Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Piezoelectric Device System for the Study of the Effects of Dynamical Mechanical Stimuli in Cells
2.1.1. Experimental Stage
2.1.2. Collagen Functionalization
2.1.3. PDMS Curing Process
2.1.4. Driver
2.2. Cell Culture
2.3. Cytotocicity and Proliferation Assays
2.4. Migration Assay
2.4.1. Wound Generation
2.4.2. Image Processing
2.5. Scanning Electron Microscopy
2.6. Actin Fluorescence and DAPI
Size of the Nucleus
2.7. Microscopy
2.8. Statistical Methods
3. Results
3.1. Characterization and Validation of the Mechanical Properties of the Device for Dynamic Mechanical Studies
3.1.1. Laser Interferometry
3.1.2. Physical Analysis and Estimation of the Applied Forces
3.2. Preliminary Studies of the Effects of Dynamic Mechanical Stimulation Using the Proposed Device on Cell Proliferation, Migration, and Morphology
3.2.1. Selection of Dynamics Conditions for Cellular Experiments
3.2.2. Cytocompatiblity and Proliferation Assays
3.2.3. Migration Assay
3.2.4. SEM Visualization
3.2.5. Immunostaining
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
A1. Theoretical Analysis of the PVDF Actuator
Parameter | Value | |||||
---|---|---|---|---|---|---|
Thickness | 28 µm | |||||
Piezoelectric coefficient d31 | 23∙10−12 (C/m2)/(N/m2) | |||||
Piezoelectric coefficient d33 | −33∙10−12 (C/m2)/(N/m2) | |||||
Young’s modulus | 2 to 4 (GPa) or (N/m2) [64] | |||||
Poisson’s ratio | 0.326 | |||||
Mass density | 2.10∙103 (kg/m3) [65] | |||||
Short edge of the membrane | 25 mm | |||||
Long edge of the membrane | 35 mm | |||||
a/b | 1 | 0.9 | 0.8 | 0.6 | 0.4 | 0.2 [63] |
k1 | 36 | 32.7 | 29.9 | 25.9 | 23.6 | 22.6 |
References
- Roca-Cusachs, P.; Conte, V.; Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 2017, 19, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Petridou, N.; Spiró, Z.; Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol. 2017, 19, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xu, G.-K.; Wang, G. On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 2017, 7, 45575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holenstein, C.N.; Silvan, U.; Snedeker, J.G. High-resolution traction force microscopy on small focal adhesions—Improved accuracy through optimal marker distribution and optical flow tracking. Sci. Rep. 2017, 7, 41633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhamed, I.; Chowdhury, F.; Maruthamuthu, V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering 2017, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Rico, F.; Roca-Cusachs, P.; Sunyer, R.; Farre, R.; Navajas, D. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J. Mol. Recognit. 2007, 20, 459–466. [Google Scholar] [CrossRef]
- Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C.; Mestroni, L.; Sbaizero, O. The cell-stretcher: A novel device for the mechanical stimulation of cell populations. Rev. Sci. Instrum. 2016, 87, 084301. [Google Scholar] [CrossRef]
- Sugi, T.; Okumura, E.; Kiso, K.; Igarashi, R. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory. Anal. Sci. 2016, 32, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Millet, L.; Kim, N.; Li, H.; Jin, X.; Popescu, G.; Aluru, N.R.; Hsia, K.J.; Bashir, R. Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. USA 2010, 107, 20691–20696. [Google Scholar] [CrossRef] [Green Version]
- Corbin, E.A.; Kong, F.; Lim, C.T.; King, W.P.; Bashir, R. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab Chip 2015, 15, 839–847. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, J.; Wang, W.; Xi, N.; Wang, Y.; Li, W.J. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration. IEEE Trans. Biomed. Eng. 2017, 64, 2771–2780. [Google Scholar] [PubMed]
- Ingber, D.E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 2006, 20, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.L.; Goldmann, W.H. Cellular mechanotransduction. AIMS Biophys. 2016, 3, 50–62. [Google Scholar] [CrossRef]
- Schwarz, U.S.; Balaban, N.; Riveline, D.; Bershadsky, A.D.; Geiger, B.; Safran, S. Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophys. J. 2002, 83, 1380–1394. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.L.; Tien, J.; Pirone, D.M.; Gray, D.S.; Bhadriraju, K.; Chen, C.S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 2003, 100, 1484–1489. [Google Scholar] [CrossRef] [Green Version]
- Sancho, A.; Vandersmissen, I.; Craps, S.; Luttun, A.; Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 2017, 7, 46152. [Google Scholar] [CrossRef] [Green Version]
- Du, V.; Luciani, N.; Richard, S.; Mary, G.; Gay, C.; Mazuel, F.; Reffay, M.; Ménasché, P.; Agbulut, O.; Wilhelm, C. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nat. Commun. 2017, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Tsimbouri, M. Adult Stem Cell Responses to Nanostimuli. J. Funct. Biomater. 2015, 6, 598–622. [Google Scholar] [CrossRef] [Green Version]
