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Abstract: This paper considers the coherent integration problem for moving target detection
using frequency agile (FA) radar, involving range cell migration (RCM) and the nonuniform
phase fluctuations among different pulses caused by range-agile frequency (R-AF) coupling and
velocity-time-agile frequency (V-T-AF) coupling. After the analysis of the term corresponding to the
phase fluctuation caused by V-T-AF coupling, the term can be regarded as related to an equivalent
non-uniform slow time, and nonuniform fast Fourier transform (NUFFT) could be the solution.
So a fast coherent integration method combining Radon Fourier transform (RFT) and NUFFT based on
low-rank approximation, i.e., Radon-NUFFT, is proposed. In this method, the RCM is solved by
Radon algorithm via target trajectory searching, the non-uniform phase fluctuation caused by R-AF
coupling is compensated by constructing a compensation item corresponding to the range and agile
frequency. In addition, the compensation of the non-uniform phase fluctuation caused by V-T-AF
coupling is converted into a problem of spectral analysis of non-uniform sampling complex-valued
signal, which is solved by the NUFFT based on low rank approximation. Compared with the existing
methods, the proposed method can realize the coherent integration for FA radar accurately and
quickly. The effectiveness of the proposed method is verified by simulation experiments.

Keywords: frequency agile radar; moving target detection; coherent integration; nonuniform fast
Fourier transform

1. Introduction

In modern warfare, the capability of anti-jamming is critical to radar system for the survivability in
battlefield. Radar that incorporate frequency agility, especially pulse-to-pulse carrier frequency agility,
has the advantages of enhanced jam resistance and low probability of detection and interception [1].
In addition, frequency agile (FA) radar can also improve the range resolution because of the large
synthetic bandwidth [2]. Therefore, there has been a renewed interest in FA radar in recent years.

In FA radar using waveform with pulse-to-pulse carrier frequency agility, the center frequency of
each transmitted pulse is hopped randomly between certain frequency points, which demolishes the
coherence between pulse-to-pulse radar echo. However, coherent integration is an effective anti-clutter
technique for radar, and it enhances the capability of moving target detection since it provides the
largest signal-to-noise (SNR) output in white Gauss noise. The existing coherent integration methods,
such as Keystone transform [3], Radon Fourier transform (RFT) [4], sparse discrete fractional Fourier
transform [5], discrete polynomial-phase transform [6] and Radon-Lv’s Distribution [7] are only
applicable for conventional radar. Also, some methods have been proposed for coherent integration of
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FA radar. Methods based on compressed sensing [8,9] has been applied for random carrier frequency
signal, which only perform well in high SNR scenario, and the performance degrades significantly in
low SNR scenario. The method in Reference [10] combines the phase compensation and cost function
based on minimum entropy for coherent integration using FA radar, but the problem of range cell
migration (RCM) is not discussed. Wang, et al. proposed a frequency agile coherent Radon transform
(FA-CRT) method [11], which is realized by CRT among pulses combining with target trajectory
searching, but it has high computational complexity due to the time-consuming searching process
and compensation.

