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Abstract: One of the common methods for measuring distance is to use a camera and image processing
algorithm, such as an eye and brain. Mechanical stereo vision uses two cameras to shoot the same
object and analyzes the disparity of the stereo vision. One of the most robust methods to calculate
disparity is the well-known census transform, which has the problem of conversion window selection.
In this paper, three methods are proposed to improve the performance of the census transform.
The first one uses a low-pass band of the wavelet to reduce the computation loading and a high-pass
band of the wavelet to modify the disparity. The main idea of the second method is the adaptive size
selection of the conversion window by edge information. The third proposed method is to apply
the adaptive window size to the previous sparse census transform. In the experiments, two indexes,
percentage of bad matching pixels (PoBMP) and root mean squared (RMS), are used to evaluate the
performance with the known ground truth data. According to the results, the computation required
can be reduced by the multiresolution feature of the wavelet transform. The accuracy is also improved
with the modified disparity processing. Compared with previous methods, the number of operation
points is reduced by the proposed adaptive window size method.

Keywords: census transform; sparse census transform; disparity; stereo vision

1. Introduction

The development of automatic equipment has always been one of the focuses in the field of
computer science. The features of automatic equipment are its self-moving and exploring characteristics
that can be used to reduce the risk of participation of personnel. In many automated devices, the distance
of the device from the object in the surrounding environment is an important parameter, such as using
vision to avoid obstacles. In modern automated or intelligent devices, the distance from the object
is an important indicator. The corresponding action can be performed by determining the distance,
whether this is using a robot arm to grab the object [1], automatic car driving to determine the road
condition [2,3], or using a robot that can self-plan a path to shuttle through the environment [4]. All of
these studies show that measuring distance is an essential part of achieving automation.

The methods of measuring distance are roughly divided into two types. The first one uses ray
or waves as the direct measurement method [5]. These methods use laser, infrared, or ultrasonic
means to shoot toward the object and simultaneously record the time of transmission and the time of
receiving the reflection. The distance of the object can be calculated by the time difference between
the transmission and reception. The second method uses a camera and image processing or machine
vision technologies [6]. These methods use a camera to capture an image of an object, and then analyze
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the pixels in the image and measure the distance of the object. This type of method is mainly divided
into two types: monocular vision with additional reference objects and two-eye stereoscopic vision.

The method of using ray or sound waves is more accurate and faster than the method of using a
camera with an algorithm, but the equipment is expensive and the application is not easy to popularize.
In recent years, in the case of the popularity of digital cameras, the technology for obtaining distance
by image processing schemes has gradually received attention. Furthermore, as the advancement of
the computer has improved the speed of this in recent years, the performance of two-eye stereoscopic
processing has also improved. Even when using an accessible style camera, the stereo vision system
can also be applied to measure the target distance [7].

In the steps of using image processing or machine vision technology to measure distance,
the most-time consuming loading step is matching. The matching includes object recognition or
feature extraction [8]. The problems of object recognition or feature extraction can be divided into
hardware and algorithm domains. In the hardware methods, a field-programmable gate array can
be used to implement the spike-based method [9]. The circuit can be also designed to achieve the
efficiency of low power consumption by combining an active continuous-time front-end logarithmic
photoreceptor [10]. In the algorithm methods, the visual information (such as an image) can be
calculated by the address-event-representation [11] or by constructing stereo vision with cameras [12].
However, the devices for matching are more expensive than consumer cameras. It is easier and more
effective when we use the algorithms with general cameras to solve the matching problem.

Most common cameras record two-dimensional images, with only the horizontal axis and the
vertical axis. Since the camera takes images only in two dimensions, the distance measurement function
that can be achieved is limited. To solve this problem, scholars have proposed mechanical stereo vision.
This uses two cameras to shoot the same object from different positions and analyze the distance
between the camera and the object by the algorithms of image processing or machine vision. The axis
perpendicular to the image plane and the two axes of the image plane constitute the three-dimensional
relationship between the camera and the object [12].

