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Abstract: Precision agriculture is considered to be a fundamental approach in pursuing a low-input,
high-efficiency, and sustainable kind of agriculture when performing site-specific management
practices. To achieve this objective, a reliable and updated description of the local status of crops is
required. Remote sensing, and in particular satellite-based imagery, proved to be a valuable tool in
crop mapping, monitoring, and diseases assessment. However, freely available satellite imagery with
low or moderate resolutions showed some limits in specific agricultural applications, e.g., where crops
are grown by rows. Indeed, in this framework, the satellite’s output could be biased by intra-row
covering, giving inaccurate information about crop status. This paper presents a novel satellite
imagery refinement framework, based on a deep learning technique which exploits information
properly derived from high resolution images acquired by unmanned aerial vehicle (UAV) airborne
multispectral sensors. To train the convolutional neural network, only a single UAV-driven dataset
is required, making the proposed approach simple and cost-effective. A vineyard in Serralunga
d’Alba (Northern Italy) was chosen as a case study for validation purposes. Refined satellite-driven
normalized difference vegetation index (NDVI) maps, acquired in four different periods during the
vine growing season, were shown to better describe crop status with respect to raw datasets by
correlation analysis and ANOVA. In addition, using a K-means based classifier, 3-class vineyard vigor
maps were profitably derived from the NDVI maps, which are a valuable tool for growers.

Keywords: precision agriculture; remote sensing; moderate resolution satellite imagery; UAV;
convolutional neural network

1. Introduction

Precision agriculture is considered to be a fundamental approach to pursue a low-input,
high-efficiency, and sustainable agriculture [1,2] which implements new technological solutions [3,4].
For precision agriculture to be effective, however, a reliable description of the local status of the
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crops is essential to perform site-specific management practices when using automatic machinery and
even robotics [5–7]. To this extend, the relevance of remote sensing has widely been demonstrated
for the extension of in-field surveys to entire plots or even regions [8–11]. This is particularly true
for satellite imagery, which has profitably been exploited for in-field mapping [12,13], crops status
monitoring [14,15], and disease assessment [16], both spatially and temporally [17].

However, freely available satellite imagery with low or moderate resolution showed some limits
in specific applications, resulting in it being not directly suitable for field monitoring purposes in
some agricultural contexts [18,19], such as orchards and vineyards. Indeed, detailed crop information
is usually required in these contexts [20], provided by computing crop status indexes, such as the
normalized difference vegetation index (NDVI) [21], even at the plant scale [22]. The presence of
different elements in these scenarios, such as crops and terrain (inter-row space, in the case of crops
grown in rows), causes pixels with mixed natures in low resolution satellite imagery, which can lead to
biased crop indices [18].

A profitable approach to improve the performance of remote sensing by satellite data is the
exploitation (and fusion) of information from additional data sources, such as agrometeorological
data [23], in situ plot data [24], laser altimetry data [25], thermal imagery [26], or even the concurrent use
of different satellite platforms [27]. Zhao et al. proposed the fusion of data acquired from Unmanned
Aerial Vehicle (UAV) and satellite based sensors to improve crop classification [28]. Many efforts have
also been made to increase the quality of moderate resolution platforms with advanced computing
techniques, such as the super-resolution approach based on machine learning, with deep neural
networks (DNN) and convolutional neural networks (CNN) being the most exploited ones [29–32].
For example, several convolutional network architectures were proposed to enhance the spatial details
of drone-derived images [33]. Indeed, an intrinsic capability of deep learning is distributed learning,
which distributes, among all the variables of the model, the knowledge of the dataset and the capability
to extract such high-level, abstract features [34]. Altogether, it provides deep learning with the ability
to learn more robust mapping functions with much more generalization power than traditional
machine learning algorithms [35]. In addition, data augmentation techniques further increase their
performance [36].

With this approach, new methods aimed at synergically exploiting freely available satellite
imagery, refined by high-resolution UAV-based datasets, can be highly effective [37,38]. Few studies
have been performed on satellite imagery improvements based on centimetric imagery acquired
from UAVs, such as the estimation of canopy structures and biochemical parameters [39] and the
estimation of macro-algal coverage in the yellow sea by refining satellite imagery using high resolution
airborne based synthetic aperture radar (SAR) imagery [40]. The problem of the spatial dynamics of
invasive alien plants was profitably solved by [41], merging single- and multi-date UAV and satellite
imagery. In [42], a UAV-based inversion model was applied to the satellite’s imagery with reflectance
normalization to monitor the salinity in coastal saline soil.

