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Abstract: In recent times, security and privacy at the physical (PHY) layer has been a major issue of
several communication technologies which comprise the internet of things (IoT) and mostly, the emerging
fifth-generation (5G) cellular network. The most real-world PHY security challenge stems from the
fact that the passive eavesdropper’s information is unavailable to the genuine source and destination
(transmitter/receiver) nodes in the network. Without this information, it is difficult to optimize the
broadcasting parameters. Therefore, in this research, we propose an efficient sequential convex estimation
optimization (SCEO) algorithm to mitigate this challenge and improve the security of physical layer (PHY)
in a three-node wireless communication network. The results of our experiments indicate that by using
the SCEO algorithm, an optimal performance and enhanced convergence is achieved in the transmission.
However, considering possible security challenges envisaged when a multiple eavesdropper is active
in a network, we expanded our research to develop a swift privacy rate optimization algorithm for a
multiple-input, multiple-output, multiple-eavesdropper (MIMOME) scenario as it is applicable to security
in IoT and 5G technologies. The result of the investigation show that the algorithm executes significantly
with minimal complexity when compared with nonoptimal parameters. We further employed the use
of rate constraint together with self-interference of the full-duplex transmission at the receiving node,
which makes the performance of our technique outstanding when compared with previous studies.

Keywords: privacy capacity; IoT; 5G; physical layer security; MIMOME; jamming

1. Introduction

With the recent swift advancement of wireless communication networks and the advent of the fifth
generation (5G) cellular network, interconnected devices are embedded into the environment through
the IoT paradigm to enhance constant quality of service (QoS) and connectivity [1]. However, security of
wireless transmissions has become a vital concern [2]. Unfortunately, in wireless technology, security risks
are unavoidably inherent. Recently, network intrusion and eavesdropping, known as Eves, has become
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the major cradle of security risks in 5G wireless communications. The resources (e.g., battery) of most IoT
devices (such as handheld/mobile communicating devices) are constrained, thus resulting in the devices
having limited power for transmission, which may warrant the use of frailer cryptographic techniques as
power savers. Therefore, devices may be prone to several attacks by some prevailing adversaries.

Security in wireless networks is typically employed through cryptographic methods using the upper
layers of the open system interconnection (OSI) model [2,3]. However, these adversaries, which are
considered as unauthorized users or network Eves, may infiltrate the network system, exhaust the
networks bandwidth, taint the transmission data, reduce transmission performance, and inject data harms
that thwart easy access of network data by authentic users. As a result of wireless link’s unprotected
nature, most wireless connectivity is susceptible which makes it easy for them to be attacked by jamming
technology. These jamming attacks can result in a problem of Denial-of-Service (DoS), which can cause
numerous other higher-layer security glitches in IoT and 5G technologies [3].

The 5G wireless network is predicted to activate the smart hyperlinked environment, enhancing
the evolution and the growth of several sectors, such as energy and railway, where huge amounts
of accessibility and reliability is essential. In contrast, this evolution may warrant that future mobile
transmitting devices be exposed to cyber-attacks, which can destabilize system accessibility [4]. Because of
the nature of wireless communications, vulnerability to Eve’s attacks is inevitable. Therefore, transmission
confidentiality cannot be guaranteed. In this paper, our work is focused on utilizing the networks physical
layer to address countermeasures towards tackling confidentiality attacks in wireless network.

5G communications will headline what is being called the 4th Industrial Revolution, where the mobile
wireless broadband, pervasive sensing, and artificial intelligence (AI) promises to lead to major changes in
academia, industry, and society itself. This coming generation of wireless communications globally focuses
on many aspects as standards, policy, and infrastructure are still being shaped. 5G definitely promises to
make the IoT network a reality.

In wireless networks, confidentiality attacks mostly stem from jamming. This is considered as the
interruption of the flow in wireless transmissions by diminishing the signal-to-noise ratio (SNR) at the
receiver end over a wireless signal’s transmission interference. This clearly varies from normal network
interferences because it explains a deliberate injection of wireless signals into an existing transmission with
the intention of interrupting communications. However, network interference is said to be an accidental
kind of disruption during transmission [5]. Recently, through conventional means, the implementation
of different encryption approaches has been used to handle this security challenge at the advanced
communications layers. That being said, a lot of attention has been drawn towards the security of the
physical (PHY) layer lately. From a PHY security perspective, the authors of [6] investigated the impact of
saturation nonlinear energy harvesting (EH) and activation threshold on the multiuser wireless powered
sensor networks (WPSNs) from the physical layer security (PLS) perspective, and with respect to the
generalized multiuser scheduling (GMS), they examined the improvement in the secrecy performance
in WPNs. Their work explored and presented an exact closed-form expressions for secrecy outage
probability (SOP) under linear EH (LEH), saturation nonlinear EH (SNEH), and saturation nonlinear EH
with activation threshold (SNAT), respectively, through finding a solution for the maximization problem
of secure energy efficiency (SEE).

