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Abstract: A bulk refractive index sensor based on a straight long-range surface plasmon polariton
(LRSPP) waveguide is theoretically designed. The waveguide sensor consists of an Au stripe that is
embedded in ultraviolet sensitive polymer SU-8. The geometric parameters are optimized by finite
difference eigenmode method at the optical wavelength of 850 nm. The sensitivity of 196 dB/RIU/mm
can be obtained with a 1.5 µm wide, 25 nm thick Au stripe waveguide. Straight LRSPP waveguides are
fabricated by a double layer lift-off process. Its optical transmission is characterized to experimentally
prove the feasibility of the proposed design. This sensor has potential for the realization of a portable,
low-cost refractometer.
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1. Introduction

Surface plasmon polaritons (SPPs) are transverse magnetic polarized optical surface waves
that propagate typically along the interface between a metal and dielectric (the single interface).
The nanometer-thick metal stripe cladded by dielectrics with close refractive index (RI) supports
the existence of long-range SPPs (LRSPPs) [1]. This bounded SPP super-mode has a symmetric
field distribution, and the centimeter-long propagation distance implies a long optical interaction
length for biochemical sensing [2]. However, the long propagation distance comes at the expense
of weaker mode confinement, which leads to lower surface sensitivity. However, the propagation
length of LRSPPs increases more rapidly than its drop in confinement, leading to a better overall
sensitivity (due to a longer optical interaction length with the sensing region) compared to SPPs used in
surface plasmon resonance-based detection. Beside this, LRSPPs can provide deeper penetration depth
than single-interface SPPs, thus they hold promise as a probe of internal changes in biological
cells immobilized on the metal surface [3]. LRSPPs can be excited by end-fire coupling with
polarization-maintaining (PM) fiber or by gratings. Compact monolithic integration with microfluidic
networks can be realized. Different LRSPP waveguide sensors have been reported, including
Y-branch for reference sensing [4] and Mach–Zehnder interferometer with multiple outputs for
perturbation-suppressed sensing [5,6], as well as multichannel waveguides for parallel biosensing [7].
In fact, a straight LRSPP waveguide can also provide analyte-receptor interaction information by
simply monitoring the output power over time [8].

Aqueous sensing solutions with analyte typically have a low optical absorption at 850 nm [9–13].
Also, strong mode confinement (LRSPP) can be achieved at this wavelength and the cost of the light
source and detector or camera at 850 nm is low, which is favorable to low-cost, portable sensing
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applications. Moreover, low-RI polymers, such as CYTOP (Asahi) or Teflon (Dupont) are commonly
adopted as cladding materials for LRSPP waveguide sensors [14–16], because these materials have an
RI that is close to water (n~1.33). Due to the requirement for LRSPP mode symmetry, high-RI sensing
is difficult to implement with low index polymer claddings. Alternatively, the ultraviolet (UV) cured
polymer SU-8 has a high RI (n~1.574) and has been used in the construction of SPP waveguides [17–20].
Its good physicochemical characteristics allow flexible designs and easy fabrication of LRSPP waveguide
sensors, which work better for the detection of chemical reagents or mixtures detection with RIs
over 1.5.

In this work, an RI sensor based on straight LRSPP waveguides operating at 850 nm is theoretically
investigated. The impact of gold stripe geometric parameters on the single-mode cut-off condition,
attenuation, and coupling loss are analyzed in detail. The bulk sensitivity of the proposed straight
LRSPP waveguide sensor is calculated. A double layer lift-off process is adopted to fabricate LRSPP
waveguides cladded by SU-8. Optical transmission measurements prove that refractometers based on
LRSPP waveguides operating at 850 nm are feasible.