When we use two cameras to observe the same object, the positions of the object on the two
images will be slightly different. This difference is called disparity. A simple two-eye stereo vision
model is shown in Figure 1, where P is the target, CAML and CAMR are the two cameras, b is the
distance between two cameras, f is the focal length, IL and IR are the imaging planes, dL and dR are the
distances between targets on the image planes and the centers of the images, OL and OR represent the
center lines of the lens, and Z is the distance we are looking for. We can see that Z can be calculated by
the relationship of similar triangles [13]:

b
Z

=
b− (dL + dR)

Z− f
=

dL + dR

f
(1)

The disparity is denoted as dL + dR, and it is the amount of horizontal displacement that is
produced by the same object that is imaged by two cameras. Since both f and b are known, it can be
seen that it is quite important to obtain the disparity in the stereo vision system. The key to obtaining
the disparity is matching the same object in the two images [14,15].

As shown in the above description, the method for obtaining three-dimensional information by
the mechanical stereo vision system is to analyze and obtain the disparity between the two images.
Census transform (CT) is one of the most robust algorithms for calculating the disparity of two
images [16]. When we use CT, the size of the conversion window directly affects the computational
load and accuracy. In a previous study, it was confirmed that a larger conversion window makes
the result of object matching more accurate [17,18]. When the conversion window is larger than a
certain size, the matching performance is not as significant as the window becomes larger. However,
an oversized window not only consumes computational resources but also makes too many errors in
matching. Therefore, the size of the window in CT is one of the important keys to determining the
performance [19].
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Figure 1. Schematic diagram of a three-dimensional model with disparity.

The calculation of each pixel by CT requires a large computational load and memory requirements.
This makes it difficult for CT to be applied in real-time systems. Since the object in the image is bound
by its edge, which is a sudden change in intensity, the edge (the high-frequency information in the
image) is an important image feature [20]. This edge detection and the high-frequency information
method are very important parts of image processing. These have also been applied in many real
applications, such as oil spill detection for offshore drilling platforms [21], vehicle license plate location
identification [22], pedestrian detection [23], and gesture recognition [24]. In the stereo vision system, a
boundary can be used to identify whether the region is flat or has texture. The boundaries in the image
can be obtained by gradients. Changing the length and width of the window according to the vertical
and horizontal gradients can be used to reduce the bad matching of CT [25]. However, the quality
of the disparity and operation loading are not discussed. The disparity quality can be improved by
matching with a variable window and p post-processing with sub-pixel interpolation after CT [26].
This method does not adjust the window size when performing CT. However, using the sub-band of
the high-frequency (such as edge) to improve the performance of CT is one of the feasible methods.
Wavelet transform is a multi-resolution analysis method. The image data can be transformed into
different sub-bands according to the defined wavelet [17]. The Haar wavelet is a well-known method
to analyze the frequency information from sub-bands [27].

In this paper, two methods are proposed to improve the performance of CT using edge information.
The first method is named census transform with Haar wavelet (CTHW) and uses edge information
that is extracted by a wavelet. Since the edge information provides more accurate object information,
the high-passed data is used to modify the disparity. The second method is called an adaptive window
census transform (AWCT). The AWCT can determine whether the boundary of the window is increased
or not when the window is enlarged. The increased rate of the boundary pixels in the window is used
to determine the suitable window size. Moreover, since the sparse census transforms can be used to
enhance the CT’s performance by the designed mapping positions [28]; we also applied sparse census
transforms to AWCT. AWCT and adaptive window sparse census transform (AWSCT) are applied to
avoid using the oversized window and improving the performance.