However, new approaches should be conceived to refine low resolution satellite imagery, which
should be freely available and with a short revisiting time, by means of the mapped spatial information
of high-resolution imagery from sporadic, or even single, UAV flights. This approach could improve
the reliability of remotely sensed satellite data in complex scenarios, such as vineyards, making it
highly cost-effective.

In this work, a novel approach to refine moderate resolution satellite imagery by exploiting
information properly derived from UAV-driven high-resolution multispectral images is presented. The
proposed method, based on deep learning techniques, is able to provide enhanced decametric NDVI
maps of vineyards from frequent and freely available moderate resolution satellite imagery. To train
the convolutional neural network, only a single UAV-driven dataset is required, making the proposed
approach simple and cost-effective. In addition, by using a K-means-based classifier, 3-class vineyard
vigor maps were profitably derived from the NDVI maps, which are a valuable tool for growers. For
validation purposes, a vineyard in Serralunga d’Alba (Northern Italy) was chosen to perform this
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study, which involved three parcels and four different time periods, during the whole vine growing
season. Refined satellite-based NDVI maps were shown to better describe crop status with respect to
the raw datasets. The manuscript is organized as follows: the proposed satellite NDVI refinement
method is presented in Section 2, together with its architecture and supervised training phase; Section 3
presents the experimental case study, the performed validation approach and the obtained results; and
finally, Section 4 reports the conclusions.

2. Methods

The refinement framework developed in this study is aimed at increasing the reliability of the
decametric NDVI maps of vineyards derived from freely available satellite imagery. It is based on a
convolutional-based neural network (CNN) architecture, hereafter called RarefyNet, which is capable
of learning feature representations with a supervised approach, after a training phase. The RarefyNet,
taking advantage of compositionality, is able to extract in a hierarchical manner features from its input
data and exploit its internal knowledge to obtain a refined value of its input samples. To train the
RarefyNet, a single UAV-driven dataset was used as reference. Indeed, NDVI maps from UAV airborne
sensors were shown to be more reliable than raw moderate resolution satellites in describing actual
crop status [18]. Once trained, the RarefyNet can refine the satellite-driven decametric NDVI maps
of the vineyard acquired in any time period during the vine growing season. In addition, using a
K-means based classifier, vineyard maps with three vigor classes (low, medium, and high vigor) were
profitably derived from the NDVI maps, which are a valuable tool for growers. The mathematical
notation adopted in the following is summarized in Table 1.

Table 1. Adopted mathematical notation.

Variable Definition

a a vector

A a matrix

A a tensor

ai i-th element of a vector a

Ai, j,k element i,j,k of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor A

X a set of elements/a map

X(i) i-th sample from a dataset

y(i) ground-truth associated with the i-th sample

2.1. RarefyNet: Input, Output, and Architecture

Considering a decametric NDVI map Xraw from a raw satellite dataset, constituted by pixels
xi ∈ Xraw, the pixels ŷi of an enhanced NDVI map X̂ can be generated by the RarefyNet’s non-linear
mapping function with parameters Θ as:

ŷi = F
(
X(i), Θ

)
(1)

where X(i) is an input tensor derived from Xraw. Input tensor X(i) was defined to collect information, in
terms of the NDVI digital value and position on the map, on pixel xi and on a subset of its neighbourhood.
Indeed, the contribution of a map pixel is strictly related to its relative position with respect to its
surrounding pixels. In more detail, input tensor X(i) was thus defined as a three-dimensional tensor
X ∈ R3×3×2, where the first layer is a 3 × 3 map patch (formally X(i)

:,:,0), centered in xi (formally element

X(i)
1,1,0 = xi), and the second layer (X(i)

:,:,1) is made of the set of unique location values of map pixels
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X(i)
:,:,0 in the first layer, defined as the linear indexing of the raster matrix. Of course, in order to also

consider boundary pixels, a zero-padding operation was performed on the overall maps to allow
tensor extraction in boundary pixels. That does not influence the behavior of later feature maps of
the network.

