% 81% 326 (24.1%)  61% 39%
Vegetation 33,978,411 (52.1%)  37% 63% 921 (68.2%)  28% 72%
Bare Land 9,927,876 (152%)  92% 8% 83 (6.1%)  51% 49%
Urban 235,546 (0.4%)  24% 76% 9(0.07%)  100% 0%
Snow /Ice 41,570 (0.06%)  39% 61% 10 (0.07%) 0% 100%
Total 65,238,704 (100%)  40% 60% 1350 (100%)  38% 62%

2.6. Climate

We also consider grouping of the scenes into homogeneous climatic zones as in [5]. Specifically,
we discriminate several regions based on latitude (Tropics, Mid and High Latitude); season (Winter,
Summer); Hemisphere. We also rely on information from Elevation and Surface Temperature maps,
as obtained from NASA (ASTER Global Digital Elevation Model, [15]) and the European Center
for Medium-Range Weather Forecast (ERA-5 land hourly data from the Copernicus Climate Data
Store, [16]) public databases, respectively. The specification of the climatic regions we consider is
reported in Table 4. Due to the limited world coverage of the SEVIRI data, the number of climatic
zones is less than [5] because some of them are empty.

Table 4. Climatic zones considered in the paper and their numerosity in both the joint MODIS and
SEVIRI dataset and the gold standard dataset.

Full Dataset Gold Standard Dataset
Climatic Zones #Scenes Clear Cloudy #Scenes Clear Cloudy
Tropical 3,480,8034 (53.3%) 55% 45% 728 (53.9%) 34% 66%
Mid-Latitude Summer NH 18,610,636 (28.5%) 29% 71% 285 (21.1%) 42% 58%
Mid-Latitude Summer SH 270,858 (0.4%) 1% 99%
Mid-Latitude Winter NH 8,173,055 (12.5%) 12% 88%
Mid-Latitude Winter SH 573,416 (0.9%) 8% 92%
High-Latitude Summer NH 2,240,391 (3.4%) 7% 93% 226 (16.7%) 39% 61%
Ice on sea NH 4950 (0.008%) 3% 97% 17 (1.3%) 24% 76%
Ice on sea SH 1804 (0.003%) 0% 100%
Ice over land NH 343,163 (0.5%) 6% 94% 90 (6.7%) 60% 40%
Ice over land SH 1398 (0.002%) 0% 100%
Ice over elevated land NH 210,958 (0.3%) 22% 78% 4 (0.3%) 0% 100%
Total 65,238,704 (100%) 40% 60% 1350 (100%) 38% 62%

3. Classification Methods

Cloud detection can be formally considered to be a binary supervised classification problem.
As such, methods for its solution need a representative set of data with labels considered to be “certain”
(training dataset). They evaluate patterns in different features and assign data into one of the two
classes (Clear or Cloudy). The classification procedure also involves collection and evaluation of a
validation dataset. Once trained, each classifier applies a decision rule to determine if validation data
are more likely to have originated from one class or another. This rule partitions the n-dimensional
feature space into 2 regions corresponding to the Clear and Cloudy conditions.
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Operational cloud-masking algorithms on low /moderate-resolution sensors such as AVHRR and
MODIS were mainly based on empirically tuned thresholds from several spectral channels. Also,
for higher spectral resolution sensors (Landsat), thermal channel-based spectral thresholding along
with prior knowledge of land surface properties has been the most common approach for automatic
cloud detection. However, the payload of several recent sensors does not include thermal channels
in which cloud-masking strategies have previously relied, so that different approaches, somewhat
relying on complementary information have been pursued. Among the many methods and available
implementations from the recent literature, we mention here a few significant ones. Taravat et al. [17]
propose a Multilayer Perceptron for automatic classification of SEVIRI MSG images trained on the cloud
mask by the European Organization for the Exploitation of Meteorological Satellites; Chen et al. [18]
implement a neural network classifier driven by extensive radiative transfer simulations and validate
it through collocated CALIOP and MODIS data. In [19], a Support Vector Machine classifier is trained
on the Gabor energy characteristics of cloud superpixels from GF-1 images, while in [20] algorithms
for Sentinel-2 MSI focused on Decision Trees and classical Bayesian classification are considered.
Sedano et al. [21] propose a method based on the estimation of Clear/Cloudy radiance density
distributions in a data fusion framework, followed by a region growing process and validate their
results against both cloud masks generated by statistical methods and Landsat operational cloud
mask. Finally, deep learning methods are increasingly considered, with several different approaches:
in [22] a multi-modal, pixel-level Convolutional Neural Network-based classifier is introduced for
detecting clouds in medium- and high-resolution remote-sensing images, which relies on a large
number of per-pixel cloud masks digitized by experts; Francis et al. [23] use multi-scale features,
based on a Fully Convolutional Network architecture, and report results on manually annotated
images from two high-resolution sensors. An image-based approach is described in [24], relying on
multi-modal, high-resolution satellite imagery (PlanetScope, Sentinel-2) at the scene level. Many of
these methods rely on expert intervention for labelling training data. As mentioned in the Introduction,
we focus instead on automatic means of assigning labels to the training and validation datasets (silver
standard), allowing for adjustments of decision boundaries independent of subjective and costly
human intervention. In addition, they can cover more general cases than manually possible ones and
with a much larger extent, of course to the detriment of the decreased accuracy of labels.