2. Related Methods

2.1. The CT Algorithm

CT converts the grayscale intensity represented by each pixel in the grayscale image into the
grayscale intensity relationship of each pixel to the neighbor pixels. The relationship can be treated as
a feature of the pixel and used to find the two most similar features in the left and right images by the
Hamming distance. The positions of the most similar points can be used to compute the disparity by
Equation (1).
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CT is defined as an order in a local neighborhood (conversion window) by comparing the
relationship between the center pixel and the neighborhood pixels. The relationship between the
center point (denoted as p) and the neighbor point (denoted as p’) can be described by the conversion
function [16,29]:

ξ(p, p′) =
{

1,
0,

i f I(p) > I(p′)
otherwise

(2)

where I() is the intensity of the pixel. A conversion window is defined to select neighbor pixels. In
Equation (2), p is located at the center of the window, and the other pixels located in this window
are selected to be p’ in turn. Usually, the shape of the converted window is square, and the size is
user-defined. The CT at the pixel p can be written as

C(pxy) = ⊗
pi j∈w

ξ(I(pxy), I(pi j)) (3)

where ⊗ is the concatenation operator and w is the conversion window. In the stereo vision with CT,
two images (such as IL and IR in Figure 1) are transformed by CT and hamming distance is applied
to obtain the disparity between two transformed images. The disparity can be determined by using
winner-takes-all to find the minimum value among all possible disparity values [30].

2.2. The Haar Wavelet

The wavelet transform converts signals into small waves and performs signal processing and
signal analysis with multi-resolution. It is widely used in compression, transmission and image
analysis [31]. The Haar wavelet was proposed by Alfréd Haar in 1909 [27]. It is the earliest proposed
and simplest type of wavelet transforms [32]. With two pixels (p1 and p2) in the image, the Haar
wavelet can be implemented to the low-band and high-band by

Low band = (p1 + p2)/
√

2 (4)

and
High band = (p1 − p2)/

√

2 (5)

respectively. In practice, the Haar wavelet can be described as a transformation matrix [32]:

Haar =
√

2
2

[
1 1
1 −1

]
(6)

We can see that the image is high-passed and low-passed in the x-direction with down-sampling.
The result obtained is also high-passed and low-passed in the y-direction with down-sampling. Finally,
we obtain four sub-bands of LL (horizontal low-band and vertical low-band), LH (horizontal low-band
and vertical high-band), HL (horizontal high-band and vertical low-band), and HH (horizontal
high-band and vertical high-band).

2.3. Edge Detection

The boundary information can be extracted by edge detection and regarded as a result of high-pass
filtering. The result of edge detection is mainly used to highlight whether the image is an area where the
pixel changes significantly. In this study, the boundary information is used to classify and determine
the complexity in the vicinity of the pixel. If the gray scale intensity changes significantly, a smaller
conversion window can be used; otherwise, if the gray scale intensity of the area near the pixel does not
change significantly, a larger conversion window must be used. In this paper, the Canny edge detection
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method is used for boundary detection [33,34]. First, the noise must be filtered by a two-dimensional
Gaussian filter. The Gaussian function can be described as

G(x, y)= e−
x2+y2

2σ2 (7)

where σ is the variance of the Gaussian function and it can be regarded as a smoothing factor in the
filtering. The Gaussian function and the image can be computed by convolution to obtain the amount
of change in the x and y directions, which are denoted as gx and gy. The gradient based on the pixel
value in the image can be expressed as the gradient magnitude and the gradient direction, by

Igm(x, y) =
√

g2
x + g2

y (8)

and

Igθ(x, y) = tan−1
(

gy

gx

)
(9)

respectively. Since the edge can be described as the gradient, the boundary points can be detected
as the larger gradient magnitude on the gradient direction. We compare the pixels on the gradient
direction with pixels not on the gradient direction. If the value of a pixel on the direction is larger than
the value of pixel not on the direction, the pixel is regarded as a boundary point; otherwise, it is a
non-boundary point.

3. Proposed Methods

3.1. Census Transform with Haar Wavelet (CTHW)

In this section, the multi-resolution of the image with a Haar wavelet is used to reduce the
computational time of the census transform (CT) and Hamming distance operations. The flow of
this method is shown in Figure 2. First, the left and right view images are input. For both images,
Haar wavelets are performed to obtain the frequency domain data of LL, HL, LH, and HH-bands.
The outputs of LL-bands are converted by CT and the disparity calculated using the Hamming distance.
The output of the HH-band from the left image is performed by path searching after binarization.
The stop point of the path searching is determined by the high values in the HH-band. The disparity is
modified to find the largest disparity that appears in the search paths.