2. Sensor Structure

The proposed straight LRSPP waveguide RI sensor is shown in Figure 1a. A straight Au stripe
of width w and thickness d is embedded in an SU-8 cladding. The Si wafer acts as the substrate to
support the whole structure. The thickness of the upper and bottom cladding is 5 µm (each cladding).
Figure 1b shows a longitudinal view of the proposed device. The fluidic channel of length La is formed
on the surface of the Au stripe by dissolving unexposed SU-8 in its developer. During sensing, the
fluid of RI na, which is close to that of the SU-8 cladding, flows through the channel. RI changes in the
sensing solution above the Au stripe in the sensing section results in changes in the output optical
power. At the operating wavelength of 850 nm, the RI of SU-8 (nSU-8) and silicon (nSi) are 1.574 and
3.643 + j0.00329, respectively [20]. The relative permittivity of Au at the wavelength of interest is
−29.36 − j1.394 (which corresponds to a RI of 0.1286 + j5.420) [21]. The refractive index of the sensing
solution in the fluidic channel ranges from 1.562 to 1.586, which is close to nSU-8, ensuring low-loss
propagation of LRSPP mode.
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must be determined by computing the LRSPP mode properties numerically, and adjusting the 
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used the finite-difference eigenmode method (FDE). The spatial distribution of the electric field of the 
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Figure 1. Schematic diagram of the straight long-range surface plasmon polariton (LRSPP) waveguide
refractive index (RI) sensor: (a) Constructed by embedding the Au stripe of width w and thickness
d in the polymer SU-8, and (b) with a microfluidic channel etched over the Au stripe to define the
sensing region.

3. Design and Optimization

3.1. Single-Mode LRSPP Waveguide

Appropriate mode confinement and a controllable attenuation are desirable for favorable sensing
performance [22]. The geometric parameters of a straight single-mode Au stripe waveguide must
be determined by computing the LRSPP mode properties numerically, and adjusting the geometry
until suitable performance is achieved, at the operating wavelength of 850 nm. Here we used the
finite-difference eigenmode method (FDE). The spatial distribution of the electric field of the LRSPP
mode is shown in Figure 2 for the case where the sensing solution (upper cladding) was index-matched
to SU-8 (lower cladding); i.e., the RIs of SU-8 and na were both 1.574, which resulted in symmetric RI
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distribution as a fully cladded case. Better mode confinement was observed as the width and thickness
of the Au stripe increased; however, the propagation loss also increased with these dimensions.
For different Au stripe thicknesses of d = 15, 20, 25, and 30 nm, the fundamental LRSPP mode is the only
long-range mode supported when the Au stripe width w is smaller than 3 µm. As shown in Figure 2,
for the case of w = 3.5 µm, d = 15 and 20 nm, the fundamental LRSPP mode is still the only long-range
mode supported. When d = 25 and 30 nm, the high-order modes with mode power attenuations
(MPAs) of 11.89 and 20.23 dB/mm, respectively, will be supported by the Au stripe. Though high-order
mode sensing can be applied in dielectric-based photonic RI sensors [23–25], for this metal-based
plasmonic RI sensing application, the analyte should be tested at the same mode condition, to avoid
the interference of mode crosstalk. Therefore, the Au stripe width was chosen to be smaller than 3 µm
in the following design.
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3.2. Attenuation

As mentioned above, FDE was adopted to compute the modal properties of the LRSPP. Assuming
that the LRSPPs propagate along the +z direction, the propagation constant γ can be written as α + jβ.
Here α and β represented the attenuation and phase constant, respectively. The LRSPPs propagated
along the input and output access waveguides (Lw) (both were embedded in SU-8), and the sensing
waveguide section (La) in the +z direction, as shown in Figure 1. The optical power output emerging
from the full structure (embedded and fluidic sections) can be expressed as

Pout = PinTwe−4αwLwT2
a e−2αaLa , (1)

where Pin and Pout are the powers incident on the waveguide input facet and output from the
waveguide, respectively, αw and αa are the mode field attenuation constants of the fully cladded and
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fluidic waveguides, respectively, Tw is the transmittance from the optical fiber mode to the LRSPP at
the input facet, and Ta is the transmittance between the LRSPP mode in the sensing channel and that in
the fully cladded waveguide. The mode power attenuation (MPA) in dB/mm of the LRSPP waveguide
in access and sensing sections can be computed by