A graphical representation of the overall RarefyNet architecture is illustrated in Figure 1. Inspired
by [43,44], input tensor X(i) feeds a stack of two inception blocks that gradually extract the spatial
correlation between the 8 neighborhood pixels and central target pixel X(i)

1,1,0. The features of NDVI map
X:,:,0 are concurrently processed by an ensemble of parallel convolutional layers with the same number
of filters n, but different filter sizes f and dilatation rates k. Indeed, distinct kernel sizes extract different
correlations from the data and, on the other hand, Atrous convolutions take advantage of non-local
spatial correlations. Finally, batch normalization [45], as a regularization technique, is applied to each
branch before an exponential linear unit (ELU) [46] activation and final concatenation along the feature
dimension. Zero padding is applied before each module in order to preserve the first two dimensions
of the input tensor. Starting with the first inception block, an input patch X(i) with shape (3, 3, 2)
is concurrently processed by the ensemble of parallel convolutions producing an output tensor of
shape (3, 3, nI) where nI is the result of the feature map concatenation of the different convolutional
branches. The second inception module builds on top of this feature tensor by constructing further
high-level representations and generating a multi-dimensional array with nII feature maps.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 17 

 

spatial correlation between the 8 neighborhood pixels and central target pixel 𝑋ଵ,ଵ,() . The features of 
NDVI map 𝑋:,:, are concurrently processed by an ensemble of parallel convolutional layers with the 
same number of filters 𝑛, but different filter sizes 𝑓 and dilatation rates 𝑘. Indeed, distinct kernel sizes 
extract different correlations from the data and, on the other hand, Atrous convolutions take 
advantage of non-local spatial correlations. Finally, batch normalization [45], as a regularization 
technique, is applied to each branch before an exponential linear unit (ELU) [46] activation and final 
concatenation along the feature dimension. Zero padding is applied before each module in order to 
preserve the first two dimensions of the input tensor. Starting with the first inception block, an input 
patch 𝑋()  with shape (3, 3, 2) is concurrently processed by the ensemble of parallel convolutions 
producing an output tensor of shape (3, 3, 𝑛ூ) where 𝑛ூ is the result of the feature map concatenation 
of the different convolutional branches. The second inception module builds on top of this feature 
tensor by constructing further high-level representations and generating a multi-dimensional array 
with 𝑛ூூ feature maps. 

 
Figure 1. Graphical representation of the proposed RarefyNet model. The overall residual 
architecture is depicted in the top part of the figure with a detailed overview of its inception modules. 
Input tensors are processed by two inception modules that build their representations on top of each 
other, concatenating outputs of their different branches. 

The output tensor produced by the cascade of inception blocks feeds a global average pooling 
(GAP) layer which reduces the rank of the input tensor producing a 1-D output array. The GAP 
operation reduces the spatial dimension of its input tensors, reinforcing the feature maps to be 
confidence maps of concepts. The GAP 1-D output array feeds a fully connected layer that terminates 
with a single unit with the ELU as an activation function. The ELU brings non linearity to the model, 
but still produces both positive and negative values. At this stage, a residual connection sums the 
output of the dense layer with the original NDVI pixel 𝑋ଵ,ଵ,()  to be refined. The residual connection, 
inspired by super-resolution neural network architectures, covers a primary role inside the overall 
model; it largely simplifies the role of the first part of the network by moving its objective towards a 
mere refining operation of the satellite’s input pixel. Indeed, the model does not have to recreate the 
value of the input pixel after processing of the convolutional filters, but progressively learns from 
ground truths how to use the starting satellite input value with its eight neighbors to estimate the 

Figure 1. Graphical representation of the proposed RarefyNet model. The overall residual architecture
is depicted in the top part of the figure with a detailed overview of its inception modules. Input
tensors are processed by two inception modules that build their representations on top of each other,
concatenating outputs of their different branches.
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The output tensor produced by the cascade of inception blocks feeds a global average pooling
(GAP) layer which reduces the rank of the input tensor producing a 1-D output array. The GAP
operation reduces the spatial dimension of its input tensors, reinforcing the feature maps to be
confidence maps of concepts. The GAP 1-D output array feeds a fully connected layer that terminates
with a single unit with the ELU as an activation function. The ELU brings non linearity to the model,
but still produces both positive and negative values. At this stage, a residual connection sums the
output of the dense layer with the original NDVI pixel X(i)

1,1,0 to be refined. The residual connection,
inspired by super-resolution neural network architectures, covers a primary role inside the overall
model; it largely simplifies the role of the first part of the network by moving its objective towards
a mere refining operation of the satellite’s input pixel. Indeed, the model does not have to recreate
the value of the input pixel after processing of the convolutional filters, but progressively learns from
ground truths how to use the starting satellite input value with its eight neighbors to estimate the
inter-row radiometric contributions and refine the raw decametric NDVI value xi. Finally, a second
fully connected layer with rectified linear units (ReLU) with activation functions produces output
prediction ŷ(i) by removing any off-set between the satellite and the UAV NDVI spaces.