Among the different approaches reported in the literature, we consider and compare for the
present study seven different supervised classifiers. They fall into the categories usually labelled
as Statistical and Machine Learning and are based on different principles, as Discriminant Analysis,
Neural Networks, Nearest Neighbor. We mention that Neural Networks are the basis of Artificial
Intelligence methods of present strong interest when the number of features is very high. In the
following we briefly describe them.

1. Linear Discriminant Analysis (LDA). It applies the Bayes rule to each scene to select the
Clear/Cloudy class so to maximize the posterior probability of the class for a scene given the
actual reflectance in that scene. LDA assumes that reflectance follows Gaussian distributions for
the Clear and Cloudy classes sharing the same covariance matrix;

2. Quadratic Discriminant Analysis (QDA), which generalizes LDA assuming that also covariance
matrix depends on the class (Clear or Cloudy);

3. Principal Component Discriminant Analysis (PCDA) [25]: the hypothesis of Gaussian distribution
of reflectance is released in favor of a generic distribution estimated by nonparametric regression;
in addition the original reflectances are transformed into uncorrelated Principal Components
before classification;

4. Independent Component Discriminant Analysis (ICDA) [25]: similar to PCDA, but with the
original reflectances transformed into Independent Components before nonparametric estimation
of the densities; this makes such components independent also for non-Gaussian distributions;

5. Cumulative Discriminant Analysis (CDA) [5]: the decision rule for classification depends on a
single threshold for each feature (spectral band), based on the empirical distribution function,
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which discriminates scenes belonging to the Clear and Cloudy classes; the threshold is estimated
so to minimize at the same time the false positive and false negative rates on the training or on a
validation dataset.

6. Artificial Neural Networks (ANN) [26-28]. We use a two-layer feed-forward network, with
sigmoid hidden and SoftMax output neurons for pattern recognition. The network is trained with
scaled conjugate gradient backpropagation.

7.  K-Nearest Neighbor (KNN) [28,29] that labels each considered scene based on a voting strategy
among the labels assigned to the K closest neighboring scenes belonging to the training dataset.
We used K = 50 throughout this study.

Methods LDA, QDA, PCDA, ICDA and CDA require estimate of the statistical distribution of
radiance. We mention that other methods are available in the literature; results of some of them
have not been reported because of poor accuracy on other sensors (Logistic Regression) or unfeasible
computational time (Support Vector Machine).

All the above methods are pixel-wise, i.e., they treat pixels separately without taking account
of spatial correlations among them or local features that are instead typical of images. Among the
classification methods that use spatial features of images we mention [30] (Markov chains), [31]
(Discriminant Analysis), [32] (relying on PCANet and SVM). We also mention the special case of
Artificial Intelligence Deep Learning algorithms (e.g., [6,23]).

Finally, we mention that the method proposed for the Round Robin exercise was CDA [4].

4. Results

This section fully analyzes accuracy of the classification methods introduced in Section 3.
Different configurations of classification are considered depending on the use of ancillary information.

4.1. Basic Classification

We consider as input data the reflectances of the scenes at the four spectral bands of PROBA-V.
We extract a random training set of 3M scenes from the training dataset described in Section 2.3, whose
cloud mask is assigned by the agreement of two consolidated algorithms (joint SEVIRI and MODIS
silver standard). After the training phase, we classify the validation set composed of all the PROBA-V
scenes for which a joint SEVIRI and MODIS cloud mask is available (65M scenes).

We remark that formally the training and validation datasets should be kept distinct, whereas
the former is a subset of the latter. However, due to the large number of available scenes the features
of the system are accurately learnt from the various methods in all conditions and are the same both
in distinct and overlapping datasets. From the practical point of view all error indicators obtained
keeping training and validation datasets distinct or overlapping have the same values up to 3 decimal
digits. In addition, for the same reason a size of 3M scenes as a training set is sufficient for classification
methods to accurately learn all the features of the data, so that no larger datasets are needed. In practice
accuracy of the methods does not change when increasing the size of the training set even up to cover
all the 65M available scenes. Using a smaller dataset for the training phase has the advantage of
reducing computational time, which would otherwise be practically unfeasible for some methods such
as ANN and KNN. Finally, we also mention that accuracy does not depend on the random choice of
the 3M scenes subset within 3 decimal digits.

To estimate accuracy of the methods, we consider the following indicators: if Ncjear and Ncjoudy
represent the number of Clear and Cloudy scenes in the validation dataset according to the MODIS
and SEVIRI silver standard, respectively, and Nje,r and NCloudy the corresponding values estimated
by any classification method, then we consider the global success accuracy A, Aciear and ACloudy as

N Clear T N, Cloudy NClear A N Cloudy
= s £1Clear — s {1Cloudy =
Nciear + N Cloudy Nclear Y N Cloudy
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Assuming Positive as the Cloudy condition, Acje,, is also known as Specificity (True Negative rate)
and Acjoudy as Sensitivity (True Positive rate).