MPAw = 20αw log10 e (2)

MPAa = 20αa log10 e (3)

Figures 3 and 4 show the real part of neff (Re(neff)) and the MPA vs. Au stripe thickness d for
different stripe widths and sensing solution RI, respectively. Generally, Re(neff) and MPA increased
with Au stripe thickness and width, which is in accordance with LRSPP theory that thicker and wider
metal stripes imply tighter mode confinement and higher loss [3]. When w = 1 µm, a dip appears
in the MPA vs. d curves, which differs in character from the continuous increase in the MPA for
the cases w = 1.5 and 2 µm. This is explained by the weaker LRSPP confinement for the case w = 1
µm and d = 15 nm. The asymmetric mode field extends more into the high-index Si substrate in
this case, resulting in a higher MPA. With the increase in Au stripe thickness, the increasing mode
field confinement reduced the loss caused by the Si substrate. However, thicker stripes had a higher
propagation loss. Therefore, there exists a balanced thickness and a minimum MPA.
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3.3. Coupling Loss

The coupling loss in this sensor includes the loss at the interface between the input fiber and the
access LRSPP waveguide (CLw), as well as the loss at the interface between the cladded and fluidic
waveguide (CLw). These losses can be expressed as:

CLw = −10 × log10|Tw| (4)

CLa = −10 × log10

∣∣∣Ta
∣∣∣ (5)

where the transmittances Tw and Ta are given by the squared magnitude of the mode field overlap
factors computed using the FDE method, following [26] (neglecting Fresnel loss due to material
discontinuity). Then, the coupling loss CLa of one facet can be computed vs. Au stripe thickness d for
different widths w and different sensing fluid RI, as shown in Figure 5. When the RI of the sensing fluid
takes on the values of na = 1.562, 1.566, 1.570, 1.578, 1.582, and 1.586, the symmetry of the structure
is perturbed, increasing the coupling loss. For all cases of w and na considered, CLa decreases with
increasing d, up to the maximum considered (d = 30 nm), as the confinement of the LRSPP increases.
There is no coupling loss (CLa = 0) for na = 1.574 because the RI of the sensing solution is matched to
the SU-8 cladding. When the RI of sensing fluid is lower or higher than that of SU-8, the coupling
loss increases due to the distortion of waveguide RI symmetry. When w is larger than 1.5 µm, CLa

changes little when the Au stripe thickness is over 20 nm, which is meaningful for waveguide geometry
optimization. As shown in Figures 4 and 5, when d is larger than 20 nm, a low CLa and MPA are
expected for w = 1.5 µm. Therefore, the waveguide w is set to 1.5 µm in what follows.
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thickness d for different stripe widths w and sensing solutions with na of (a) 1.562, (b) 1.566, (c) 1.570,
(d) 1.578, (e) 1.582 and (f) 1.586.

3.4. Sensing Length

As has been reported, the sensing length La is key to sensor performance [27]. The optimized
sensing length can be obtained from the insertion loss (IL) in dB, expressed using Equations (1)–(5) as:

IL = CLw + 2CLa + MPAwLw + MPAaLa. (6)