Since the size of the LL-band is smaller than the original image, one main idea of this method is
to use the LL-bands of original images to reduce the computational load of CT. Moreover, since the
down-sampled image may result in errors, another main idea is to use the HH-band of one original
image to modify the disparity. The path searches of the pixel in the HH-band are in four directions: up,
down, right, and left. An example of an HH-band image is shown in Figure 3 and a point is colored in
red. Since the mechanical stereo vision is applied by two horizontal cameras, the horizontal direction
is the main searching path. In order to reduce the effect of large areas without borders, the vertical
direction is added to the searching paths. The four searching paths are from the red point to four
directions, which are denoted as A, B, C, and D with green arrows. Each searching path is stopped
when the path arrives at the edge (white point). The corresponding disparity values (the output of CT
with Hamming distance) on the paths are recorded and counted. The modified disparity is set as the
disparity value with the largest number.
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Figure 3. Example of the path searching of a (red) point.

3.2. Adaptive Window Census Transform (AWCT)

The size of the conversion window will affect the computational load and accuracy when we
use CT. The larger the conversion window, the more accurate the results, but this also consumes the
computational resources. In this section, the proposed method, AWCT, changes the selection of the
conversion window size. The conversion window size changes from a fixed size of all pixels to an
adaptive size by the boundary around the pixel. The edge information is used to select the window size.
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The flow chart of AWCT is shown in Figure 4. First, the edge information can be obtained from the
left view image by edge detection. The conversion window size of each point can be determined by the
edge information. The selected window sizes are applied for CT, and the disparity can be computed
through a Hamming distance computation.Sensors 2020, 20, x FOR PEER REVIEW 7 of 19 
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The conversion window sizes can be 3 × 3, 5 × 5, 7 × 7, . . . , 21 × 21. After the edge detection,
each point will be the center of the windows in turn, and we count the number of edge points in each
window. We also count the proportion of the number of edge points in the window. The window size
ranges from small to large, and the size is selected when the window contains edge points. We divide
the window size selection into two types. The first type is no edge, in which there are no edge points in
the window. The image texture representation in this area is unclear, even without texture. The largest
window size is used in this type. The other type is one in which the edge points are in the window.
In this type, we record the proportion of edge points in the window when the window changes from
small to large. We record it as one-time negative growth when the window size increases by one
level and the ratio decreases. The window size will be selected when we have negative growth N
consecutive times. In this study, the value of N is set to 5 through experience. This value can be set by
the user for different cases.

Since the conversion window size is adaptive, the used window size of each pixel may be different.
The smaller windows size is selected to compute the hamming distance when the sizes are different.
In order to make the comparison of hamming distance reasonable, the calculation order of pixels is
counter-clockwise from the center outward. An example of the pixels’ order is shown in Figure 5. Even
if the two windows are different in size, this order will make the relative positions of the pixels the
same. The comparison of Hamming distance is up to the length of the small window. This allows the
hamming distance to be used in the same window size.
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Figure 5. The order of pixel calculation (with a 7 × 7 window size).

3.3. Adaptive Window Sparse Census Transform (AWSCT)

According to Equation (3), we can see that the number of points to be computed will increase as
the window size increases. Since some points may be ignored to reduce the operation times of the
computer, the sub-set of points of the conversion window is applied to determine which points are
calculated for CT. This modified method is called a sparse census transform, and it is defined as [28]

C(pxy) = ⊗
pi j∈ws

ξ(I(pxy), I(pi j)) (10)

where ws is the sub-set of points of the conversion window. We can see that the sparse census transform
takes a part of the points to convert instead of all the points in the window. According to the results of
the sparse census transform [28], the neighbor points are selected to be symmetric. The 16-points are
selected with a 7 × 7 window as shown in Figure 6c, which maximizes the performance. In this paper,
the same pattern of Figure 6c is used and expanded for the selected points to the different windows.
The selected points with different windows are shown in Figure 6. In this section, the sparse census
transform is combined with AWCT. The flowchart of AWSCT is the same as AWCT (Figure 4), but the
CT is changed to SCT (sparse census transform).
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15 × 15, (h) AWSCT 17 × 17, (i) AWSCT 19 × 19, and (j) AWSCT 21 × 21.