The complementary use of (1) a deep learning-based architecture, of (2) different regularization
techniques to constrain the space parameter, and of (3) a 1 × 1 convolution to reduce the number of
model parameters, produces a light-weight and efficient solution to construct a complex non-linear
map between satellite and enhanced UAV pixel information.

2.2. RarefyNet: Training Phase

To identify an effective set of parameters Θ, the RarefyNet model (Equation (1)) has to be trained.
The training phase is an iterative process during which parameters Θ are adjusted to reduce the error
defined as the difference between the desired refined NDVI values ŷ and reference value y. In this
application, the enhanced NDVI map YUAV =

{
yi
}

derived from the UAV flights was adopted as the
reference dataset for the training phase. In particular, the UAV-driven YUAV dataset was derived by
detecting vineyard canopies within the high resolution imagery and by a proper down-sampling
procedure, described in detail in [18]. The defined training samples are thus made by the properly
paired tensors X(i), from raw satellite-driven NDVI pixel xi, and a reference NDVI yi, from the accurate
UAV-driven dataset. Moreover, in order to enlarge the number of available training examples and
consequently reducing possible overfitting problems, a simple data augmentation technique was
applied; considering the ith sample and maintaining the central satellite pixel Xi,1,1,: fixed, it is possible
to produce (K − 2) new samples from each original training data point by rotating the other eight
pixels around the central one.

During the training phase, a loss function L based on the norm-2 measure

L =

 1
m

 m∑
i=1

∣∣∣ŷ(i) − y(i)
∣∣∣2


1
2

(2)

of the difference between model output predictions ŷ(i) and reference y(i) will be used together with a
mini-batch gradient descent method and m training instances to optimally identify the parameters Θ
of the network. The loss function L is a typical performance measure for regression problems and
it estimates how much error the model typically makes in its predictions, with a higher weight for
large errors. Model training is therefore performed iteratively by feeding the network with a batch of a
certain dataset size and updating the parameters with small steps which are determined by learning
rate η, by using the gradient of the selected loss function.
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2.3. RarefyNet: Structure Optimization

The final architecture, shown in Figure 1, is thus the result of a careful design aimed at obtaining
the best performance in terms of reliability and computational costs. The final model is a light-weight
neural network architecture with 16,296 trainable parameters.

Every inception block has four parallel branches with different filter sizes f and dilatation rates
k. In the first branch (bottom of Figure 1), the 1 × 1 convolution halves the number of feature maps
in order to reduce the number of parameters and the computational requirements by the following
convolutional layer. The first inception module produces eight feature maps for each branch, which
are linked in a unique output tensor with nI channels after being separately pre-processed by a batch
normalization layer and an ELU activation function. Equally, the second inception block produces
nII = 32 feature maps for each branch, which are linked in a final tensor that feeds the GAP layer.
Subsequently, a fully connected layer reduces the 1-D output tensor first to 32 and then to 1 before
feeding the residual connection. Moreover, a dropout layer, with p = 0.2, is inserted between the
two fully connected layers in order to regularize the network and produce a very robust and reliable
model [47]. Finally, an output neuron, with an ReLU activation function, closes the head of the network
in order to compensate and mitigate the presence of possible biases.

The technique proposed by Smith et al. in [48] was adopted to identify the maximum value
of learning rate η = 5 × 10−4 to start with. Finally, beside batch normalization and dropout, the
AdamW [49] updating rule

Θt+1 = Θt −
η

√
v̂t + ε

mt − ηαΘt (3)

was used, which is a modified version of the well-known Adam optimizer [50] with L2 regularization,
where mt and v̂t are the exponential decay of the gradient and gradient squared, respectively, and α
is a new regularization hyperparameter to be set for the learning process. This is a simple fix to the
classic updating rule of the Adam optimizer, but it has repeatedly shown far better results than the L2
regularization for all experimentations.

In order to find the best training hyperparameters for the optimizer and the network, we used 10%
of the training set to perform a random search evaluation, with few optimization iterations, in order to
select the most promising parameters. Then, after this first preliminary phase, the analysis focused
only on the most promising hyperparameter values, fine tuning them with a grid search strategy.

2.4. Vigor Classifier

Using an unsupervised clustering algorithm, satellite pixels xi ∈ Xraw, RarefyNet predictions
x̂i ∈ X̂ and down-sampled UAV pixels yi ∈ YUAV were classified into three different vigor classes: low,
medium, and high. In particular, a K-means clustering algorithm was separately fitted on the three
NDVI maps by using Elkan’s algorithm and k-means++ to initialize the centroids. Each fitting was
run 15 consecutive times with a maximum of 500 iterations and a tolerance of 10−4. The outputs with
the lowest within cluster sum of squared (WCSS) distance were selected as the final clustered maps of
the three NDVI sets.