- Tsimbouri, M.; Childs, P.; Pemberton, G.D.; Yang, J.; Jayawarna, V.; Orapiriyakul, W.; Burgess, K.; González-García, C.; Blackburn, G.; Thomas, D.; et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 2017, 1, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Childs, P.; Boyle, C.A.; Pemberton, G.D.; Nikukar, H.; Curtis, A.S.; Henriquez, F.; Dalby, M.J.; Reid, S. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour. Acta Biomater. 2016, 34, 159–168. [Google Scholar] [CrossRef]
- Pemberton, G.D.; Childs, P.; Reid, S.; Nikukar, H.; Tsimbouri, P.M.; Gadegaard, N.; Curtis, A.S.G.; Dalby, M.J. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: Nanotopography and nanokicking. Nanomedicine 2015, 10, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Nikukar, H.; Reid, S.; Tsimbouri, M.; Riehle, M.; Curtis, A.S.G.; Dalby, M.J. Osteogenesis of Mesenchymal Stem Cells by Nanoscale Mechanotransduction. ACS Nano 2013, 7, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D. Techniques for mechanical stimulation of cells in vitro: A review. J. Biomech. 2000, 33, 3–14. [Google Scholar] [CrossRef]
- Rigato, A.; Miyagi, A.; Scheuring, S.; Rico, F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 2017, 13, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Yoshigi, M.; Hoffman, L.M.; Jensen, C.C.; Yost, H.J.; Beckerle, M.C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Boil. 2005, 171, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudipaty, S.A.; Lindblom, J.; Loftus, P.D.; Redd, M.J.; Edes, K.; Davey, C.F.; Krishnegowda, V.; Rosenblatt, J. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nat. Publ. Gr. 2017, 543, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, P.; Keely, P.J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 2011, 124, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Prè, D.; Ceccarelli, G.; Benedetti, L.; Magenes, G.; De Angelis, M.G.C. Effects of Low-Amplitude, High-Frequency Vibrations on Proliferation and Differentiation of SAOS-2 Human Osteogenic Cell Line. Tissue Eng. Part C Methods 2009, 15, 669–679. [Google Scholar] [CrossRef]
- Koike, M.; Shimokawa, H.; Kanno, Z.; Ohya, K.; Soma, K. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner. Metab. 2005, 23, 219–225. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhang, L.; Zhou, Y.; Hou, W.; Quan, H.; Li, X.; Chen, Y.; Yu, H. Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch. Oral Boil. 2012, 57, 1395–1407. [Google Scholar] [CrossRef]
- Kurpinski, K.; Chu, J.; Hashi, C.; Li, S. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 2006, 103, 16095–16100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajik, A.; Zhang, Y.; Wei, F.; Sun, J.; Jia, Q.; Zhou, W.; Singh, R.; Khanna, N.; Belmont, A.S.; Wang, N. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 2016, 15, 1287–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-González, B.; Zhang, S.; Gómez-González, M.; Meili, R.; Firtel, R.A.; Lasheras, J.C.; Del Alamo, J.C. Two-Layer Elastographic 3-D Traction Force Microscopy. Sci. Rep. 2017, 7, 39315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulligan, J.A.; Bordeleau, F.; Reinhart-King, C.A.; Adie, S.G. Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy. Biomed. Opt. Express 2017, 8, 1152–1171. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.N.; Sharma, N.; Hallén-Grufman, K.; Jager, E.W.H.; Svennersten, K. The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools. J. Cell. Mol. Med. 2018, 22, 2319–2328. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hsu, H.-Y.; Li, X.; Xian, C.J. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study. BioMed Res. Int. 2016, 2016, 2735091. [Google Scholar] [CrossRef]
- Tanaka, S.; Li, J.; Duncan, R.L.; Yokota, H.; Burr, D.B.; Turner, C. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 2003, 36, 73–80. [Google Scholar] [CrossRef]
- Cui, Y.; Hameed, F.M.; Yang, B.; Lee, K.; Pan, C.Q.; Park, S.; Sheetz, M. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 2015, 6, 6333. [Google Scholar] [CrossRef]
- Wang, N.; Tytell, J.D.; Ingber, D.E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 2009, 10, 75–82. [Google Scholar] [CrossRef]
- Hoffman, B.D.; Grashoff, C.; Schwartz, M.A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475, 316–323. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, M.; Craig, K.; Tibalt, E.; Respizzi, S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int. J. Surg. 2015, 24, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Weinheimer-Haus, E.M.; Judex, S.; Ennis, W.J.; Koh, T.J. Low-Intensity Vibration Improves Angiogenesis and Wound Healing in Diabetic Mice. PLoS ONE 2014, 9, e91355. [Google Scholar] [CrossRef] [PubMed]