Accuracy indicators A, Acjear and Acjoudy are shown in Table 5 for the entire dataset and the
classification methods of Section 3; they are also sorted by the surface types introduced in Section 2.5.
We remark that in this experiment the training and validation phases are both performed without using
any surface information; surface sorting is performed after classification only to assess the accuracy
level on different surface types.

Table 5. Accuracy indicators A, Acjear and Acjoudy Of classification methods of Section 3 when
validation is made on the full dataset and no ancillary information on surface or climate is used.
Percentage values are reported for the entire dataset (row Global) and sorted for different surface types.

LDA QDA PCDA ICDA CDA ANN KNN

AClear 707 964 915 942 950 815 871
Water ACloudy 815 680 773 742 759 942 961
A 795 734 800 780 795 918 943
AClear 978 961 939 952 917 897 935
Vegetation ~Acioudy 698 792 852 834 872 913 917
A 801 854 84 877 888 907 924
AClear 998 995 988 991 635 976 992
BareLand  Acioudy 546 685 728 707 888 763 743

A 963 972 968 969 655 960  97.3
AClear 970 939 865 920 782 726 794
Urban AcCloudy 767 837 888 868 905 941 936
A 815 8.1 82 80 8.6 8.0 902

AClear 960 802 800 8.3 941 934 888
Snow/Ice  Acipudy 590 656 671 689 594 812 938

A 736 713 722 757 731 860 919
AClear 944 974 953 964 821 912 945
Global ACloudy 743 740 813 790 821 923 932
A 822 832 89 89 81 919 938

As a complementary exercise, we compute accuracy indicators when the validation dataset is the
gold standard of Section 2.2. The performance of all the algorithms is reported in Table 6. We advise
that accuracy for some surfaces, namely Urban and Snow/Ice, is biased from the very low number of
representative scenes and from lack of Clear or Cloudy scenes (compare with Table 3).

Analysis of results on the entire dataset (Table 5) shows first of all that ANN and KNN generally
outperform methods based on the direct estimate of distributions, being the only ones to reach
accuracies beyond 90% globally and in most cases. We also observe that CDA, which was used for the
Round Robin exercise, is by far outperformed by ANN and KNN. This is mainly due to its very nature
of forcing the same accuracy in both Clear and Cloudy conditions so to reach equal I- and II-Type
errors globally (row Global in the table). This is paid when accuracy is assessed on a finer scale of
surface type after classification has been made. As an example Bare Land has the most unbalanced
proportion of Clear and Cloudy scenes, with latter ones being 8% of the total (see Table 3), therefore
Clear scenes that globally have a lower frequency (40%) are strongly penalized. We also observe that
accuracy is strongly dependent on the surface type for all methods; in particular it is higher on Land
than on Water. This result is consistent among all methods participating the Round Robin exercise [4]
and was there justified with a more accurate training. In this experiment this is equivalent to the fact
that Land scenes are 2/3 of Total ones in the global training set, so that classification naturally tends
to better represent them. On the other side main applications of PROBA-V sensor are for Land and
vegetation, particularly.
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Table 6. Accuracy indicators A, Acjear and Acjoudy of classification methods when validation is made
on the gold standard dataset of Section 2.2 and no ancillary information on surface or climate is used.
Percentage values are reported for the entire gold standard dataset (row Global) and sorted for different
surface types.

LDA QDA PCDA ICDA CDA ANN KNN

AClear 625 810 710 675 850 685 805
Water AcCloudy 849 794 833 841 802 937 849
A 712 804 758 739 831 782 822
AClear 686 682 655 648 648 774 808
Vegetation Acioudy 798 826 859 858 886 905 921
A 767 785 801 798 819 868 889
AClear 905 857 786 810 786 881 881
BareLand  Acioudy 341 488 488 415 805 561 561
A 627 675 639 615 795 723 723
Urban AClear 100 100 100 100 100 100 100
Snow/Ice  Acioudy 100 100 100 100 100 100 100
AClear 686 752 693 678 744 752 816
Global ACloudy 786 807 839 835 871 894 894
A 748 786 784 776 823 840 8644

Results are roughly consistent when we limit validation to the gold standard dataset for which
the true Clear/Cloudy condition is known (Table 6). Accuracy is lower than the training set case
by 7-8% for all methods. A noteworthy exception is CDA, whose global accuracy remains the
same (actually, marginally better), even though no longer equibalanced between Clear and Cloudy
conditions, the latter being increased to 87.1% at detriment of the former (74.4%). We again observe
that ANN and KNN algorithms outperform methods based on the direct estimate of distributions,
with accuracy rarely going beyond 90%, and that particularly for KNN is globally 2% higher than
ANN, mostly due to a better detection of Cloudy condition (81.6% vs. 75.2%).

4.2. Use of Ancillary Information

Experiment of Section 4.1 considers the entire joint SEVIRI and MODIS dataset for the training
(apart from the random subset selection). However, it is well known that capability of detecting
clouds heavily depends on the underlying surface because of the different contrast between clouds and
surface. Therefore, a possible useful strategy is to disaggregate the scenes into groups homogeneous
as possible within, at a finer level than the land/water often used in operational cloud detection
methods. For this purpose, we consider two possible disaggregations based on the type of surface and
on the climate.