3. Experiments and Results

The effectiveness of the proposed approach to refine moderate resolution imagery by using
UAV-driven imagery was tested in the vineyard selected as the case study. The RarefyNet was
implemented in the TensorFlow framework [47,51] and trained with satellite and UAV-based datasets
acquired in May 2017 (time I). For validation purposes, the trained RarefyNet was used to enhance
the NDVI map from the satellite platform acquired in three different time periods (June, July, and
September: time II, III, and IV) and the results were compared with the more accurate UAV-driven
NDVI maps.
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In more detail, the study was conducted in a vineyard located in Serralunga d’Alba, Piedmont, in
the northwest of Italy, shown in Figure 2. The selected area includes three parcels, with a total surface
of about 2.5 hectares. The area is located at approximately 44◦62′4” latitude and 7◦99′9” longitude in
the World Geodetic System 1984. The test site elevation is within the range of 330 to 420 m above sea
level, with steep slope areas (about 20%). Parcels are cultivated with the cultivar Nebbiolo grapevine.
The vineyard soil is predominantly loamy. The irregularity of the terrain’s morphology, in terms of
altitude, slope, and soil exposure to the sun, affects microclimatic conditions and water availability
within and between parcels [20].
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Figure 2. (a) Selected test field located in Serralunga d’Alba (Piedmont, northwest of Italy). The
boundaries of the three considered parcels, named “Parcel-A”, “Parcel-B”, and “Parcel-C”, are marked
with solid green polygons. The concurrent illustration of low resolution and high-resolution maps
derived from satellite and UAV respectively is represented in false colors (near infrared, red, and green
channels). (b) Enlargement of UAV imagery highlighted by the yellow square in Figure 2a.

3.1. Satellite and UAV-Based Time Series Imagery

In this study, cloud-free level-2A Sentinel-2 bottom of atmosphere (BOA) reflectance images
were used as moderate resolution satellite imagery. Sentinel-2 data products were downloaded
from the Copernicus open access hub and imported into a processing platform SNAP toolbox (6.0)
provided by European Space Agency (ESA). By using subset command in SNAP, pixels of the Sentinel-2
images were extracted in accordance with the study cite. Geometric, atmospheric, and Bidirectional
Reflectance Distribution Function (BDRF) corrections were performed by using a Sen2cor processor,
which is a plugin for SNAP [52–54]. More details about Sentinel-2 products can be found in [55].
The selected satellite tiles were acquired on four dates during the 2017 growing season (Table 2) in
order to consider different vegetative vine statuses. Only red and near infrared bands (bands 4 and 8,
respectively), that match with the spectral channels of UAV airborne sensors, were used in this study
(with ranges 650–680 nm and 785–900 nm, respectively) to produce the NDVI maps [4,5,8], widely used
for vegetation monitoring and health assessment of crops. The pixels that were completely included
within the boundaries of the three considered “Parcel A”, “Parcel B” and “Parcel C” were selected, as
shown in Figure 2a.

The decametric UAV-based NDVI maps, used as accurate references, were derived from red
and near infrared bands (with ranges 640–680 nm and 770–810 nm, respectively) of high-resolution
multispectral imagery acquired by a UAV airborne Parrot Sequoia® multispectral camera. The UAV
path was planned to maintain flight height close to 35 m with respect to the terrain by properly
defining waypoint sets for each mission block on the drone guidance platform based on the GIS
cropland map. With this specification, the aerial images ground sample distance (GSD) turned out
to be 5 cm (Figure 2b). The UAV flights were performed on four different dates over the 2017 crop
season (Table 2), according to the satellite’s visiting dates. The high-resolution multispectral imagery
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was then processed to select only the pixels representing vine canopies and was down-sampled to
be in accordance with the satellite’s spatial resolution (as described in [18]), obtaining UAV-driven
decametric NDVI map YUAV.

Table 2. Dataset acquisition details from the Sentinel-2 (Xraw) and UAV (YUAV) platforms.