- Sari, Y.; Sanada, H.; Minematsu, T.; Nakagami, G.; Nagase, T.; Huang, L.; Noguchi, H.; Mori, T.; Yoshimura, K.; Sugama, J. Vibration inhibits deterioration in rat deep-tissue injury through HIF1-MMP axis. Wound Repair Regen. 2015, 23, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Arashi, M.; Sugama, J.; Sanada, H.; Konya, C.; Okuwa, M.; Nakagami, G.; Inoue, A.; Tabata, K. Vibration Therapy Accelerates Healing of Stage I Pressure Ulcers in Older Adult Patients. Adv. Skin Wound Care 2010, 23, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ueberschlag, P. PVDF piezoelectric polymer. Sens. Rev. 2001, 21, 118–126. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.; McCluskey, D.; Tan, C.K.L.; Tracey, M. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 35017. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Boil. 1988, 106, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Lancaster, M.V.; Fields, R.D. Antibiotic and Cytotoxic Drug Susceptibility Assays using Resazurin and Poising Agents. U.S. Patent 5,501,959, 26 March 1996. [Google Scholar]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada-Roman, J.E.; Jackson, D.A.; Garcia, J.A. Variable configuration fiber optic laser doppler vibrometer system. Photon. Sens. 2016, 6, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Yusko, E.C.; Asbury, C.L. Force is a signal that cells cannot ignore. Mol. Boil. Cell 2014, 25, 3717–3725. [Google Scholar] [CrossRef] [PubMed]
- Riley, N. S Teady S Treaming. Annu. Rev. Fluid Mech. 2001, 33, 43–65. [Google Scholar] [CrossRef]
- Lee, D.; Bader, D.L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 1997, 15, 181–188. [Google Scholar] [CrossRef]
- Chou, K.-C.; Kiang, Y.-S. The biological functions of low-frequency vibrations (phonons). Biophys. Chem. 1985, 22, 219–235. [Google Scholar] [CrossRef]
- Kaspar, D.; Seidl, W.; Ignatius, A.; Claes, L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 2000, 33, 45–51. [Google Scholar] [CrossRef]
- Curtis, A.S.G.; Reid, S.; Martin, I.; Vaidyanathan, R.; Smith, C.-A.; Nikukar, H.; Dalby, M.J. Cell Interactions at the Nanoscale: Piezoelectric Stimulation. IEEE Trans. NanoBiosci. 2013, 12, 247–254. [Google Scholar] [CrossRef]
- Kaspar, D.; Seidl, W.; Neidlinger-Wilke, C.; Beck, A.; Claes, L.; Ignatius, A. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 2002, 35, 873–880. [Google Scholar] [CrossRef]
- Nikukar, H.; Childs, P.G.; Curtis, A.S.G.; Martin, I.W.; Riehle, M.O.; Dalby, M.J.; Reid, S. Production of Nanoscale Vibration for Stimulation of Human Mesenchymal Stem Cells. J. Biomed. Nanotechnol. 2016, 12, 1478–1488. [Google Scholar] [CrossRef]
- Sakiyama, T.; Huang, M. Free vibration analysis of rectangular plates with variable thickness. J. Sound Vib. 1998, 216, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Liu, C. Foundations of MEMS, 2nd ed.; Prentince Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Measurement Specialties Inc. Piezo Film Sensors Technical Manual; Measurement Specialties Inc.: Hampton, VA, USA, 1999. [Google Scholar]
- Liu, K.; Zhang, S.; Xu, M.; Wu, T.; Shen, S. The research of effective flexoelectric coefficient along 1123 direction in polyvinylidene fluoride. J. Appl. Phys. 2017, 121, 174104. [Google Scholar] [CrossRef]
Control (C) | Piezoelectric Device w/o Stimulation (CM) | Piezoelectric Device with 1 Hz Frequency Stimulation | Piezoelectric Device with 80 Hz Frequency Stimulation | |
---|---|---|---|---|
Slope | −0.03703 ± 0.00102 | −0.03614 ± 0.001644 | −0.04004 ± 0.002576 | −0.03183 ± 0.002552 |
Total closure time (hours) | 27.76 | 28.25 | 24.41 | 33.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojena-Medina, D.; Martínez-Hernández, M.; de la Fuente, M.; García-Isla, G.; Posada, J.; Jorcano, J.L.; Acedo, P. Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology. Sensors 2020, 20, 2155. https://doi.org/10.3390/s20072155
Mojena-Medina D, Martínez-Hernández M, de la Fuente M, García-Isla G, Posada J, Jorcano JL, Acedo P. Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology. Sensors. 2020; 20(7):2155. https://doi.org/10.3390/s20072155
Chicago/Turabian StyleMojena-Medina, Dahiana, Marina Martínez-Hernández, Miguel de la Fuente, Guadalupe García-Isla, Julio Posada, José Luis Jorcano, and Pablo Acedo. 2020. "Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology" Sensors 20, no. 7: 2155. https://doi.org/10.3390/s20072155
APA StyleMojena-Medina, D., Martínez-Hernández, M., de la Fuente, M., García-Isla, G., Posada, J., Jorcano, J. L., & Acedo, P. (2020). Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology. Sensors, 20(7), 2155. https://doi.org/10.3390/s20072155