Motivated by previous work, after analyzing the signal model of moving target echo signal of
FA radar, it can be concluded that there are three problems to be solved, the problem of RCM caused
by target motion, the nonuniform phase fluctuations among different pulses caused by range-agile
frequency (R-AF) coupling, and the nonuniform phase fluctuations caused by velocity-time-agile
frequency(V-T-AF) coupling. The problem of RCM can be solved by target trajectory searching,
and the phase fluctuation caused by R-AF coupling can be compensated directly at one time, the
most important is the phase fluctuation caused by V-T-AF coupling. After the analysis of the term
corresponding to phase fluctuation caused by V-T-AF coupling, the term an be regarded as related to a
equivalent non-uniform slow time, so the problem can be converted to a problem of spectral analysis of
non-uniform sampling complex-valued signal. As for spectral analysis of nonuniformly sampled data,
method based on Lomb-Scargle periodogram (LSP) are not applicable for complex-valued data [12],
and method based on iterative adaptive approach (IAA) requires a lot of iterative calculations [13].
So we adopt nonuniform discrete Fourier transform (NUDFT) for the spectral analysis of nonuniformly
sampled data [14]. Fast algorithms for computing the NUDFT are referred to as nonuniform fast
Fourier transform (NUFFT), and state-of-the-art NUFFT algorithms are usually based on oversampling
and interpolation [15–17], min-max interpolation [18], and low-rank approximation [19]. Since the
equivalent non-uniform slow time corresponding to the V-T-AF coupling term is approximately
equispaced, and the NUFFT method based on low-rank approximation is suitable for that condition,
so we adopt NUFFT based on low-rank approximation to deal with the V-T-AF coupling.

The remainder of this paper is organized as follows. Section 2 establishes the signal model of
echo signal and the problems for coherent integration of FA radar are raised. In Section 3, the coherent
integration method based on Radon-NUFFT is described in detail. Section 4 presents the simulation
results to verify the performance of the proposed method. Section 5 concludes the paper.

2. Signal Model

Assume the FA radar adopts linear frequency-modulated (LFM) signal as the baseband waveform,
where the carrier frequency of each pulses varies randomly between a fixed set of frequency points
evenly distributed in a fixed working band. The set of fixed frequency points is F = { fi| fi =

f0 + i∆ f , i = 0, 1, · · · , N f − 1}, where f0 is nominal frequency, ∆ f is the frequency interval between
two adjacent frequency points, and N f is the total number of frequency points. The transmitted signal
can be expressed as

st
(
tm, t̂

)
= A Rect

(
t̂
τ

)
exp

[
j2π fm

(
tm + t̂

)]
exp

(
jπµt̂2

)
(1)

where tm = mTr is the slow time, m indicates the pulse number, Tr is the pulse repetition interval

(PRI), and t̂ is the fast time. Rect(x) =

{
1 if 0 ≤ x ≤ 1,

0 if x > 1.
is the window function, τ is the pulse width,

µ = B/τ is the chirp rate of the LFM signal with bandwidth B, fm is the carrier frequency of the mth
pulse, fm = f0 + cm∆ f , where cm is a random integer in the range of [0, N f − 1]. Figure 1 is a simplified
diagram of the time-frequency diagram of the transmitted signal, where the carrier frequency of each
pulse hops randomly between different frequency points.
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Figure 1. Simplified diagram of the transmitted signal.

Suppose there is a target moving towards the radar with a constant radial velocity v0, and the
initial radial range is r0, so the distance between the target and radar can be expressed as

r(tm, t) = r0 − v0(tm + t̂) (2)

Therefore, the the echo signal scattered from the target received by the radar can be represented as

sr
(
tm, t̂

)
=σr A Rect

(
t̂− 2r(tm, t)/c

τ

)
exp

[
j2π fm

(
tm + t̂− 2

r(tm, t)
c

)]
· exp

[
jπµ

(
t̂− 2

r(tm, t)
c

)2
] (3)

where σr is the scattering coefficient of target, c is the speed of light. Since the waveform of transmitted
signal is transparent to the receiver, the baseband signal after down-conversion can be expressed as

sb
(
tm, t̂

)
=σr A Rect

(
t̂− 2r(tm, t)/c

τ

)
exp

[
j2π fm

(
t̂− 2

r(tm, t)
c

)]
· exp

[
jπµ

(
t̂− 2

r(tm, t)
c

)2
] (4)

Then we can construct baseband reference signal for each echo signal, for example, the mth
reference signal is as follows

sre f (t) = A Rect
(

t
τ

)
exp

[
j2π( fmt +

1
2

µt2)

]
(5)

Using the baseband reference signal sre f (t) to perform matched filtering on the baseband echo
signal sb