Time Period Dataset Name Acquisition Date Source

I
XI

raw 30 April 2017 Sentinel-2

YI
UAV 5 May 2017 UAV

II
XII

raw 6 July 2017 Sentinel-2

YII
UAV 29 June 2017 UAV

III
XIII

raw 5 August 2017 Sentinel-2

YIII
UAV 1 August 2017 UAV

IV
XIV

raw 17 September 2017 Sentinel-2

YIV
UAV 13 September 2017 UAV

3.2. Experimental Settings

The RarefyNet used in this experimentation was trained with training tensors derived from raw
dataset XI

raw and decametric NDVI map YI
UAV, which were acquired in May (time I). In more detail,

after the sample extraction procedure and the data augmentation process were applied to the training
samples (Section 2.1), a set of 1379 and 591 tensors were obtained for the training and test procedures,
respectively. The proposed architecture was trained for 300 epochs with a batch size of 64. No learning
rate strategies were applied, but the value of the learning rate was kept constant for all the training
epochs of the optimization procedure. All tests were carried out with the TensorFlow framework on a
workstation with 64 GB of RAM, an Intel Core i7-9700K CPU and an Nvidia 2080 Ti GPU.

Since, at the agronomical scale, maps of classes with different vigor levels can be derived by an
expert in-field survey, the validation of the NDVI map refinement was performed by assessing their
conformity to a three-level vigor map. Thus, a preliminary validation was performed by feeding the
trained RarefyNet model with satellite-driven raw map XII

raw (time II) and the obtained output, in the
form of refined map X̂II, was compared with reference map VII

f ield produced by the in-field survey [18].

For completeness, the effectiveness of satellite-driven raw map XII
raw and UAV-driven NDVI map YI

UAV
in discriminating vigor levels described in VII

f ield was also investigated.
To extend validation to other time periods (time I, III and IV), three-level vigor maps YUAV were

derived by applying the K-means algorithm to UAV-driven dataset YUAV, to be used as the ground
truth reference. Indeed, the soundness of this approach was confirmed by validating the selected
classifier with the dataset of time II, clustering YII

UAV, and comparing it with ground truth vigor map
VII

f ield (Figure 3).
With this approach, the validation of the temporal effectiveness of the proposed satellite-driven

dataset refinement framework was performed by refining datasets XI
raw, XIII

raw, and XIV
raw and assessing

the accordance between the obtained refined NDVI maps (X̂I, X̂III, and X̂IV) and the UAV-driven
reference ones (YI

UAV, YIII
UAV, YIV

UAV).
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Figure 3. Three-level vigor maps (a) XII
raw, (b) X̂II, and (c) YII

UAV of parcel B, derived from raw Sentinel-2
NDVI map XII

raw, refined satellite NDVI map X̂II and UAV-driven NDVI map YII
UAV , respectively. Vigor

map (d) of parcel B from the expert’s in-field survey VII
f ield. Maps XII

raw, X̂II and YII
UAV were obtained by

the selected K-means based classifier.

3.3. Results and Discussion

NDVI maps derived from onboard UAV sensors are used in many agricultural applications
due to their effectiveness in providing high spatial resolution imagery and control over the data
acquisitions [20–22]. However, there are constraints such as limited flight time of UAVs, labor
extensiveness, and lower coverage that make it less affordable than satellite imagery. In contrast, NDVI
maps derived from the satellite-based sensors have been widely used for the past four decades [56].
The latest developments in the satellite-based sensors provide frequent imagery with fine spectral
information and moderate spatial details. However, satellite based remote sensing for vegetation
monitoring becomes more challenging when considering crops with discontinuous layouts, such as
vineyards and orchards [57]. The primary reason behind this is the presence of inter-row paths and
weed vegetation within the cropland, which may deeply affect the overall spectral indices computation,
leading to a biased crop status assessment. Therefore, refinement of the satellite driven vegetation
index is performed in this study.

The effectiveness of the refined NDVI map X̂II, generated by the trained RarefyNet model, in
describing the actual vigor status of the vineyard selected as the case study was investigated by
performing ANOVA between map pixels properly grouped based on the vigor classes expressed in
VII

f ield, selected as the ground truth (Figure 3d). In order to demonstrate the obtained improvement, the

coherence of raw satellite-driven map XII
raw and of UAV-driven NDVI map YI

UAV with the ground truth
was performed. The ANOVA results, organized in Table 3, showed how NDVI raw map XII

raw, derived
from the satellite imagery, has no accordance with the map generated from in-field measurement
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VII
f ield. The difference between the means of the pixel groups (Figure 4), obtained by clustering NDVI

map XII
raw by using the spatial information provided by in-field survey VII

f ield, was found not to be
significant, with obtained p-values ranging from 0.04 to 0.26 for all three considered parcels A, B, and
C (Table 3). This confirms the limitations of XII

raw in directly providing reliable information regarding
the status of the vineyards in this scenario, where the radiometric information reflected from the crop
field could be affected by other sources (e.g., inter-row paths) that, in the case of crops grown by rows,
could be predominant and could negatively affect the overall NDVI assessment. On the contrary, by
using the same assessment approach, the effectiveness of the NDVI map derived from UAV imagery
YII

