Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care
Abstract
:1. Introduction
2. Related Work
3. Bayes Network Prediction for Telemedicine System
4. Bayes Network Prediction Model for Telemedicine
4.1. Probabilities of Nodes (1 to 3)
4.2. Probabilities of Nodes (4 to 14)
5. Results and Discussion
Manual Calculation
- P(A/B) = P(B/A) × P(B);
- As assumed through CPT, posterior probability P(IT|EM) = (P(EM|IT) × P(IT))/P(EM);
- (P(EM|IT) = 0.98 and P(IT) = 0.999;
- P(IT|EM) = (0.98 × 0.999)/P(EM);
- P(B) can be found using P(B) = P(B|A) × P(A) + P(B|~A) × P(~A);
- P(EM) = P(EM|IT) × P(IT) + P(EM|~IT) × P(~IT);
- P(EM) = 0.98 × 0.999 + 0.02 × 0.001 = 0.97904;
- Finally, the posterior probability is found using P(IT|EM) = (0.98 × 0.999)/0.97904 = 1.000.
- P(B|A) = sensitivity, true positive rate (TPR) = TP/(TP + FN) = P(EM|IT) = 0.98;
- P(B|~A) = false positive rate (FPR) = FP/(FP + TN) = P(EM|~IT) = 0.02;
- P(~B|~A) = specificity, true negative rate (TNR) = TN/(TN + FP) = P(~EM|~IT) = 0.96;
- P(~B|A) = false negative rate (FNR) = FN/(FN + TP) = P(~EM|IT = T) = 0.04.
- P(A) = probability of a positive class (PC) = P(IT) = 0.999;
- P(~A) = probability of a negative class (NC) = P(~IT) = 0.001;
- P(B) = probability of a positive prediction (PP) = P(EM) = 0.97904;
- P(~B) = probability of a negative prediction (NP) = P(~EM) = 0.02096.
- P(A|B) = (TPR × PC)/PP = (P(EM|IT) × P(IT))/P(EM);
- P(B) = TPR × PC + FPR × NC = P(EM|IT) × P(IT) + P(EM|~IT) × P(~IT).
- PPV = TP/(TP + FP);
- P(A|B) = PPV = TPR × PC/PP.
- P(IT|EM) = P(EM|IT) × P(IT)/P(EM);
- P(IT|EM) = 0.98 × 0.999/0.97904 = 0.999979.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Misra, S.; Sarkar, S. Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE J. Biomed. Health Inform. 2014, 19, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.E. Managing care through the air [remote health monitoring]. IEEE Spectr. 2004, 41, 26–31. [Google Scholar] [CrossRef]
- Salayma, M.; Al-Dubai, A.; Romdhani, I.; Nasser, Y. Wireless body area network (WBAN) a survey on reliability, fault tolerance, and technologies coexistence. ACM Comput. Surv. (CSUR) 2017, 50, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Bradai, N.; Chaari, L.; Kamoun, L. A comprehensive overview of wireless body area networks (WBAn). In Digital Advances in Medicine, E-Health, and Communication Technologies; IGI Global: Hershey, PA, USA, 2013; pp. 1–32. [Google Scholar]
- Elhadj, H.B.; Chaari, L.; Kamoun, L. A survey of routing protocols in wireless body area networks for healthcare applications. Int. J. E Health Med. Commun. (IJEHMC) 2012, 3, 1–18. [Google Scholar] [CrossRef]
- Coping with the challenges of Designing Medical Body Area Networks. Available online: https://zmt.swiss/applications/wireless-body-area-networks/ (accessed on 14 January 2020).