Theoretically, a longer sensing length gives a larger output power change for the same analyte.
However, the impact of background noise and performance of optical power meter determine an upper
limit for the insertion loss of the fluidic section, say, MPAaLa = 30 dB [28]. We then plot in Figure 6 the
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propagation loss (MPAa) and the corresponding sensing length (La) as a function of Au thickness d
for different RI (setting w = 1.5 µm, as mentioned above). As shown in Figure 6a, when na is close
to nSU-8, MPAa increases linearly with d. The existence of a minimum MPAa around d = 20 nm for
na = 1.562, 1.566, 1.582, and 1.586 can be explained by the mode field distortion and loss induced by
the high-index Si substrate. When d is larger than 20 nm, the propagation loss increases with the Au
film thickness for different na, which is in accordance with the theoretical prediction in Section 3.2.
As shown in Figure 6b, except for na = 1.562 and 1.586, La decreases with increasing d for d > 20 nm.
Considering Figures 4–6, the propagation loss trades off against the coupling loss and the sensing
length—in order to have a compact sensor, d is selected to be 25 nm as a compromise.
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4. Results and Discussion

For bulk sensing, the output power of a straight fluidic waveguide with its channel filled with a
standard RI fluid can be measured. The sensitivity can be obtained from the plot of Pout vs. standard
RI and the slope obtained by linear fitting to the measured data. When the width and thickness of
the Au stripe are 1.5 µm and 25 nm, respectively, the distribution of the vertical transverse electric
field component (Ey) of the fundamental LRSPP is plotted in Figure 7 for different RI of the sensing
fluid. When a fluid satisfying na < nSU-8 = 1.574 fills in the fluidic channel, the mode field distribution
becomes slightly asymmetric, spreading into the SU-8 cladding, because of the mismatch of RI. For a
sensing fluid satisfying na = nSU-8 filling the fluidic channel, the structure becomes symmetric, and
the mode is identical to that in a fully cladded waveguide, exhibiting a mode field distribution that is
symmetric. For the case of a sensing fluid satisfying na > nSU-8, the mode profile becomes increasingly
asymmetric, spreading into the fluidic channel. Both asymmetric cases support LRSPPs that have a
higher MPA than in the symmetric case.
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mode for different cases of RI (a) 1.562, (b) 1.566, (c) 1.570, (d) 1.578, (e) 1.582 and (f) 1.586 in the fluidic
channel (na). Here, the width and thickness of the Au stripe are 1.5 µm and 25 nm, respectively.
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The propagation loss (MPAa) as a function of the RI of the fluid in the sensing channel is calculated
and plotted in Figure 8. We observe that the sensor exhibits different sensitivities whether na is smaller
(Figure 8a) or larger (Figure 8b) than nSU-8. In Figure 8a, the propagation loss increases with decreasing
fluid RI, due to increasing mode field asymmetry (fields extending into the lower SU-8 cladding).
In Figure 8b, the propagation loss increases with increasing fluid RI, also due to increasing mode field
asymmetry (fields extending into the fluidic channel). According to the definition of bulk sensitivity S

S =
∆MPAa

∆na
, (7)

sensitivities of 196 dB/RIU/mm and 188 dB/RIU/mm are deduced from Figure 8a,b, respectively.
As shown in Figure 7, the slight sensitivity difference is induced by asymmetric mode field distribution
and the Si substrate absorption when na < nSU-8.
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To better illustrate the relationship between the mode field distribution and the sensing
performance, the fundamental mode power distributions in SU-8, Au-stripe, and the analyte are
calculated at w = 1.5 µm, d = 25 nm. As shown in Table 1, less than 0.05% fundamental mode power
distributes in the Au core, because LRSPP mode is a surface wave, and hardly penetrates into the
metal. Most power distributes in surrounding dielectrics, which is in favor of the analyte detection.
Since the mode field extends deeper into the dielectric, that has a higher RI, mode power in SU-8 is
larger than that in the analyte, when na < nSU-8. In addition, the asymmetry of power distribution, as
well as the propagation loss, deteriorates with the progress of RI asymmetry between the upper and
lower claddings. This rule also works at other Au stripe dimensions. According to LRSPP waveguide
theory, better mode confinement implies less mode field spreading into the dielectric, accompanied by
higher propagation loss. For sensing application, the larger the power ratio in the Au core, the higher
the sensitivity that can be obtained under the same RI step variation. However, MPA increases with
the improvement of sensitivity. Therefore, the compromising Au stripe dimensions of w = 1.5 µm and
d = 25 nm are selected to offer the best sensitivity of 196 dB/RIU/mm.