(
tm, t̂

)
, i.e., they perform cross-correlation between them, and the result can be expressed as

spc
(
tm, t̂

)
=σr A

√
Bτ sinc

[
πB
(

t̂− 2 (r0 − v0tm)

c
+

2v0 fm

µc

)]
· exp

[
−j2π

(
fm −

2v0 fm

c

)
· 2 (r0 − v0tm)

c

] (6)
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It can be seen that the signal envelope varies with tm, and there is an offset of 2v0 fm/µc from the
correct position of the target, which is the range-Doppler coupling effect. It can be seen that the range
Doppler coupling of different pulses will cause RCM only if the following condition is met[

max
(

2v0 fm

µc

)
−min

(
2v0 fm

µc

)]
/µc >

1
fs

(7)

where fs is the sampling rate, Equation (7) can be expressed as

2v0N f ∆ f
µc

>
1
fs

(8)

According to the parameter of FA radar in reality and the speed of conventional air target,
the quantitative analysis of Equation (8) is carried out, and it can be concluded that this situation will
not be satisfied in general. It can be considered that the range-Doppler coupling effect of different pulses
is the same, so this item can be ignored. In addition, since |v0| << c, we can get fm − 2v0 fm/c ≈ fm.
So Equation (6) can be simplified as

spc
(
tm, t̂

)
=σr A

√
Bτ sinc

[
πB
(

t̂− 2 (r0 − v0tm)

c

)]
· exp

[
−j2π( f0 + cm∆ f ) · 2 (r0 − v0tm)

c

]
=σr A

√
Bτ sinc

[
πB
(

t̂− 2 (r0 − v0tm)

c

)]
· exp

(
−j4π f0 ·

r0

c

)
· exp

(
−j4πcm∆ f · r0

c

)
· exp

[
j4π( f0 + cm∆ f ) · v0tm

c

] (9)

It can be seen that the peak position of the signal envelope is 2(r0 − v0tm)/c. When the RCM
occurs, it needs to be compensated to ensure the performance of coherent integration. Besides, it can be
seen that the phase of the signal with respect to the slow time can be decomposed to two terms, the first
term is φ1 = exp (−j4πcm∆ f · r0/c), and the second term is φ2 = exp [j4π( f0 + cm∆ f ) · v0tm/c]. The
first term is the nonuniform phase fluctuation caused by the coupling of target distance and the agile
frequency, which is denoted as R-AF coupling. The second term is the nonuniform phase fluctuation
caused by the coupling of the velocity of target and the changing slow time and agile frequency, which
is denoted as V-T-AF coupling, rewrite φ2 as

φ2 = exp
[

j4π( f0 + cm∆ f ) · v0tm

c

]
= exp

[
j4π

v0

c
f0mTr(1 +

cm∆ f
f0

)

]
(10)

Therefore, φ2 can be regarded as a term related to the non-uniform slow time t̃m = mTr(1 +

cm∆ f / f0), so the compensation of V-T-AF coupling can be regarded as a problem of spectral analysis
of non-uniform sampling signal.

3. Proposed Method

In this section, we will propose a coherent integration method based on Radon-NUFFT to solve the
problems raised in Section 2. According to the previous analysis, the problems in coherent integration
for FA radar are the RCM and phase fluctuations caused by R-AF coupling and V-T-AF coupling. First,
we can refer to the RFT algorithm to use Radon algorithm via target trajectory searching to compensate
the RCM after compensation of R-AF coupling. Then, according to the form of φ2 in Equation (10), we
can consider it as signal sampled at non-uniform time t̃m. Therefore, the accumulation of the signal
is transformed into the problem of spectral analysis of the non-uniform sampling signal, so we use
NUFFT algorithm to deal with it. As the frequency variation range of the FA radar is relatively small
compared with the nominal frequency f0, it can be seen from the form of t̃m = mTr(1 + cm∆ f / f0) that
the sample points are approximately equispaced, so we adopt a NUFFT algorithm based on low rank
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approximation.We first introduce the NUFFT algorithm based on low rank approximation, and then
the coherent integration method based on Radon-NUFFT is described in detail.