UAV proved to be statistically significant, with different group means in all the considered parcels
and showing a favourable coherence with in-field ground truth VII

f ield. This preliminary analysis was
propedeutic to the quality assessment of the proposed new framework to refine the satellite-driven
NDVI map with the RarefyNet model. The ANOVA results demonstrated how refined NDVI map
X̂II correlates with reference VII

f ield, with small p-values ranging from 0.0015 to 3.17× 10−8 (Table 3),

drastically improving the performance of raw satellite-driven dataset XII
raw. The results presented so

far prove that the proposed RarefyNet is capable of refining the raw Sentinel-2 driven map X̂II of time
period II by extracting the features from UAV-driven map YI

UAV.

Table 3. ANOVA results for the June (time II) datasets XII
raw, X̂II, and YII

UAV grouped according to
ground truth vigor map VII

f ield: raw Sentinel-2 XII
raw does not show significant differences among the

vigor group means defined by the field expert with in-field measurement VII
f ield, whilst enhanced

UAV map YII
UAV and the refined version of Sentinel-2 map X̂II show significant differences among the

group means.

Datasets
(Grouped by) Parcel Source DF 1 SS 1 MS 1 F-Value p-Value

XII
raw(VII

f ield)

Parcel-A
Classes 2 0.3084 0.1541 3.4582 0.044081
Error 31 1.3821 0.0445
Total 33 1.6905

Parcel-B
Classes 2 0.3938 0.1969 4.8928 0.010587
Error 63 2.5353 0.0402
Total 65 2.9291

Parcel-C
Classes 2 0.1985 0.0992 1.4555 0.264401
Error 15 1.0228 0.0681
Total 17 1.2213

X̂II(VII
f ield)

Parcel-A
Classes 2 0.4749 0.2374 8.0112 0.001568
Error 31 0.9189 0.0296
Total 33 1.3938

Parcel-B
Classes 2 1.3735 0.6867 22.9984 3.17 × 10−8

Error 63 1.8812 0.0298
Total 65 3.2547

Parcel-C
Classes 2 0.7071 0.3535 11.7444 0.000852
Error 15 0.4515 0.0301
Total 17 1.1586

YII
UAV(VII

f ield)

Parcel-A
Classes 2 1.3608 0.6804 30.0925 5.46×10−8

Error 31 0.7009 0.0226
Total 33 2.0617

Parcel-B
Classes 2 2.7135 1.3567 71.1664 6.87× 10 −17

Error 63 1.2010 0.0190
Total 65 3.9145

Parcel-C
Classes 2 0.9447 0.4723 8.7803 0.002988
Error 15 0.8069 0.0537
Total 17 1.7516

1 DF: degree of freedom, SS: sum of squares, MS: mean square
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Figure 4. Pixel groups boxplots from raw satellite-driven map XII
raw, refined satellite-driven map X̂II,

and UAV-driven map YII
UAV , clustered according to the three vigor classes “L”, “M”, and “H” defined

in map VII
f ield. The boxplots are individually computed for each parcel (A, B, and C).

To extend the performed analysis to other time datasets, all the maps produced from the UAV
imagery (YI

UAV, YII
UAV, YIII

UAV, YIV
UAV) were clustered into three vigor classes by using a K-means

algorithm, obtaining a set of clustered maps YI
UAV, YII

UAV, YIII
UAV, and YIV

UAV. The soundness of the
proposed clustering approach was demonstrated by comparing, parcel by parcel, map YII

UAV to in-field
vigor map VII

f ield by evaluating the Pearson correlation coefficients (Figure 3). The obtained positive

values, ranging from 0.68 to 0.84, showed that the produced clustered map YII
UAV is well correlated with

VII
f ield. This result, together with the extremely favourable ANOVA results of YII

UAV in Table 3, makes it
possible to consider the UAV-driven dataset as a robust and reliable reference in the following analysis.