Table 1. Mode power distribution in SU-8, Au-stripe, and analyte.

na
Power in Au

(%)
Power in SU-8

(%)
Power in Analyte

(%)
MPA

(dB/mm)
Sensitivity

(dB/RIU/mm)

1.562 0.048 58.795 41.181 14.36
1961.566 0.044 55.089 44.862 13.00

1.570 0.042 52.331 47.597 12.21

1.574 0.041 49.992 49.992 12.01

1.578 0.042 47.637 52.290 12.35
1881.582 0.045 45.058 54.917 13.15

1.586 0.048 41.737 58.221 14.25
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To better evaluate the performance of the proposed sensor, we quantitatively compare the
performance of the proposed sensor to those of traditional optical fiber sensors and SPP-based RI
sensors. Due to the intrinsic characteristic diversity, the RI range and sensitivity of these RI sensors are
inconsistent with each other. Therefore, it is hard to evaluate the performance of sensors under the
same condition. Nevertheless, we try to make the comparison in terms of bulk RI sensitivity, figures of
merit, and working wavelengths. As shown in Table 2 below, the proposed straight LRSPP waveguide
sensor shows the highest RI detecting range, as well as the simplest structure. To be noted, compared
with the experimental results in References [29–34], the data in this work is theoretically proved.

Table 2. RI sensing performance comparison.

Platform Structure RI Range Sensitivity Wavelength Size Ref

Fiber Tapered core 1.3–1.4 8000%/RIU 632 nm NA [29]
Fiber Tapered core 1.4304–1.4320 19,212.5 nm/RIU 1474–1615 nm NA [30]

POF Tapered core 1.33–1.41 950 µW/RIU
@633 nm 532, 633, and 780 nm NA [31]

Hybrid-
plasmonic

Straight
waveguide 1.3306–1.3326 2 × 105 dB/RIU 632.8 nm 75 µm [32]

Hybrid-
plasmonic

Dual slot
waveguide 10–100% IPA 1061 nm/RIU 1550 nm 40 µm [33]

LRSPR Prism 1.518–1.576 2000–6600 nm/RIU 400–800 nm NA [34]

This work Straight
waveguide 1.562–1.586 196 dB/RIU/mm 850 nm <3 mm

5. Experiment

5.1. Sensor Fabrication

A double-layer lift-off process was adopted to fabricate the LRSPP waveguide sensor [35,36].
As shown in Figure 9, SU-8 2005 (Kayaku Advanced Materials Inc., Westborough, MA, USA) was
first spin-coated on the silicon substrate and UV-cured at an exposure dose of 100 mW (λ = 365 nm).
Then, the lift-off resist LOR-1A (Kayaku Advanced Materials Inc., Westborough, MA, USA) and
photoresist S1805 (Shipley Corp., Coventry, UK) were spun onto the SU-8 bottom cladding and
thermally cured, sequentially. The time and temperature of baking were well controlled to guarantee
precise development. UV exposure was conducted at a dose of 60 mJ to transfer waveguide patterns
into the resist S1805. After development in MF-321 (Shipley Corp., Coventry, UK), an undercut
was successfully achieved. The Au film was deposited by a thermal evaporator. A quartz crystal
microbalance was used to maintain the deposition rate at 0.5 Å/s to form a smooth continuous Au
film with a thickness of 25 nm. Lift-off was done with PG Remover (Kayaku Advanced Materials Inc.,
Westborough, MA, USA) at room temperature, leaving the defined Au features on the SU-8 bottom
cladding surface.