4. Experiments and Results

The results were compared with the ground truth data by PoBMP (percentage of bad matching
pixels) and RMS (root mean squared) [35]. The PoBMP is defined by

PoBMP =
1
N

∑
(x, y)

(|d C(x, y) − dT(x, y) |) > δd (11)

where dC is the disparity with the proposed method, dT is the disparity with the ground truth and δd is
the allowable error which is set as 3 in this paper. The RMS can be obtained by

RMS =
( 1

N

∑
(x,y)
| d C(x, y) − dT(x, y) |2

) 1
2

(12)

Six images (Moebius, Flowerpots, Reindeer, Cloth2, Midd1, and Baby1), which were provided
by Middlebury Stereo Datasets [36], were used to show the performances of the proposed methods.
These six images and their ground truth are shown in Figure 7.
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Figure 7. The experimental images: sequentially, the right image, left image and ground truth.
(a) Moebius, (b) Flowerpots, (c) Reindeer, (d) Cloth2, (e) Midd1, and (f) Baby1.

4.1. Results of CTHW

The disparity results of six images by CTHW and CT with a 21 × 21 window size are shown
in Figure 8, and the PoBMP results are shown in Table 1. According to the results, we can see that
we obtained a better PoBMP with the proposed CTHW. Especially in the case of small conversion
windows, such as 3 × 3 and 5 × 5, the PoBMP was less than 10% lower than the CT. In some exceptional
cases—for example, Reindeer and Cloth2 with 13 × 13 window sizes—although the PoBMP of CTHW
was higher than the PoBMP of CT, the accuracy of CTHW was still higher with a small window size.
In the disparity results, the black points represent unknown disparity. We can see that the disparity
images of CTHW was better than that of CT because there were significantly fewer black points.
The results show that CTHW obtained better disparity results.
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Table 1. The results of CTHW and CT with percentages of bad matching pixels (PoBMP) (%).

Window Size 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

Image Name CT CTHW CT CTHW CT CTHW CT CTHW CT CTHW CT CTHW

Moebius 78.75 41.95 53.97 24.17 39.35 21.33 31.72 19.85 27.34 19.36 24.66 19.40

Flowerpots 79.11 51.92 67.51 39.55 59.14 36.23 53.59 35.39 49.90 34.78 47.18 34.28

Reindeer 82.84 52.41 59.88 38.22 45.58 34.17 38.55 32.50 34.28 32.10 32.23 32.70

Cloth2 71.59 46.78 43.44 29.84 31.84 26.69 26.95 25.87 24.62 25.52 23.27 25.28

Midd1 84.97 70.29 68.38 54.44 58.33 46.47 53.21 41.88 50.12 38.82 48.17 37.10

Baby1 72.06 37.45 52.70 21.54 40.11 20.81 31.69 20.80 26.63 20.68 23.37 20.59

4.2. Results of AWCT

The results of Moebius by AWCT are shown in Figure 9. The edge detection result is shown in
Figure 9a. The main idea of the AWCT is that the windows can be adapted. The worst option is to
select the largest window size. In order to show the worst case for the size of each window, the pixels
which are adapted to the largest windows size in 13 × 13, 15 × 15, 17 × 17, 19 × 19, and 21 × 21 are
set as white and shown in Figure 9b–f, respectively. We can observe that when using a 13 × 13 and
15 × 15 window size, not all edge areas are applied to the largest window. At a 17 × 17 and 19 × 19
window size, the largest window was used for almost all edge points. Similar experimental results of
Flowerpots, Reindeer, Cloth2, Midd1 and Baby1 are also shown in Figures 10–14, respectively. The
results of six images with RMS are shown in Figures 15–20, respectively. These results show that
AWCT’s RMS is equivalent to the results of the largest windows (7 × 17, 19 × 19 or 21 × 21) with
CT. The detailed results of AWCT and the results of CT with the largest window are listed in Table 2.
According to the results, we can see that when we use the windows sizes with 13 × 13, 15 × 15, 17 × 17,
or 19 × 19, the number used of the largest window is significantly less. This means that the AWCT can
effectively adjust the window size and reduce the number of the largest windows. The results also
show that the accuracy (PoBMP and RMS) of AWCT is similar to that of CT, but the reduction ratio of
the operation number of calculation points (total pixels are calculated in Equation (3)) is about 4%–7%.
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window size in (b) 13 × 13, (c) 15 × 15, (d) 17 × 17, (e) 19 × 19, and (f) 21 × 21.
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Table 2. Comparison of AWCT and CT.