4.2.1. Surface as Ancillary Information

We train the algorithms separately on different surface types. From the entire dataset we randomly
extract a training set for each of the five surface types considered in Section 2.5. The size of these
training sets is fixed as the minimum between 3M scenes and the subset size. Validation is performed
on all the scenes of the same surface type in the full dataset. Table 7 reports the accuracy indicators.
Table 8 refers to accuracy estimated using the gold standard as a validation dataset.

Comparison of Table 7 with Table 5 does not provide unique indications: most methods
show a certain degree of decrease of accuracy around 1% globally (only LDA reaching —17%).
Notable exceptions are ANN (+1%) and, especially, CDA (+5.8%). This is to be expected for CDA since
the constraint of equal I- and II-Type errors now applies separately to each surface type and much
better adapts to the frequency of Clear/Cloudy conditions that globally depends on the underlying
type of surface. Improvement of CDA occurs for all surface types; in particular it is remarkable for
that sky condition (Clear or Cloudy) with the worse accuracy when a unique classification was made
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without using ancillary information; however this improvement occurs in a less extent at detriment of
the other sky condition (Cloudy or Clear, respectively).

Table 7. Accuracy indicators A, Acear and Acioudy Of classification methods of Section 3 when

validation is made on the full dataset and classifications are separate for each surface type. Percentage

values are reported for the entire dataset (row Global) and for the different surface types.

LDA QDA PCDA ICDA CDA ANN KNN
AClear 977 945 922 934 890 808 928
Water ACloudy 681 714 757 754 890 962 932
A 737 758 788 788 890 932 931
AClear 997 973 955 957 888 907 950
Vegetation ~ Acioudy 484 744 813 807 888 919 901
A 581 828 8.5 8.2 88 915 921
AClear 989 978 973 972 827 995 945
BareLand  Aciouay 621 762 782 794 827 713 895
A 691 962 958 958 827 974 941
AClear 996 969 963 963 877 803 947
Urban ACloudy 506 780 807 811 877 920 878
A 599 825 844 847 877 892 895
AClear 999 924 926 910 8.5 8.9 918
Snow/Ice  Acioudy 328 741 744 846 865 891 944
A 456 813 815 872 865 883 934
AClear 991 970 956 959 867 923 945
Global ACloudy 571 732 788 784 888 933 914
A 648 826 85 853 879 929 927

Table 8. Accuracy indicators A, Acjear and Acjoudy Of classification methods of Section 3 when

validation is made on the gold standard dataset of Section 2.2 and classifications are separate for each

climatic zone. Percentage values are reported for the entire dataset (row Global) and for the different

surface types.

LDA QDA PCDA

ICDA CDA ANN KNN

Water

Vegetation

Bare Land

Urban
Snow /Ice

Global

AClear
ACloudy
A
AClear
ACloudy
A
AClear
ACloudy
A
AClear
ACloudy
AClear

ACloudy
A

90.0
77.8
85.3
747
78.2
77.2
90.5
48.8
69.9
100
100
82.4
76.8
79.0

73.0
81.7
76.4
68.6
80.3
77.0
73.8
58.5
66.3
100
100
71.3
79.6
76.4

63.5
84.9
71.8
65.5
85.0
79.5
64.3
58.5
61.5
100
100
65.2
83.8
76.7

61.5
84.1
70.3
64.0
85.6
79.5
714
58.5
65.1
100
100
64.3
84.1
76.6

73.0
86.5
78.2
63.6
90.3
82.7
81.0
65.9
73.5
100
100
69.3
88.5
81.3

70.5
93.7
79.4
77 4
92.3
88.1
85.7
56.1
71.1
100
100
75.8
90.7
85.0

91.0
86.5
89.3
83.1
91.8
89.4
64.3
63.4
63.9
100
100
85.0
89.6
87.9

If we compare Table 8 with Table 6 again we observe a drop in accuracy around 6-9% (now
including CDA), somewhat smaller for KNN (4.4%).
Summarizing there is not a clear evidence from these quantitative indicators that separate

classification problems tailored to different surface types improve accuracy. We will investigate

further this matter later in Section 4.3.1 through visual inspection of the cloud masks provided by the
different algorithms on some specific images.
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4.2.2. Climate as Ancillary Information

We train the classification methods separately on different climatic zones, as described in
Section 2.6 and introduced in [5]. From the entire dataset a sample is extracted for each climatic
zone as a training, with a size as the minimum between 3M and the subset size. As in Section 4.2.1
validation is performed on the entire dataset or on the gold standard one. Accuracy is shown in
Tables 9 and 10, respectively.

Table 9. Accuracy indicators A, Acjear and Acjoudy Of classification methods of Section 3 when
validation is made on the full dataset and classifications are separate for each climatic zone of Section 2.6.
Percentage values are reported for the entire dataset (row Global) and for the different climatic zones.