- Meharouech, A.; Elias, J.; Mehaoua, A. Moving towards body-to-body sensor networks for ubiquitous applications: A survey. J. Sens. Actuator Netw. 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.A.; Pathan, A.S.K. The state-of-the-art wireless body area sensor networks: A survey. Int. J. Distrib. Sens. Netw. 2018, 14. [Google Scholar] [CrossRef]
- Fallahpour, M. Wireless body area networking: Joint physical-networking layer simulation and modeling. In Medical Internet of Things (m-IoT)-Enabling Technologies and Emerging Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Cicioğlu, M.; Çalhan, A. SDN-based wireless body area network routing algorithm for healthcare architecture. ETRI J. 2019, 41, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Maheswar, R.; Kanagachidambaresan, G.R.; Jayaparvathy, R.; Thampi, S.M. (Eds.) Body Area Network Challenges and Solutions; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Evaluation of Wireless Body Area Networks. Available online: https://www.ijitee.org/wp-content/uploads/papers/v8i9S/I10560789S19.pdf (accessed on 20 January 2020).
- Negra, R.; Jemili, I.; Belghith, A. Wireless body area networks: Applications and technologies. Procedia Comput. Sci. 2016, 83, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Nabi, M.; Geilen, M.; Basten, T. Wireless body area network data delivery. In Telemedicine and Electronic Medicine; CRC Press: Boca Raton, FL, USA, 2018; pp. 246–265. [Google Scholar]
- Bu, G.; Potop-Butucaru, M. Ban-gzkp: Optimal zero knowledge proof based scheme for wireless body area networks. Ad Hoc Netw. 2018, 77, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Zuhra, F.T.; Bakar, K.A.; Ahmed, A.; Tunio, M.A. Routing protocols in wireless body sensor networks: A comprehensive survey. J. Netw. Comput. Appl. 2017, 99, 73–97. [Google Scholar] [CrossRef]
- Shen, J.; Gui, Z.; Ji, S.; Shen, J.; Tan, H.; Tang, Y. Cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. J. Netw. Comput. Appl. 2018, 106, 117–123. [Google Scholar] [CrossRef]
- Hasan, K.; Biswas, K.; Ahmed, K.; Nafi, N.S.; Islam, M.S. A comprehensive review of wireless body area network. J. Netw. Comput. Appl. 2019, 143, 178–198. [Google Scholar] [CrossRef]
- Samal, T.K.; Patra, S.C.; Kabat, M.R. An adaptive cuckoo search based algorithm for placement of relay nodes in wireless body area networks. J. King Saud Univ. Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Yi, C.; Zhao, Z.; Cai, J.; de Faria, R.L.; Zhang, G.M. Priority-aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Comput. Netw. 2016, 98, 29–43. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Zhao, M. A robust authentication scheme with dynamic password for wireless body area networks. Comput. Netw. 2019, 161, 220–234. [Google Scholar] [CrossRef]
- Arfaoui, A.; Kribeche, A.; Senouci, S.M.; Hamdi, M. Game-based adaptive anomaly detection in wireless body area networks. Comput. Netw. 2019, 163, 106870. [Google Scholar] [CrossRef]
- Zhou, Y.; Sheng, Z.; Mahapatra, C.; Leung, V.C.; Servati, P. Topology design and cross-layer optimization for wireless body sensor networks. Ad Hoc Netw. 2017, 59, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Singh, S. Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad Hoc Netw. 2017, 61, 65–84. [Google Scholar] [CrossRef]
- Badreddine, W.; Khernane, N.; Potop-Butucaru, M.; Chaudet, C. Convergecast in wireless body area networks. Ad Hoc Netw. 2017, 66, 40–51. [Google Scholar] [CrossRef]
- Zebboudj, S.; Cherifi, F.; Mohammedi, M.; Omar, M. Secure and efficient ECG-based authentication scheme for medical body area sensor networks. Smart Health 2017, 3, 75–84. [Google Scholar] [CrossRef]
- Wang, W.; Shi, X.; Qin, T. Encryption-free authentication and integrity protection in body area networks through physical unclonable functions. Smart Health 2019, 12, 66–81. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Fang, H.; Carreiro, S.; Wang, H.; Boyer, E.W. Wearables technology for drug abuse detection: A survey of recent advancement. Smart Health 2019, 13, 100062. [Google Scholar] [CrossRef]