3.1. NUFFT Based on Low Rank Approximation

NUFFT is a fast implementation of NUDFT, so we will introduce NUDFT first. Let N > 1 be an
integer and x = (x0, · · · , xN−1)

T is a N × 1 complex vector, the NUDFT transforms x into another
N × 1 complex vector y = (y0, · · · , yN−1)

T , which is defined as

yn =
N−1

∑
k=0

xke−j2πtkωn , 0 ≤ n ≤ N − 1 (11)

where t0, · · · , tN−1 ∈ [0, 1] are nonuniform sample points and ω0, · · · , ωN−1 ∈ [0, N] are frequencies.
We only research the situation that the frequencies are uniform, i.e., ωn = n, so the problem is referred
as NUDFT in type II (NUDFT-II) [17].

A convenient and compact way to write Equation (11) is as a matrix-vector product, given
x ∈ CN×1, compute y ∈ CN×1 as:

y = F̃2x, (F̃2)nk = e−j2πntk , 0 ≤ n, k ≤ N − 1 (12)

Therefore, the problem is simply a quasi optimal complexity algorithm for computing the
matrix-vector product F̃2x. In conventional DFT where tk = k/N, we use the notation Fnk = e−j2πnk/N

for the DFT matrix, and FFT algorithm computes Fx in O(N log N) operations by exploiting algebraic
redundancies [20]. However, the ideas behind the FFT are not useful when the sample points are
nonuniform.

While a naive application of Equation (12) results in an O(N2) algorithm for computing the
NUDFT, a fast algorithm based on FFT is referred to as NUFFT. In general, NUFFT leverage the FFT by
converting the nonuniform problem into a uniform problem (or a sequence of uniform problems) to
which the FFT can be applied.

Suppose that sample points t0, · · · , tN−1 are near-equispaced, so that there exists a parameter
0 < γ ≤ 1/2 satisfying ∣∣∣∣tk −

k
N

∣∣∣∣ ≤ γ

N
(13)

This assumption guarantees that the closest uniform point to tk is k/N. Since the frequencies are
uniform, i.e., ωn = n, 0 ≤ n ≤ N − 1, we can factor the entries of F̃2 as

(F̃2)nk = e−j2πntk = e−j2πn(tk−k/N)e−j2πnk/N , 0 ≤ n, k ≤ N − 1 (14)

which shows that the (n, k) entry of F̃2 can be written as a complex number multiplied by the (n, k)
entry of the DFT matrix F. So we can decompose F̃2 as

F̃2 = A ◦ F, Ank = e−j2πn(tk−k/N) (15)

where ◦ is the Hadamard product.
The NUFFT algorithm is based on the simple observation that if the sample points are

near-equispaced, then A = F̃2 � F can be well-approximated by a low rank matrix [21], where
� denotes the Hadamard division. That is to say, for a small integer K, we find that:

A ≈ AK = ((u0vT
0 + · · ·+ uK−1vT

K−1)), u0, · · · , uK−1, v0, · · · , vK−1 ∈ CN×1 (16)
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So we have

F̃2x = (A ◦ F)x ≈ ((u0vT
0 + · · ·+ uK−1vT

K−1) ◦ F)x =
K−1

∑
r=0

Dur FDvr x (17)

where Dur = diag((ur)1, · · · , (ur)N). Since we can calculate Dvr x with N multiplications, then
calculate FDvr x through conventional FFT, and finally calculate Dur FDvr x with N multiplications again.
Therefore, an approximation to F̃2x can be computed in O(KN log N) operations via K diagonally
scaled FFTs. Moreover, each matrix-vector product in Equation (17) can be computed independently.
All that remains is to show that A can be well-approximated by a low rank matrix AK, then select the
integer K and compute the vectors u0, · · · , uK−1, v0, · · · , vK−1.