The basis for tackling jamming attacks is hinged on Wyner’s architecture. This architecture presented
and demonstrated a wiretap channel when the channel of the eavesdropper (Eve) is a tainted version
of the authentic receiver’s channel, a secret message can be sent from the transmitter to the destination,
while Eve is kept unaware of the content of the transmitted message [7]. The concept of privacy capacity
is described as the optimal attainable rate of transmission of private data from the transmitting source
(node) to its receiving destination. In [8], the Wyner’s wiretap method was generalized by assuming the
private message transmission over channels broadcast. Lately, substantial studies have analyzed privacy
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in wiretap channels under multiple antennas networks [9–11]. Particularly, the authors of [11,12] described
the performance capacity of privacy in a multiple-input, multiple-output (MIMO) wiretap transmission
channel. However, the authors of [13] investigated a joint effect of multiple jamming signals and noise at
the eavesdropper in a MIMO network by assuming the implementation of antenna selection technique
by the transmitter, while both the eavesdropper and legitimate receiver make use of a maximal-ratio
combining scheme to achieve spatial diversity in reception. Their results show the effects of imperfect
feedback and other key system parameters on the secrecy performance.

Basically, security at the PHY layer guarantees an optimal level of transmission privacy against
Eve’s as well as establishing an anticipated reception standard and quality as expected by the
receiver(s). This research area comprises both signal processing analysis and theoretical information
study. Although the latter involves more bounds and asymptotical limits, the former inclines towards
innovating primal designs of algorithms and architectures to tackle security issues in a wireless network.
Therefore, the focus and motivations of this paper is wrapped around the former with respect to Eve’s
growing quantity of transmitting antennas on privacy.

All the above-mentioned studies, except for [10,11], failed to explore a MIMOME scenario wish
illustrates the effects of Eve’s growing quantity of transmitting antennas on privacy. Although the authors
of [6,11,13] proposed proficient privacy, their technique is reliant only on the assumption of a scenario
where several factors such as the quantity of Eve’s antennas that are accessible for transmitter usage for
artificial noise subspace, are constrained in a MIMO and MIMOME network. By implication, it is essential
that Eve’s multiple antenna usage needs be considered and addressed. In this research, this is believed
to be an issue of importance, therefore these problems are first extensively described, then techniques to
tackle such problems are investigated and proposed.The main contributions of this research are as follows.

• A primal outlook into the investigation and optimization of wireless communications security with
respect to IoT networks is presented.

• Using a mathematical model, an analysis of a novel transmission system where the eavesdroppers
attack is tackled by injecting artificial noise which is transmitted by the receiver who has full-duplex
aptitude with the same frequency in the channel, which reduces Eve’s reception quality.

• Proposal of a new jamming mitigation technique and developed a sequential convex estimation and
optimization (SCEO) algorithm for an optimized and enhanced privacy to solve the optimization
problem in a three-node network where network users do not have knowledge of Eve’s channel state
information (CSI).

• The vulnerability of the proposed privacy enhancing scheme to Eve’s increasing number of antennas
is characterized and explored, while the performance of the proposed algorithm in a three-node
network is established.

• Finally, because privacy capacity in a three-node network have been over-studied by several authors,
this research is expanded to cover a MIMOME scenario, justifying its applicability in secured IoT
network transmission.

The remainder of this paper is organized as follows. The privacy capacity model in wireless networks
is described in Section 2. Review of recent works related to the research is presented in Section 3. System
model is described in Section 4. Numerical analysis and results are provided in Section 5, and finally
conclusions are outlined in Section 6.