- Silvera-Tawil, D.; Hussain, M.S.; Li, J. Emerging technologies for precision health: An insight into sensing technologies for health and wellbeing. Smart Health 2019, 15. [Google Scholar] [CrossRef]
- Özderya, H.Y.; Erdöl, H.; Kayıkçıoğlu, T.; Yılmaz, A.Ö.; Kaya, İ. Wireless body area network studies for telemedicine applications using IEEE 802.15. 6 standard. In CMBEBIH; Springer: Singapore, Singapore, 2017; pp. 666–670. [Google Scholar]
- Agrahari, R.; Foroushani, A.; Docking, T.R.; Chang, L.; Duns, G.; Hudoba, M.; Karsan, A.; Zare, H. Applications of Bayesian network models in predicting types of hematological malignancies. Sci. Rep. 2018, 8, 6951. [Google Scholar] [CrossRef] [PubMed]
- Bellot, D.; Boyer, A.; Charpillet, F.E.F. Designing smart agent based telemedicine systems using dynamic bayesian networks: An application to kidney disease people. In Proceedings of the 4th International Workshop on Enterprise Networking and Computing in Health Care Industry, Nancy, France, 6–7 June 2002; p. 8. [Google Scholar]
- Beretta, S.; Castelli, M.; Gonçalves, I.; Henriques, R.; Ramazzotti, D. Learning the structure of Bayesian Networks: A quantitative assessment of the effect of different algorithmic schemes. Complexity 2018, 1–12. [Google Scholar] [CrossRef]
- Chan, F.; Wong, C.; Hon, T.; Choi, A. Bayesian network model for reducing accident rates of electrical and mechanical (E&M) work. Int. J. Environ. Res. Public Health 2018, 15, 2496. [Google Scholar]
- Christophersen, A.; Deligne, N.I.; Hanea, A.M.; Chardot, L.; Fournier, N.; Aspinall, W.P. Bayesian network modeling and expert elicitation for probabilistic eruption forecasting: Pilot study for Whakaari/White Island, New Zealand. Front. Earth Sci. 2018, 6, 211. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, K. Application of intelligent dynamic bayesian network with wavelet analysis for probabilistic prediction of storm track intensity index. Atmosphere 2018, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Mishra, R.B.; Triphathi, A.K. Software bug prediction prototype using bayesian network classifier: A comprehensive model. Procedia Comput. Sci. 2018, 132, 1412–1421. [Google Scholar] [CrossRef]
- Park, E.; Chang, H.J.; Nam, H.S. A bayesian network model for predicting post-stroke outcomes with available risk factors. Front. Neurol. 2018, 9, 699. [Google Scholar] [CrossRef]
- Scanagatta, M.; Corani, G.; De Campos, C.P.; Zaffalon, M. Approximate structure learning for large Bayesian networks. Mach. Learn. 2018, 107, 1209–1227. [Google Scholar] [CrossRef] [Green Version]
- Scutari, M.; Auconi, P.; Caldarelli, G.; Franchi, L. Bayesian networks analysis of malocclusion data. Sci. Rep. 2017, 7, 15236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cao, J.; Liu, L.; Feng, K.; Hong, S.; Xi, B.E.F. Framework of telemedicine diagnosis decision-making with Bayesian network based on multi-agent system. In Proceedings of the 7th International Conference on Computer Science & Education (ICCSE), Melbourne, VIC, Australia, 14–17 July 2012; pp. 68–70. [Google Scholar]
- Kammar, A.; Hernández-Hernández, M.; López-Moreno, P.; Ortíz-Bueno, A.; Martínez-Montaño, M. Probability and body composition of metabolic syndrome in young adults: Use of the bayes theorem as diagnostic evidence of the waist-to-height ratio. Stats 2018, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- A Gentle Introduction to Bayes Theorem for Machine Learning. Available online: https://machinelearningmastery.com/bayes-theorem-for-machine-learning/ (accessed on 29 February 2020).
- A Gentle Introduction to Bayesian Belief Networks. Available online: https://machinelearningmastery.com/introduction-to-bayesian-belief-networks/ (accessed on 29 February 2020).