We can derive a low rank approximation for A by using Chebyshev expansions [22]. Define
0 < ε < 1 as the working precision. For an integer p ≥ 0, the Chebyshev polynomial of degree p is
given by Tp(x) = cos

(
p cos−1 x

)
on x ∈ [−1, 1]. If γ > 0, then for 0 < ε < 1 we can find an integer K

and a matrix AK satisfying ‖A− AK‖max ≤ ε, where ‖ · ‖max denotes the absolute maximum matrix
entry. Define t = (t0, · · · , tN−1)

T , e = (0, 1/N, · · · , (N − 1)/N)T , f = (0, 1, · · · , N − 1)T , then the
matrix AK can be given as

AK =
K−1

∑
r=0

[
K−1

∑
p=0

apr

(
exp(−jπN(t− e)) ◦ Tp(

N(t− e)
γ

)

)]
Tr(

2fT

N
− 1) (18)

So we can define ur and vr as

ur =

[
K−1

∑
p=0

apr

(
exp(−jπN(t− e)) ◦ Tp(

N(t− e)
γ

)

)]
(19)

vr =

{
Tr(

2f
N − 1)/2 r = 0

Tr(
2f
N − 1) r ≥ 1

(20)

Therefore, AK can also be expressed as the form in Equation (16), for 0 ≤ p, q ≤ K− 1, the coefficients
apr is defined as

apr =

{
4jr J(p+r)/2(−γπ/2)J(r−p)/2(−γπ/2), mod(|p− r|, 2) = 0
0, otherwise

(21)

where Jν(z) is the Bessel function of parameter ν at z.
The expansion in Equation (18) provides us with a rank K matrix AK that approximates A as

A = limK→∞ AK. Since Chebyshev expansion is convergent, for any fixed K, there is an explicit upper
bound for ||A− AK||max. For γ > 0, the integer K is given by

K = max
{

3,
⌈

5γeW(log(140/ε)/(5γ))
⌉}

= O
(

log(1/ε)

log log(1/ε)

)
(22)

where W(x) is the Lambert-W function, and dxe is the nearest integer above or equal
to x ≥ 0. By asymptotic approximations of W(x) as x → ∞, we find that when
ε → 0, K = O(log(1/ε)/ log log(1/ε)), therefore, F̃2x can be computed in a total of
O(N log N log(1/ε)/ log log(1/ε)) operations using Equation (17). In practical application, we do not
need to calculate the value of K, but adopt the empirical value. The specific value of K depends on γ

and ε, for example, when 1
4 < γ ≤ 1

2 and ε ≈ 1.2× 10−7, we can set the value as K = 10.
It should be noted that the Chebyshev expansions requires O(K2N) operations [23] , which should

be included in the final complexity of the NUFFT. However, for a batch of data with the same sampling
mode, this calculation only needs to be carried out once, and AK is independent from the actual
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sampling result x, so when the NUFFT is applied to the coherent integration of FA radar, this operation
only needs to be carried out once for the data in each coherent process interval (CPI). The final spectral
estimate of nonuniformly sampled data sequence x at frequency ωn in Equation (11) can be denoted as
yn = NUFFT(x, ωn).

3.2. Radon-NUFFT Method

Based on the above-mentioned analysis, we propose the Radon-NUFFT method to achieve the
coherent integration for FA radar. At first, assuming that the transmitted signal is conventional LFM
signal with a fixed carrier frequency fc, which is noted as ht(tm, t̂), and the echo signal after down
conversion and matched filtering is hpc(tm, t̂), so the we can perform coherent integration method
based on conventional RFT algorithm [4], which is is expressed as

G(r, v) =
∫

hpc

(
tm,

2(r− vtm)

c

)
exp

(
−j

4πvtm

λ

)
dtm (23)

where r and v are the range and velocity of target, λ = c/ fc is the wavelength of the signal. The
implementation of RFT is to search different speed v and range r to obtain different target trajectory,
and then to accumulate the energy on the trajectory through FFT algorithm.