LDA QDA PCDA ICDA CDA ANN KNN

AClear 906 980 956 9.1 757 930 950
Tropical ACloudy 803 706 813 783 760 891 936
A 859 85 8.1 880 758 913 943
AClear 974 966 942 94 871 881 937
Mid-Lat Summer NH ~ Acjouqy 664 725 775 759 871 935 919
A 755 796 824 819 871 919 924
AClear 100 989 986 986 949 953 983
Mid-Lat Summer SH ~ Aciouqy 858 889 913 917 943 978 969
A 859 890 913 918 943 978 969
AcClear 847 959 947 954 912 835 949
Mid-Lat Winter NH ~ Acjouay 920 867 883 905 913 977 954
A 911 878 8.1 911 913 960 953
AClear 172 991 990 988 982 809 938
Mid-Lat Winter SH ACloudy 985 758 788 830 835 973 949
A 922 776 803 842 846 960 948
AClear 712 836 821 8.1 750 396  90.8
Hi-LatSummer NH — Acipuay 889 774 800 814 828 961 895

A 877 778 802 818 83 922  89.6
AClear 0 877 774 9.1 890 787 974
Ice on sea NH AcCloudy 993 982 982 926 988 999 936
A 962 979 976 927 985 993 937
AClear 0 0 0 0 0 0 0
Ice on sea SH ACloudy 999 997 991 977 999 999  97.1
A 999 997 991 977 999 999  97.1
AClear 190 260 241 350 200 259 746
Ice over land NH ACloudy 968 966 970 957 990 992  95.1
A 921 923 926 920 942 948 939
AClear 0 0 0 0 0 0 0
Ice over land SH ACloudy 100 100 100 99.0 100 100  99.6
A 100 100 100 990 100 100  99.6

AClear 354 421 424 54.1 353 224 77.9
Ice-over-elev-land NH Acloudy 956 95.7 95.8 91.9 98.0 99.2 91.4

A 822 838 89 835 841 821 884
AClear 0 0 0 0 0 0 0
Ice-over-elev-land SH ~ Acjougy 100 100 100 100 100 100 100
A 100 100 100 100 100 100 100
AClear 914 974 950 960 786 911 946
Global ACloudy 787 750 814 802 833 928 932

A 83.7 83.9 86.8 86.4 81.5 92.1 93.7
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Table 10. Accuracy indicators A, Acjear and Acioudy of classification methods of Section 3 when
validation is made on the gold standard dataset of Section 2.2 and classifications are separate for each
climatic zone of Section 2.6. Percentage values are reported for the entire dataset (row Global) and for
the different climatic zones.

LDA QDA PCDA ICDA CDA ANN KNN

AClear 648 862 680 684 887 725 789
Tropical ACloudy 865 852 879 869 898 902 915
A 791 856 812 806 894 842 872
AClear 857 706 672 681 664 622 748
Mid-Lat Summer NH ~ Acjougy 590 614 687 669 831 843 837
A 702 653 681 674 761 751  80.0
AClear 864 875 841 750 830 409 750
Hi-LatSummer NH  Aciouqy 891 957 957 906 899 100 899

A 881 925 912 845 872 770 841
AClear 0 0 0 0 0 0 0
Ice on sea NH ACloudy 100 100 100 100 100 100 100
A 765 765 765 765 765 765 765
AClear 907 100 100 944 944 741 907
Ice over land NH AcCloudy 861 389 222 528 889 972 889
A 889 756 689 778 922 833  90.0
AClear 0 0 0 0 0 0 0
Ice-over-elev-land NH ~ Acjouq, 100 100 100 100 750 100 100
A 100 100 100 100 750 100 100
AClear 756 836 734 717 824 643 779
Global AcCioudy 817 805 828 823 85 912 897
A 794 817 793 783 82 810 83

Also, this experiment does not provide a conclusive answer on the improvement of accuracy
considering separate classifications for different climatic zones. Global increase of accuracy, when
occurring (ANN among the best performing methods) is not spread over Clear and Cloudy conditions,
rather a slight decrease in Clear conditions is observed. In the same way as separate classifications by
surface type we observe a mix of better (ICDA and KNN) and worse (CDA and ANN) accuracies also
spread over Clear and Cloudy conditions. The same conclusions can be drawn also on the gold standard
dataset, with the remarkable better performance of CDA that is indeed the best performing method.

4.2.3. Ancillary Information with ANN

Neural Networks are claimed to successfully mix information of different nature (e.g.,
nonnumeric). Our framework includes reflectance as a numeric information and surface type or
climatic zone as a categorical variable. In Sections 2.5 and 2.6 the categorical variable was dealt
independently, in the sense that separate cloud masks were obtained with separate different training
sets for each surface type or climatic zone. By its nature, ANN instead easily allows one to introduce
the type of surface and/or climatic zone directly within the training dataset as a further fifth
variable besides reflectance of the four spectral bands. The present Section aims at estimating if
and how accuracy improves or degrades when compared with ancillary information used as separate
classifications.

Results are shown in Table 11, where for the sake of brevity only Global results are shown, not
disaggregated by type of surface or climate.
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Table 11. Accuracy of ANN when ancillary information is introduced as a fifth variable. Global accuracy
is shown for the entire dataset (A) and separately for Clear (Acjear) and Cloudy (Acioudy) scenes when
no ancillary information are used, and surface type, climate and both are used.

A(Clear ACloudy A

Only reflectances 91.2 92.3 91.9
With surface information 92.1 92.0 92.1
With climatic information 89.0 91.0 90.2

With both surface and climatic information 92.0 92.0 92.0

Comparison of Table 11 with Tables 5, 7 and 9 shows that keeping separate classification for the
different types of ancillary information improves accuracy of ANN.