The Au stripe was characterized by atomic force microscopy (AFM) after step (g). As shown
in Figure 10, the Au stripe has lift-off residue on the Au surface, which leads to a root mean square
roughness (Rq) of 9.073 nm. To remove the residue, oxygen plasma cleaning was conducted, leading to
a rectangular Au stripe with smoother surface (Rq = 1.480 nm), as shown in Figure 11. The increased
stripe height compared to Figure 10a originates from the oxygen plasma etching into the SU-8 bottom
cladding. After step (g), the top SU-8 cladding was spin-coated and cured using the same processing
parameters as in the case of the SU-8 bottom cladding. The fluidic channel was defined lithographically
through development of the SU-8, exposing the Au stripe.
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Figure 9. Fabrication process flow of LRSPP waveguide sensors. (a) silicon substrate preparation,
(b) spin-coating and curing of SU-8 bottom cladding, (c) LOR-1A and S1805 stack formation, (d) UV
photolithography, (e) LOR-1A and S1805 development, (f) Au thermal deposition, (g) double-layer
lift-off, (h) spin-coating and curing of SU-8 upper cladding, (i) UV photolithography, (j) development.
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plasma cleaning, but before application, of the SU-8 upper cladding.

5.2. Characterization

To confirm the optical transmission performance of waveguides, the propagation loss of fully
cladded LRSPP waveguides was measured at λ0 = 850 nm, using the setup sketched in Figure 12.
A polarization-maintaining single-mode optical fiber was butt-coupled to the input of an Au stripe,
launching 850 nm light from a laser and exciting the LRSPP mode. A 40× objective was used to
collimate the optical output from the LRSPP waveguide. The background radiation was blocked by a
variable aperture before the light beam was allowed to pass through a 50:50 beam splitter. An infrared
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(IR) camera was used to capture the mode field pattern. A power meter was used to measure the
output power.
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Figure 12. Schematic diagram of setup for characterizing LRSPP waveguide sensors.

Following the cut-back method, the optical power emerging from 1.5 µm wide, 25 nm thick Au
stripe waveguides, of lengths of 1.88, 2.40, and 2.60 mm, was measured. As shown in Figure 13,
the insets show the captured far-field mode pattern. Linear fitting of the measured insertion loss of
LRSPP waveguides with different lengths yields a mode power attenuation MPAw of 13.09 dB/mm at
an adjusted R-squared of 0.99856, and a standard deviation of 0.814, which coincides well with the
theoretical prediction of 12.01 dB/mm. The measured coupling loss of about 4.62 dB/facet is also close to
the theoretical value of 3.92 dB/facet. During simulation, the fiber core diameter was chosen as 4.4 µm.
The difference between the experimental results and theoretical expectations lies in the non-ideal
waveguide end-facet at the input, which causes excess coupling loss. The facets were producing by
slicing a wafer using a sharp knife (facets used as produced, unpolished). The coupling loss can be
reduced by introducing dicing and polishing processes to obtain better facets. Nevertheless, this
measurement supports the sensor design and the theoretical analysis, implying that the sensor design
has good practical feasibility.
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6. Conclusions 

Figure 13. Transmission power as a function of LRSPP waveguide length at optical wavelength 850 nm.
Linear fitting of the measured insertion loss of LRSPP waveguides with different lengths yields a mode
power attenuation MPAw of 13.09 dB/mm at an adjusted R-squared of 0.99856 and a standard deviation
of 0.814. Insets show the far field LRSPP mode patterns.
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6. Conclusions

A bulk RI sensor based on a straight LRSPP waveguide is theoretically proposed. The polymer
SU-8 was adopted as the cladding material to realize high-RI sensing. The LRSPP modal characteristics
of Au stripes, and its geometric parameters, were investigated numerically via the FDE method at the
optical free-space wavelength of 850 nm. The best bulk sensitivity can be obtained with a 1.5 µm wide,
25 nm thick, straight LRSPP waveguide. Fabricated waveguides were characterized, supporting the
feasibility of the proposed design and validating the numerical modelling. This sensor has potential as
a portable, low-cost refractometer.
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