However, for FA radar signal, due to the nonuniform phase fluctuation caused by the R-AF
coupling and V-T-AF coupling, conventional FFT algorithm cannot be applied. So the principle of the
coherent integration method for FA radar is defined as

GRNFT(r, v) =
∫

spc

(
tm,

2(r− vtm)

c

)
exp

(
j
4πrcm∆ f

c

)
exp

(
−j

4πvtm( f0 + cm∆ f ))
c

)
dtm (24)

First, the coherent processing interval TM = MTr can be preset according to radar parameters
and dwell time of antenna beam, where M is the number of pulses. So we can get the discrete form of
continuous signal spc

(
tm, t̂

)
, which is expressed as

Spc(m, n), m = 1, · · · , M, n = 1, · · · , N (25)

where N = Tr ∗ fs is the number of sampling points in fast time dimension.
The scope of velocity [−vmax, vmax] and scope of range [rmin, rmax] are determined by the moving

status of targets to be detected. The interval of velocity is set as ∆v = c/(2M f0Tr), and the interval
of range is ∆r = c/2 fs. So the number of searching velocity and range are Nv = d2vmax/∆ve, Nr =

d(rmax − rmin)/∆re. So the searching parameters can be defined as

ri = rmin + (i− 1)∆r, i = 1, 2, · · · , Nr

vk = −vmax + (k− 1)∆v, k = 1, 2, · · · , Nv
(26)

So the discrete form of Equation (24) can be expressed as follows

GRNFT(i, k) =
M

∑
m=1

Spc

[
m, round

(
2(ri − vkmTr)

c

)]
· exp

(
j
4πricm∆ f

c

)
exp

[
−j

4πvkmTr( f0 + cm∆ f )
c

] (27)

We can search all the motion parameters and calculate GRNFT(i, k) directly as Equation (27), which
is the implementation method of FA-CRT [11] algorithm. However, it requires a lot of calculations,
which is not applicable in engineering application. So we need to adopt a more efficient implementation
method, which is the Radon-NUFFT method. The specific process of this method is as follows.
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First, for the M× N dimensional matrix Spc, the phase fluctuation caused by the R-AF coupling
should be compensated for the whole data matrix, the compensation term is given as

CR(m, n) = exp
(

j2πcm∆ f
n
fs

)
(28)

Each entry of Spc, noted as Spc(m, n), is multiplied by the corresponding compensation term
CR(m, n), so a new matrix S̃pc after compensation of R-AF coupling can be expressed as

S̃pc = Spc ◦ CR (29)

Then, for a certain pair of motion parameters (ri, vk), a moving trajectory of the target is
determined by the parameters, and the M × 1 dimension data vector XM is extracted, which is
defined as

XM(m) = S̃pc

[
m, round

(
2(ri − vkmTr)

c

)]
(30)

In the case of high-speed target and low pulse repetition frequency (PRF), it is highly possible that
the Doppler frequency ambiguity would occur. Therefore, when Doppler frequency ambiguity occurs,
NUFFT should be performed after compensation of the corresponding Doppler frequency ambiguity.
The Doppler ambiguity factor is K = round(2vk f0Tr/c), so the compensation item corresponding to
XM(m) is

CA(m) = exp
[
−j2πKm

(
1 +

cm∆ f
f0

)]
(31)

So the M× 1 dimension data vector after the compensation of Doppler ambiguity can be expressed
as XM ◦ CA, then we can perform NUFFT on XM ◦ CA at frequency point ωk = 2vk f0/c− K/Tr in
respect to vk to compensate the V-T-AF coupling, which is denoted as

GRFNT(i, k) = NUFFT(XM ◦ CA, 2vk f0/c− K/Tr) (32)

where GRFNT(i, k) is the coherent integration result of target with the initial range ri and constant
radial velocity vj.