4.3. Opaque and Semi-Transparent Clouds

This Section is intended to assess behavior of the considered classification methods with opaque
and semi-transparent clouds and border identification. For this purpose, we consider two images
already used in [4] and a quantitative analysis based on the gold standard dataset.

4.3.1. Visual Analysis of Opaque and Semi-Transparent Clouds

The first image was acquired on 21 June 2014 at 14:42 UTC over Bolivia overlying a land surface.
It includes both opaque and semi-transparent clouds, as can be seen from the composite RGB image
in the first panel of Figure 4. The other panels of the Figure show the cloud mask predicted by LDA,
PCDA, CDA, ANN and KNN. All cases refer to the configuration of a unique classification independent
of surface type or climate. An indirect comparison with other methods of the PROBA-V Round Robin
exercise as reported in [4] can be made because the covered region is the same.
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Figure 4. RGB image acquired on 21 June 2014 at 14:42 UTC over Bolivia (top-left panel). Other panels
show cloud masks obtained by LDA, PCDA, CDA, ANN and KNN (orderly from left to right and from
top to bottom). A single classification was made on the full joint training dataset SEVIRI and MODIS.
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Figure 5 shows the same results obtained when classification is made separately for each type
of surface.
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Figure 5. RGB image acquired on 21 June 2014 at 14:42 UTC over Bolivia (top-left panel). Other panels
show cloud masks obtained by LDA, PCDA, CDA, ANN and KNN (orderly from left to right and from
top to bottom). Classification was made separately for each type of surface.

Figures clearly show that KNN and ANN are more cloud conservative than other methods.
Despite the nonconclusive quantitative analysis on the role of separate classifications for different
surface types or climatic zones, Figure 4 shows that a unique classification independent of surface or
climate is prone to mistakes in interpreting Clear condition over water. Actually, some of the lakes
in the Bolivia region (green color in the RGB image of the Figure) are misrecognized as Cloudy by 3
classification methods out of 5, including one of the best performing (ANN). On the contrary when
classification is separately made by surface type only PCDA still misrecognizes some of the lakes as
Cloudy, all other methods correctly detecting Clear sky conditions.

We also remark that KNN, though more conservative with respect to transparent clouds, is less
prone to spurious Cloudy isolated scenes (see in particular the top-right part of Figure 5, bottom-right
panel), while still preserving sharpness of the clouds.

The second image, also considered in [4], was acquired on 21 December 2014 at 02:29 UTC over
Northern Australia and includes both land and water surface. Figure 6 shows the RGB image and the
cloud mask retrieved by LDA, PCDA, CDA, ANN and KNN (orderly from left to right and from top to
bottom) when classification is made separately for each surface type.

The Figure confirms that ANN and KNN are more cloud conservative and semi-transparent
clouds are detected as Cloudy.
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124 128 132 124 128 132 124 128 132
Figure 6. RGB image acquired on 21 December 2014 at 02:29 UTC over North Australia (top-left panel).

Other panels show cloud masks obtained by LDA, PCDA, CDA, ANN and KNN (orderly from left to
right and from top to bottom). Classification was made separately for each type of surface.

4.3.2. Quantitative Analysis of Semi-Transparent Clouds

To quantitatively analyze behavior of the classification methods with respect to opaque and
semi-transparent clouds, Table 12 reports the percentage of semi-transparent scenes identified as Clear
and Cloudy for all the considered methods. Table 12 quantitatively confirms the more conservative
character of ANN and KNN throughout all the different experiments settings.

Table 12. Percentage of semi-transparent clouds detected as Clear or Cloudy by classification methods
in the three classification configurations (no ancillary information; with surface information; with
climatic information). The total number of semi-transparent scenes in the gold standard dataset is 438.

No Ancillary Information Surface Climate

Clear Cloudy Clear Cloudy Clear Cloudy
LDA 39 61 77 23 34 66
QDA 37 63 39 61 35 65
PCDA 31 69 31 69 32 68
ICDA 32 68 30 70 32 68
CDA 25 75 22 78 22 78
ANN 20 80 18 82 17 83
KNN 20 80 20 80 20 80

4.4. Consensus Analysis

This Section makes a consensus analysis aimed at assessing the mutual agreement of classification
methods in estimating cloud mask. It can provide a further accuracy indicator, independent of
any gold standard eventually available, and advice on the reliability of the cloud masks obtained
by classification methods. Given a set of methods, we define consensus on Clear and Cloudy sky
condition as the percentage of scenes for which all methods predict Clear and Cloudy conditions,
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respectively. The global consensus is defined as the direct sum of both Clear and Cloudy ones, and
represents the percentage of scenes for which all methods agree in predicting the same sky condition,
irrespective of the type, Clear or Cloudy. The percentage is computed on the entire set of 65M scenes of
the dataset. We consider a subset of the classification methods considered in Section 3 according to the
following guidelines: a) the methods have to be as independent as possible (however some degree of
dependence cannot be avoided because all methods rely on the same training data set); b) the number
of considered methods has to be low; in fact, the higher the number of methods, the higher probability
that any of them predicts the status of the sky differently from the other ones, and therefore the lower
the consensus. As a consequence we select only one representative method from the Discriminant
Analysis group, namely PCDA that gives better accuracy in the analysis of Sections 4.1, 4.2.1 and 4.2.2,
keeping all the other methods (CDA, ANN, KNN). Should the number of methods be much larger,
then a more elaborated definition of consensus should be devised.