Node No. | Conditions | Probabilities |
---|---|---|
Node 1 | If IT is true | P(IT) = 0.999 |
Node 2 | If DS is true | P(DS) = 0.888 |
Node 3 | If GM is true | P(GM) = 0.777 |
Node 4 | If IT is true | P(EM) = 0.98 |
If IT is false | P(~EM) = 0.02 | |
Node 5 | If EM is true | P(VLL) = 0.90 |
If EM is false | P(~VLL) = 0.05 | |
Node 6 | If EM is true | P(HC) = 0.70 |
If EM is false | P(~HC) = 0.30 | |
Node 7 | If EM is true | P(LPLR) = 0.95 |
If EM is false | P(~LPLR) = 0.05 | |
Node 8 | If DS is true | P(LL) = 0.94 |
If DS is false | P(~LL) = 0.06 | |
Node 9 | If DS is true | P(VLPLR) = 0.97 |
If DS is false | P(~VLPLR) = 0.03 | |
Node 10 | If GM is true | P(MDR) = 0.99 |
If GM is false | P(~MDR) = 0.01 | |
Node 11 | If GM is true | P(HPLR) = 0.95 |
If GM is false | P(~HPLR) = 0.05 | |
Node 12 | If GM is true | P(ML) = 0.96 |
If GM is false | P(~ML) = 0.04 | |
Node 13 | If GM is true | P(MJ) = 0.94 |
If GM is false | P(~MJ) = 0.06 | |
Node 14 | If EM and DS are true | P(LJ) = 0.95; P(~LJ) = 0.05 |
If EM is true and DS is false | P(LJ) = 0.94; P(~LJ) = 0.06 | |
If EM is false and DS is true | P(LJ) = 0.74; P(~LJ) = 0.26 | |
If EM and DS are false | P(LJ) = 0.60; P(LJ) = 0.40 | |
Node 15 | If EM and DS are true | P(HDR) = 0.96; P(~HDR) = 0.04 |
If EM is true and DS is false | P(HDR) = 0.92; P(~HDR) = 0.08 | |
If EM is false and DS is true | P(HDR) = 0.74; P(~HDR) = 0.26 | |
If EM and DS are false | P(HDR) = 0.70; P(~HDR) = 0.30 | |
Node 16 | If DS and GM are true | P(LC) = 0.98; P(~LC) = 0.02 |
If DS is true and GM is false | P(LC) = 0.94; P(~LC) = 0.06 | |
If DS is false and GM is true | P(LC) = 0.70; P(~LC) = 0.30 | |
If DS and GM are false | P(LC) = 0.60; P(~LC) = 0.40 |
Positive Class | |
---|---|
Positive prediction | True positive (TP) |
Negative prediction | False negative (FN) |
Node No. | Conditions | Posterior Probabilities |
---|---|---|
Node 4 | P(EM) = P(~EM) = | P(IT|EM) = P(IT|~EM) = P(~IT|EM) = P(~IT|~EM) = |
Node 5 | P(VLL) = P(~VLL) = | P(EM|VLL) = P(EM|~VLL) = P(~EM|VLL) = P(~EM|~VLL) = |
Node 6 | P(HC) = P(~HC) = | P(EM|HC) = P(EM|~HC) = P(~EM|HC) = P(~EM|~HC) = |
Node 7 | P(LPLR) = 0.93172 P(~LPLR) = 0.088235 | P(EM| LPLR) = 0.998248 P(EM|~ LPLR) = 0.554791 P(~EM| LPLR) = 0.0017567 P(~EM|~ LPLR) = 0.44521 |
Node 8 | P(LL) = 0.84144 P(~LL) = 0.17408 | P(DS|LL) = 0.992013 P(DS|~LL) = 0.408088 P(~DS|LL) = 0.007986 P(~DS|~LL) = 0.591911 |
Node 9 | P(VLPLR) = 0.86472 P(~VLPLR) = 0.16632 | P(DS|VLPLR) = 0.98938 P(DS|~VLPLR) = 0.37121 P(~DS|VLPLR) = 0.003885 P(~DS|~VLPLR) = 0.62626 |