Finally, go through all the searching parameters, we can get a two-dimensional result defined in
the range-velocity plane, which is the result of coherent integration based on Radon-NUFFT method.

According to the analysis above, when the search parameters are equal to the real motion
parameters of target, the RCM and the phase fluctuations caused by R-AF coupling and V-T-AF
coupling can be compensated accordingly, so that the target energy can be fully accumulated. After
that, the detection of moving target and estimation of motion parameters can be achieved by peak
searching. The flow chart of the coherent integration method based on Radon-NUFFT for FA radar is
shown in Figure 2.
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Figure 2. Flow chart of the proposed method.

4. Simulation Results

In this section, some results of simulation experiments are presented to validate the performance
of the coherent integration method based on Radon-NUFFT. The simulated parameters of the radar
system and the moving target are listed in Table 1.

Table 1. Simulated parameters.

Simulated Parameters (Unit) Values

Average carrier frequency (MHz) 800
Variation range of carrier frequency (MHz) [780,820]
Variation interval of carrier frequency (MHz) 1
Sampling frequency (MHz) 8
Bandwidth (MHz) 4
Pulse width (us) 100
Pulse repetition interval(us) 1000
Number of coherently integrated pulses 256
Initial distance of target (km) 70
Radial velocity of target (m/s) 780

Figure 3 shows the spectrogram of the transmitted signal of the simulated radar system. It can be
seen that the carrier frequency of each pulse hops randomly between different frequency.
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Figure 3. Spectrogram of transmitted signal.

Suppose the SNR of the received target echo is −10 dB, after the down-conversion and pulse
compression of 256 echo signal, the time-range map can be rearranged as shown in Figure 4. It can be
seen that the trajectory of the target is an oblique line due to the RCM.

Figure 4. Range-time map after pulse compression.

After that, Figure 5 compares the results of coherent integration via four methods. Figure 5a is
the result of conventional moving target detection (MTD), i.e., perform FFT directly in the slow time
dimension after compensation of the phase fluctuation caused by R-AF coupling. Figure 5b is the result
of performing NUFFT among the slow time dimension after compensation of the phase fluctuation
caused by R-AF coupling, which is denoted as NUFFT for brevity. Figure 5c is the result of FA-CRT,
which compensate all the phase fluctuations directly while searching motion parameters. In addition,
Figure 5d is the result of Radon-NUFFT.
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(a) (b)

(c) (d)

Figure 5. Coherent integration via four method: (a) MTD, (b) NUFFT, (c) FA-CRT, (d) Radon-NUFFT.

It can be seen that the positions of the peaks and the corresponding values in Figure 5 are marked,
so that Table 2 can be obtained as follows.

Table 2. Location and value of the maximum peak points.

Method Range (m) Velocity (m/s) Amplitude

MTD 6.981× 104 788.1 1.598× 104

NUFFT 6.985× 104 781.5 3.998× 104

FA-CRT 7× 104 780 1.801× 105

Radon-NUFFT 7× 104 780 1.805× 105

It can be seen that since MTD cannot deal with the problem of RCM and nonuniform phase
fluctuation caused by R-AF coupling, it cannot obtain an apparent peak in the range–velocity plane,
and the estimated parameters of the target are inaccurate. As for the result of NUFFT, since the method
cannot compensate the RCM, the estimated range and velocity of target has a small deviation from the
real parameters, and the peak value is lower than that in Radon-NUFFT and FA-CRT due to the energy
dispersion caused by RCM. Comparing the results of Radon-NUFFT and FA-CRT, it can be seen that
the two results are similar, both of them can get accurate target motion parameters, and also can fully
accumulate target energy. Because they are based on the same principle, which can compensate the
RCM and phase fluctuations caused by R-AF coupling and V-T-AF coupling. The differences between
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the two methods is the implementation process, which is related with the operation speed that we will
discuss it later.