First, we compute the consensus according to the results of Section 4.1 where a unique training
dataset is considered independently of surface or climatic zone. The four methods agree on identifying
33% of the scenes as Clear and 49% as Cloudy, resulting in a full concordance on 82% of the scenes.

Then we consider the case when different separate classifications are performed for each type
of surface (Section 2.5), whose results are reported in Table 13. When additional information on
surface type is given, global concordance of the methods is slightly higher (83%), with a slightly better
concordance on Clear scenes at detriment of Cloudy ones. Values disaggregated by surface type and
for each sky condition are reported in the same Table: the highest consensus is obtained for Vegetation
(87%) and the lowest one on Water (78%).

Table 13. Global Consensus of PCDA, CDA, ANN, KNN (last row) and separately on different surface
types when different separate classifications are performed for each surface type.

Clear Cloudy Total

Water 17.26 60.78 78.04
Vegetation  35.35 51.92 87.27
Bare Land  72.86 5.85 78.71

Urban 23.94 61.57 85.51
Snow /Ice 34.30 40.51 74.81
Global 35.59 47.49 83.08

When separate classifications are made for each climatic zone, global consensus drops to 78%,
mainly due to a lower consensus for Clear sky conditions (30.5%). Values for different climatic
zones range from 73% (Tropical zone) to 89% (Mid Latitude Winter NH). Table 14 reports full results
disaggregated by climatic zone and by sky condition.

Table 14. Global Consensus of PCDA, CDA, ANN, KNN (last row) and separately on different climatic
zones when different separate classifications are performed for each climatic zone. Only zones with
sample size of the training set larger than 1M scenes are shown.

Clear Cloudy Total

Tropical 3954 3391 7345
Mid-Latitude Summer NH  27.12 54.84  81.96
Mid-Latitude Winter NH 11.26 7732 88.58
High-Latitude Summer NH  5.79 71.75 77.54
Global 30.55 4761  78.16

Summarizing we can state that the highest consensus is reached when different classifications are
made by surface type.

Finally, we investigate which of the selected classification methods deviates most from the
consensus expressed from the other methods. For this purpose, we consider scenes for which only
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three of the 4 methods agree on the Clear or Cloudy condition and calculate the frequency of the
methods that deviate from the other three ones.

In the basic classification (without additional information) the method that more often disagrees
with the other three ones in predicting a Cloudy sky condition is PCDA. Specifically, when three
methods out of four agree on Cloudy scenes, PCDA disagrees with them 41% of the times. When
three methods agree in predicting a Clear sky condition, then CDA mostly disagrees (61% of scenes).
The situation is similar when separate classifications are performed for each surface type (see row
Global in Table 15): PCDA mostly disagrees with the other three methods (50.3% of scenes); this result
is due to a very poor agreement in Cloudy sky conditions (disagreement in 87.9% of scenes), whereas
in Clear sky conditions it is CDA that reaches the highest disagreement with 52.7% of scenes. This also
occurs on the different surface types, with PCDA showing the highest disagreement for all types of
surfaces but Bare Land, due to the highest disagreement in Cloudy conditions, whereas in Clear sky
conditions CDA shows the highest disagreement on Vegetation and Bare Land, ANN on Water and
Urban surface and KNN on Snow /Ice.

Table 15. Deviation of each classification method from the consensus expressed by other ones in the
case classification is made separately for each surface type. Figures report the fraction of times a
method disagrees with the other three ones that agree on the sky status. The higher the figure, the
higher deviation from the consensus. Methods showing the highest disagreement for each surface type
and sky conditions are indicated as boldface.

Surface Clear Sky Cloudy Sky Total
PCDA CDA ANN KNN PCDA CDA ANN KNN PCDA CDA ANN KNN
Water 9.62 3.02 8442 293 9323 227 019 431 7341 245 2016 398

Vegetation  1.82 5117 1973 2727 84.67 104 09 1333 5249 2051 825 1875
Bare Land 6.30  75.75 0 17.95 0.81 593 91.83 143 6.06 7271 4.00 1723

Urban 190 1201 79.03 7.06 87.77 327 1.66 730 4469 7.66 4048 7.18
Snow /Ice 18.72 2645 19.89 3494 6754 2121 4.19 7.06 59.09 2212 691 11.88
Global 557 5272 2396 1775 8792 186 219 8.03 50.31 25.09 1213 1247

When classification is trained separately on different climate zones, as reported in Table 16,
the situation is quite similar for PCDA and CDA, with ANN showing a greater disagreement in
more cases.

Table 16. Deviation of each classification method from the consensus expressed by other ones in the
case classification is made separately for each climatic zone. Figures report the fraction of times a
method disagrees with the other three ones that agree on the sky status. The higher the figure, the
higher deviation from the consensus. Methods showing the highest disagreement for each climatic
zone and sky conditions are indicated as boldface.