The performance of the proposed RarefyNet in extending the refinement task also to other imagery
from a time series, even if trained only with one single UAV-driven dataset, was thus further assessed
by refining other temporal raw Sentinel-2 maps. The effectiveness of refined maps X̂III and X̂IV

(obtained by refining maps XIII
raw and XIV

raw) in describing the vigor level of the vineyard expressed
in reference UAV-driven maps YIII

UAV and YIV
UAV was investigated with ANOVA. The results of this

analysis, together with the ones performed on X̂I and X̂II for completeness, are organised in Table 4.
The boxplots of the groups of pixels from the refined satellite maps (X̂I, X̂II, X̂III and X̂IV), clustered
according to the three vigor classes “L”, “M”, and “H” defined in the UAV-driven clustered maps
YI

UAV, YII
UAV, YIII

UAV and YIV
UAV respectively, are shown in Figure 5. The ANOVA results reported in

Table 4 confirmed the good coherence of all four refined Sentinel-2 maps with their respective reference
maps, with p-values showing the significance of the differences among group means. The results
achieved by the performed analysis provide an opportunity to use the freely, frequently available,
low resolution satellite imagery to describe the variability of vineyards by refining the satellite driven
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vegetation index. Refinement is done by adopting a proposed machine learning framework, which is
trained with the valuable information extracted from high resolution UAV imagery and the spatial
information of the satellite neighborhood pixels.

Table 4. ANOVA results of refined datasets X̂I, X̂II, X̂III, and X̂IV , grouped according to reference
UAV-drive vigor maps YI

UAV , YII
UAV , YIII

UAV , and YIV
UAV .

Datasets
(Grouped by) Parcel Source DF 1 SS 1 MS 1 F-Value p-Value

X̂I(YI
UAV)

Parcel-A
Classes 2 0.7907 0.7907 32.4702 2.60 × 10−6

Error 31 0.7792 0.0243
Total 33 1.5699

Parcel-B
Classes 2 1.39025 1.3902 78.7860 9.31 × 10−13

Error 63 1.1293 0.0176
Total 65 2.5196

Parcel-C
Classes 2 1.1914 1.1917 113.4301 1.14 × 10−8

Error 15 0.1681 0.0105
Total 17 1.3596

X̂II(YII
UAV)

Parcel-A
Classes 2 0.6968 0.6968 31.9907 2.94 × 10 −6

Error 31 0.6970 0.0218
Total 33 1.3939

Parcel-B
Classes 2 1.5536 1.5536 58.4472 1.36 × 10 −10

Error 63 1.7012 0.0266
Total 65 3.2548

Parcel-C
Classes 2 0.7978 0.7978 35.3635 2.05 × 10 −5

Error 15 0.3609 0.0225
Total 17 1.1587

X̂III(YIII
UAV)

Parcel-A
Classes 2 0.4195 0.4194 13.4022 0.000898
Error 31 1.0015 0.0313
Total 33 1.4210

Parcel-B
Classes 2 0.6561 0.6560 29.8767 8.10 × 10−7

Error 63 1.4054 0.0219
Total 65 2.0614

Parcel-C
Classes 2 0.1808 0.1808 2.1895 0.158372
Error 15 1.3218 0.0826
Total 17 1.5026

X̂IV(YIV
UAV)

Parcel-A
Classes 2 0.2441 0.2441 4.6372 0.038924
Error 31 1.6846 0.0526
Total 33 1.9287

Parcel-B
Classes 2 0.6649 0.6649 20.8288 2.33 × 10−5

Error 63 2.0431 0.0319
Total 65 2.7081

Parcel-C
Classes 2 0.8174 0.8173 25.5642 0.000117
Error 15 0.5116 0.0319
Total 17 1.3289

1 DF: degree of freedom, SS: sum of squares, MS: mean square
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UAV , YII
UAV , YIII

UAV , and YIV
UAV , respectively. The boxplots are computed individually for each parcel

(A, B, and C).

4. Conclusions

Freely available satellite imagery with low or moderate resolutions shows some limitations in
specific agricultural applications, e.g., where crops are grown by rows causing biased radiometric
reflectance that does not reliably describe the vegetative status. The proposed novel satellite imagery
refinement framework, based on deep learning techniques, exploits information properly derived from
high resolution images acquired by UAV airborne multispectral sensors. To train the convolutional
neural network, only a single UAV-driven dataset is required, making the proposed approach simple
and cost-effective. A vineyard in Serralunga d’Alba (Northern Italy) was chosen as a case study for
validation purposes. Refined satellite-driven NDVI maps, acquired in four different periods during
the vine growing season, were shown to better describe crop status with respect to raw datasets by
correlation analysis and ANOVA. In addition, using a K-means based classifier, three-level vineyard
vigor maps were profitably derived from the NDVI maps, which are a valuable tool for growers.
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