To quantitatively analyze the detection performance of the proposed method, we perform Monte
Carlo experiments to compare the detection probability of MTD, NUFFT, FA-CRT and Radon-NUFFT.
Set the range of SNR of the echo signal before pulse compression as −50 to −10 dB, and the false
alarm rate is set as Pf a = 10−6. The cell-averaging constant false alarm rate (CA-CFAR) detector is
applied to detect the target in the coherent integration result, and corresponding detection probability
Pd is calculated through Monte Carlo trials. In addition, the detection probability of the theoretical
coherent integration result is calculated by the Marcum Q function [24]. Figure 6 shows the detection
probability of theoretical coherent integration and the four methods again different SNR levels.

Figure 6. Detection probability of MTD, NUFFT, FA-CRT, Radon-NUFFT and theoretical coherent
integration.

As shown in Figure 6, the detection probability of MTD will decline sharply when SNR < −16 dB
since MTD cannot deal with RCM and nonuniform phase fluctuation caused by R-AF coupling. The
detection performance of NUFFT is better than MTD, and the detection probability of Radon-NUFFT
and FA-CRT are almost the same. According to the simulated parameters in Table 1, the theoretical
coherent integration gain is 24 dB. For the same detection probability Pd = 0.7, the required SNR
of theoretical coherent integration, Radon-NUFFT, FA-CRT, NUFFT, and MTD are −40.8, −40, −40,
−23.8 and −18.3 dB, which indicates that the integration gain for the compensation of RCM is 16.2 dB,
the integration gain for the compensation of phase fluctuation caused by V-T-AF coupling is 5.5 dB,
and the coherent integration gain of the proposed method is only 0.8 dB lower than the theoretical
coherent integration gain.

Finally, we can analyze the computational complexity of the four methods by comparing the
operation time of four methods for one trail, with the searching scope of range is set as [67, 73] km and
the searching scope of velocity is [500, 1000] m/s, the result of computing time is shown in Table 3.
The main configuration of the platform is as follows: CPU: Intel(R) Core(TM) i7-6600U CPU @2.6GHz
2.81GHz; RAM: 12 GB; operating system: Windows 10; software: Matlab 2018a.

Table 3. Computing time of the four methods.

Method MTD NUFFT Radon-NUFFT FA-CRT

Computing time(s) 0.003796 0.036970 0.684318 6.105591
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As shown in Table 3, MTD takes the least amount of time since it can be easily achieved by
FFT among the slow-time dimension. In addition, NUFFT takes the second least amount of time,
because the NUFFT based on low rank approximation can be implemented by several FFTs. It is
obvious that Radon-NUFFT takes less time than FA-CRT, since FA-CRT compensate all the phase
fluctuations directly while searching motion parameters, which requires abundant computation, while
Radon-NUFFT uses NUFFT based on low rank approximation to realize the compensation of phase
fluctuation caused by velocity-time-AF quickly and accurately.

5. Conclusions

In this paper, we proposed a coherent integration method based on Radon-NUFFT for moving
target detection using an FA radar. The method combined Radon algorithm with NUFFT based on
low rank approximation to compensate the RCM caused by target motion and nonuniform phase
fluctuations among different pulses caused by R-AF coupling and V-T-AF coupling, so that the target
energy can be fully accumulated. The coherent integration result was defined in the range-velocity
plane, so the target detection and estimation of motion parameters can be achieved by peak searching
afterwards. Finally, simulation experiments were conducted to demonstrate the effectiveness of the
proposed method, and the results showed that the proposed method is superior to the MTD and NUFFT
in terms of detection probability and estimation accuracy, and the performance of computational
efficiency is better than FA-CRT. A possible future research work might concern the implementations
of the Radon-NUFFT in real engineering applications.
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