Climatic Clear sky Cloudy sky Total
zone PCDA CDA ANN KNN PCDA CDA ANN KNN PCDA CDA ANN KNN
Tropical 323 73.09 834 1534 1682 7310 432 576 620 73.09 746 13.25

Mid-Latitude
Summer NH 942 4047 41.04 9.07 9446 044 080 530 4044 1659 17.03 6.82
Mid-Latitude
Winter NH 399 10.07 7789 805 7734 421 234 1611 39.04 727 41.78 1191
High-Latitude
Summer NH  0.05 124 91.03 7.69 3942 10.02 027 50.29 1988 566 4531 29.15
Global 396 66.01 1692 1410 5224 3573 257 945 1956 5556 1229 12.60

Summarizing, we can say that PCDA and CDA show the highest disagreement with respect to
the other methods and on the contrary KNN the lowest disagreement.
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5. Conclusions

The paper shows a detailed analysis of the method presented by one the authors in a Round
Robin exercise organized by ESA for detecting clouds from images taken by the PROBA-V sensor.
Availability of a common high-quality dataset of scenes labelled as Clear or Cloudy by experts
(gold standard) is a unique benchmark for comparing different methods for detecting clouds and
investigating on questions still open.

We considered some prototypes of methods and compared them under different frameworks but
using a common training dataset for all of them. We demonstrated that CDA, chosen for participating
in the Round Robin, was adequate yielding good accuracy. However, ANN and, particularly, KNN
can both improve accuracy and better detect scenes with semi-transparent clouds. In addition, a silver
standard training dataset, semi-automatically obtained by algorithms developed for other sensors, was
proved to be effective in detecting clouds, yielding high accuracy. We stress that the silver standard
dataset considered in this paper covers only a portion of the globe and that the majority of gold
standard pixels are outside the region covered by the silver standard. Indeed a silver standard dataset
is the only feasible solution to get very large training datasets needed to train Artificial Intelligence
methods (see, e.g., [7]).

Then, even though it was not possible to give a conclusive quantitative answer whether separate
classifications based on ancillary information as surface types and/or climatic zones improve accuracy,
a qualitative analysis shows that introducing such information reduces probability to misinterpret
Clear/Cloudy condition on Water.

Finally, we performed a consensus analysis aimed at estimating the degree of mutual agreement
among classification methods in detecting Clear or Cloudy sky. The result was that a selection of 4
classification methods agree on the status of Clear or Cloudy sky for about 83% of scenes. PCDA and
CDA show the highest disagreement with the consensus of the other 3 methods and KNN the lowest
disagreement. This result is consistent with the findings on accuracy.

Results shown in the paper strictly refer to sensors with a very low number of spectral bands.
Other sensors, especially hyper-spectral, or at higher/lower spatial resolutions need a specific similar
analysis that will probably give very different results.

Results of the paper suggest possible future investigations. a) The use of different methods for
different surfaces or climatic zones: this study demonstrated that some methods could be more suited
for particular surfaces or climatic zones when we consider global accuracy or specific accuracy for
Clear or Cloudy conditions. b) Balancing of cloud/Clear conditions: this largely depends on the
training dataset and on the fraction of Clear/Cloudy scenes included. Then the classification methods
will generally and naturally favor the most populated class when Clear and Cloudy features overlap,
so to improve global accuracy. However commonly remotely sensed images can refer to conditions that
are prevalently Clear or prevalently Cloudy that could benefit from a training dataset or a classification
method that weights scenes according to the different proportion of Clear/Cloudy conditions in the
region. CDA is an attempt into this direction, even though in a global way, and Discriminant Analysis
is naturally prone to include such weights, simulating a balancing of Clear and Sky conditions different
from the training dataset. c) To use images instead of independent pixels in the classification, so to
exploit spatial correlation (that clouds indeed possess) and/or equivalently spatial features. In this
respect Artificial Intelligence methods, already available in the literature but not considered in this
paper, become interesting also for a small number of spectral bands.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
AVHRR Advanced Very-High-Resolution Radiometer

AVIRIS Airborne Visible/InfraRed Imaging Spectrometer

CALIOP Cloud-Aerosol LiDAR with Orthogonal Polarization

CDA Cumulative Discriminant Analysis

ERA-5 ECMWEFEF Reanalysis 5th Generation

ESA European Space Agency

ICDA Independent Component Discriminant Analysis
KNN k-Nearest Neighbor

LDA Linear Discriminant Analysis

MERIS MEdium Resolution Imaging Spectrometer
MODIS MODerate-resolution Imaging Spectroradiometer

MSG Meteosat Second Generation

MSI MultiSpectral Instrument

NASA National Aeronautics and Space Administration
NH Northern Hemisphere

NIR Near-InfraRed

PCDA Principal Component Discriminant Analysis

PROBA-V  PRoject for On-Board Autonomy — Vegetation

QDA

Quadratic Discriminant Analysis

SEVIRI Spinning Enhanced Visible and Infrared Imager

SH Southern Hemisphere

SPOT Satellite Pour I’Observation de la Terre

SWIR Short-Wave InfraRed

UTC Coordinated Universal Time
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