2. Privacy Capacity Model in Wireless Networks

In this section, the privacy capacity model of the transmitting network is expressed. In the privacy
capacity model of the network, it is assumed that the malicious node may eavesdrop the source as well
as well as the receiver. However, in order to get a full use of the signals transmitted from the transmitter,
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the eavesdropper must be fully synchronized in the network. According to traditional privacy definitions
in [8], the channel of communication can be modeled as a channel of broadcast in line with the wiretap
channel as illustrated in Figure 1.
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Figure 1. A Wiretap Channel for Privacy Capacity model

Considering the wiretap channel, the transmitting channel’s message is represented as an ∈ An and
is encoded and broadcasted as a codeword cm ∈ Cm. The receiver (Rx) and eavesdropper (Eve) receive
bm ∈ Bm and em ∈ Em, respectively. Eve’s received information via her receiving signal is then modeled
and described as in Equation (1),

I (em; an) = g (an)− g (an |em ) (1)

where I(em; an) represents the mutual information shared by the transmitter and the legitimate receivers,
while g is considered as the entropy. As long as Eve cannot decode any bit of the transmitted information,
then perfect privacy is achieved. Thus, Equation (2),

I (em; an) = 0↔ g (an) = g (an |em ) (2)

This implies that the quantity of uncertainty about Eve’s private information is not altered after em

is received.
By definition, the probability of experiencing an error Pi in the message estimation of message an,

and ân is defined as the estimate of an; therefore,

Pi = P {an 6= ân} . (3)

Eve’s rate of uncertainty about message an is term as the rate of equivocation and can be described as

Qi =
1
m

g (an |em ) (4)

where
0 ≤ Qi ≤ g(an)/m (5)
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Evidently, if Qi = g(an)/m, then perfect privacy, which is related to perfect privacy rate Qs, is realized.
For each ε > 0, a particular Qs is assumed to be realizable, and there is a sequence of (2mQs , m) codes such
that for any m > m(ε) the following states are obtained.

Pi < ε

Qs − ε < Qi

(6)

The first state is the constraint for the realizable rate, whereas the second is the equivocation rate
constraint which guarantees prefect privacy. In summary, privacy capacity Sc is the optimal realizable rate
of privacy in a network transmission. Thus, in [8], it is established that the difference between the main
channel capacity Cmc and the wiretap channel capacity Cwc is the privacy capacity Sc, in other words,

Sc = (Cmc − Cwc)
+, (7)

as (.)+ ∆
= max(0, .), where negative rate is meaningless. Although Wyner demonstrated this for the

distinct no-memory channel, the principle that the capacity of privacy is the difference of the capacity of
the legitimate channel and that of the eavesdropper’s is established to be accurate for several systems like
in multiple-input, multiple-output (MIMO) set-ups [12,13].

Notations

We denoted the column vectors and matrices by boldface letters (both at upper and lower cases), while
the determinant, inverse of a matrix and column-wise vectorization of the matrix X are all represented as
XH , X−1, |X|, respectively. In a diagonal vectorization, Y is denoted as the column vector of y , whereas
the random variable of y is represented as Cy[.] and the probability of event occurrence is denoted as
P{X}. Using the same probability space, we defined the random variables Y and Ym, if Ym converges to Y,
we transposed Ym

a.s→Y as m → ∞. We used I to represent the matrix identity of supplied size, as I(y; z)
represents the information which is mutually and randomly transmitted between y and x variables.

3. Related Works

In a wireless network, jammers intentionally introduce radio frequency (RF) interference to distort
wireless communications. This is achieved by occupying the transmitting channel and keeping it busy,
thereby triggering the transmitter to withdraw each time it senses a busy wireless channel, or a tainted
signal acknowledged at the receiver’s end. In this section, in an attempt to understand the jamming attack
on wireless networks, different kinds of jamming in wireless communications as proposed by several
researchers are explored. Primarily, network jamming can occur in different ways based on the type of
jammer. Therefore, different kinds of jammers and their jamming mechanisms are reviewed in this section.

The established secrecy capacity rate principle by Wyner in [8] preceded several other theoretical
proposals by different researchers. So far, the wireless channels rate of secrecy has been explored from
several perspectives like in [9,10]. The different perspectives explored are as follows, the fading channels
secrecy [9–11], the analysis of Gaussian wiretap channels secrecy of [11], the multiple antenna systems
secrecy [13–15], the broadcast channels secrecy [16], the analysis of secure degrees of freedom [17–21],
and the secrecy of cooperative jamming techniques coupled with helpers or relays [22–29].