Node 10 | P(MDR) = 0.77146 P(~MDR) = 0.23408 | P(GM|MDR) = 0.997109 P(GM|~MDR) = 0.066387 P(~GM|MDR) = 0.0028906 P(~GM|~MDR) = 0.933612 |
Node 11 | P(HPLR) = 0.7493 P(~HPLR) = 0.23962 | P(GM|HPLR) = 0.98511 P(GM|~HPLR) = 0.09727 P(~GM|HPLR) = 0.014880 P(~GM|~HPLR) = 0.90272 |
Node 12 | P(ML) = 0.75454 P(~ML) = 0.22854 | P(GM|ML) = 0.98857 P(GM|~ML) = 0.033998 P(~GM|ML) = 0.01182 P(~GM|~ML) = 0.96600 |
Node 13 | P(MJ) = 0.74376 P(~MJ) = 0.2507 | P(GM|MJ) = 0.98201 P(GM|~MJ) = 0.15496 P(~GM|MJ) = 0.017989 P(~GM|~MJ) = 0.84503 |
Node No. | Conditions | Posterior Probabilities |
---|---|---|
Node 14 | If EM is true and DS is true and {P(LJ) = 0.95 and P(~LJ) = 0.05} If EM is true and DS is false and {P(LJ) = 0.94 and P(~LJ) = 0.06} If EM is false and DS is true and {P(LJ) = 0.74 and P(~LJ) = 0.26} If EM is false and DS is false and {P(LJ) = 0.60 and P(~LJ) = 0.40} | P(EM, DS|LJ) = 0.380 and P(EM, DS|~LJ) = 0.163 P(EM, ~DS|LJ) = 0.130 and P(EM, ~DS|~LJ) = 0.087 P(~EM, DS|LJ) = 0.108 and P(~EM, DS|~LJ) = 0.108 P(~EM, ~DS|LJ) = 0.087and P(~EM, ~DS|~LJ) = 0.222 |
Node 15 | If EM is true and DS is true and {P(HDR) = 0.96 and P(~HDR) = 0.04} If EM is true and DS is false and {P(HDR) = 0.92 and P(~HDR) = 0.08} If EM is true and DS is true and {P(HDR) = 0.74 and P(~HDR) = 0.26} If EM is true and DS is false and {P(HDR) = 0.70 and P(~HDR) = 0.30} | P(EM, DS|HDR) = 0.525 and P(EM, DS|~HDR) = 0.35 P(EM, ~DS|HDR) = 0.0625 and P(EM, ~DS|~HDR) = 0.0625 P(~EM, DS|HDR) = 0.0875 and P(~EM, DS|~HDR) = 0.0375 P(~EM, ~DS|HDR) = 0.1 and P(~EM, ~DS|~HDR) = 0.025 |
Node 16 | If DS is true and GM is true and {P(LC) = 0.98 and P(~LC) = 0.02} If DS is true and GM is false and {P(LC) = 0.94 and P(~LC) = 0.06} If DS is true and GM is true and {P(LC) = 0.70 and P(~LC) = 0.30} If EM is true and GM is false and {P(LC) = 0.60 and P(~LC) = 0.40} | P(DS, GM|LC) = 0.42 and P(DS, GM|~LC) = 0.18 P(DS, ~GM|LC) = 0.12 and P(DS, ~GM|~LC) = 0.08 P(~DS, GM|LC) = 0.05 and P(~DS, GM|~LC) = 0.05 P(~DS, ~GM|LC) = 0.08 and P(~DS, ~GM|~LC) = 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
R, L.; P, V. Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care. Sensors 2020, 20, 2153. https://doi.org/10.3390/s20072153
R L, P V. Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care. Sensors. 2020; 20(7):2153. https://doi.org/10.3390/s20072153
Chicago/Turabian StyleR, Latha, and Vetrivelan P. 2020. "Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care" Sensors 20, no. 7: 2153. https://doi.org/10.3390/s20072153
APA StyleR, L., & P, V. (2020). Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care. Sensors, 20(7), 2153. https://doi.org/10.3390/s20072153