Image Name PoBMP of CT
(21 × 21)

PoBMP of
AWCT

RMS of CT
(21 × 21) RMS of AWCT Reduction Ratio

of Operation

Moebius 20.12 20.23 34.93 34.90 6.98%

Flowerpots 32.25 32.52 58.55 58.49 6.97%

Reindeer 29.55 29.42 47.48 47.49 6.11%

Cloth2 16.82 17.11 33.18 34.12 8.72%

Midd1 43.71 43.49 49.37 49.86 3.94%

Baby1 18.64 19.17 31.57 32.02 7.72%

4.3. Results of AWSCT
The results of AWSCT and the results of SCT with the largest window are listed in Table 3.

The experimental results show that the accuracies (PoBMP and RMS) of the two methods are similar,
but the proposed AWSCT is better within the terms of operational requirements. This means that
AWSCT can use fewer computing resources to achieve the same accuracy.

Table 3. Comparison of AWSCT and SCT.

Image Name PoBMP of SCT
(21 × 21)

PoBMP of
AWSCT

RMS of SCT
(21 × 21)

RMS of
AWSCT

Reduction Ratio
of Operation

Moebius 25.00 25.82 38.81 39.48 6.16%

Flowerpots 39.06 39.80 61.80 61.98 8.08%

Reindeer 34.24 34.69 51.13 51.54 7.23%

Cloth2 22.36 23.18 43.86 45.09 9.42%

Midd1 48.33 48.89 52.99 53.24 5.03%

Baby1 24.89 26.24 36.49 37.33 9%

4.4. Discussion of Results
The results of CTHW show that using wavelet’s high-frequency band with path searching to

modify disparity can effectively reduce PoBMP. This is because most bad matching is replaced by other
disparities, but the modified disparity may not be accurate. Since the main problem of using CT is
conversion window selection, it is easy to understand that CTHW (without adjusting the window) is
not better in RMS and operation reduction. Based on high-frequency technology, we propose an AWCT
method that uses edges to adjust the window size. The results show that AWCT’s quality (PoBMP and
RMS) is acceptable with a reduction of 4%–7% operation. Applying the sparse concept to AWCT can
also reduce the operation by 5%–9% compared to SCT.

5. Conclusions

One of the well-known methods for obtaining disparity is called CT. We discussed the key problem
of CT, which is the size of the conversion window. The larger the conversion window, the more accurate
the process; however, an oversized window may not only consume computational resources but also
make too many errors in matching. In this paper, we proposed one method, CTHW, to increase the
accuracy with a wavelet transform and another one, AWCT, to enable the conversion window size
to be adjusted for every point. In the results of CTHW, only the bad matching is improved, which
does not reduce the RMS and operation loading. We can see that the proposed CTHW can provide a
better result with a small window size and be suitably applied to a system with low computational
resources. AWCT further finds the number of edge points to select the suitable window size for each
point. According to the results, AWCT achieves a better performance in reducing the operation times
with acceptable quality. Compared with CT, its average reduction ratio of operation was found to be
about 6.6%. When we applied the sparse census transform to AWCT, as AWSCT, and compared this
with SCT, the average reduction ratio of operation was about 7.5%. In the future, it is worth studying
the use of high-frequency information to improve the quality and reduce the operation, and further
enhance the performance, of CT.
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