Additionally, the theoretical information [30] forms guarantees defined by secrecy capacity of the
communication channel; the nodes that legitimate can also assume active approaches to improve their
communication secrecy. One important approach for improving the secrecy of wireless communication was
developed in [31]. The approach proposes that the transmitter (Alice) injects artificial noise into legitimate
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channels null-space together with the data signal. This scheme is intended to actively reduce the reception
quality of any Eve’s presence without altering the quality of legitimate receivers (Bobs) channel. Several
other works [32,33] have also investigated this approach. Equipping Bob with the capacities of full-duplex
radio aptitude, which enables him broadcast jamming noise counter to Eve, while both Bob and Eve attempt
to acquire information from Alice [34,35] is another approach. The combination of the aforementioned two
jamming approaches is investigated in most part of this study to attain secrecy at higher levels. Moreover,
this combination was examined in [36], as it proposed a cooperative optimization algorithm to generate
decent parameters for the transmission. Separately, two different sets of antennas are considered for
broadcasting and for full-duplex reception. Meanwhile, the research did not fully consider the residual
self-interference at Bob. Further, several other works were interested with comparable systems in [37,38].
The system proposed in [39] presents a scenario with Alice and Bob communicating simultaneously and
are furnished with full-duplex radio with full consideration of residual self-interference. The study target
was to discover the maximum beamforming transmit trajectories for artificial noise and signal considering
some constraints of quality of service (QoS) with Eve’s CSI recognizable to users. With Eve’s exact CSI
unrecognizable to the user in [40], a closed-form lower bound on the ergodic rate of secrecy is realized.
The authors of [41,42] considered a case of a single-antenna Bob and multiple antenna base station coupled
with a colluding and non-colluding single-antenna Eves. As an alternative to beamforming, an antenna
selection scheme is used by the study and it is of the research assumption that Eves are dispersed in
accordance to the process of Poisson point.

For cooperative relaying networks, several authors have also investigated different techniques for the
security of systems physical layers [43]. In cooperative relaying networks, even destinations or relays are
used as assistants to offer jamming signals to complicate the eavesdropper’s transmission. This method is
known as cooperative jamming. The noise-forwarding approach which was introduced in [24], and applied
in a channel comprising of four-terminal relay-eavesdropper also considered a full-duplex relay, which
independently transmits secret messages codewords which are targeted at complicating the eavesdropper’s
transmission. The authors of [44] investigated a two-stage cooperative jamming scheme (TSCS) which
involves multiple relay nodes acting as the single-antenna’s source node extension. The relays in this study
do not transmit the information signals as they only function as a helper. However, for a single-antenna
relay network, the authors of [45] proposed three different cooperative communication methods. On the
other hand, for the second hop, they attempted to optimize secrecy by deriving a power allocation
approach and its corresponding relay weights. The study in [46] investigated a decode-and-forward (DF)
relays performance based on an optimal beamforming strategy; however, the investigation is limited
because it only considered a transmission where the Eve monitors just a single connection linking the
transmission destination and relay. The investigation of [47] was based on different privacy enhancing
technologies (PETs) for IoT devices which have resulted in a much efficiency and convenience to our daily
life. Their survey claim to have identified current state of improvement of the PETs in several turfs and
also analyzed how the current technologies adhere with the modern legal ideologies and privacy criteria in
curtailing the threats to privacy. A secured IoT-based healthcare system, which operates through the body
sensor networks (BSN) architecture, was examined by the authors of [48]. The main focus of their system
is to concurrently realize system robustness of transmission and efficiency within publicly transmitting
IoT-based communication networks. Utilizing a vigorous utilize crypto-primitives, they constructed two
communication schemes to ensure confidentiality in transmission and support entity authentication among
smart objects. As most of the IoT data is relevant to personal privacy, it is necessary to pay attention to
data transmission security. The authors of [49] investigated an IoT-oriented offloading method (IOM)
which is enclave with privacy preservation to solve the problem of privacy in Cloudlet-enabled Wireless
Metropolitan Area Networks (CWMAN). Their research and that of [50] adopted the non-dominated
sorting differential evolution algorithm (NSDE) in order to optimize the multi-objective problem.
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By contrast to the works analyzed above, the work in [51] proposed a cooperative jamming approach
for a half-duplex two-hop wireless MIMO relay scheme where the eavesdropper can bug the channels
throughout the phases of transmission. The study investigation considered both single and multiple
streams of data transmissions. However, for jamming support, due to the absence of an “outer” helpers,
the relay, destination, and source must depend on themselves. Whether the eavesdropper is in proximity
to the source or the destination, the strategy guarantees that it is jammed. In this strategy, both the source
and the destination nodes perform as provisional assistants for transmitting jamming signals throughout
the phases of transmission where they are generally inactive.

In summary, the event of optimizing privacy without the users recognizing Eve’s CSI is sparsely
contained in literature; however, a few works like [52–57] gave more attention to the use of only
enough energy to authenticate a particular QoS for Bob and is this energy is estimated in terms
of signal-to-interference-plus-noise-ratio (SINR). Using the remaining energy, artificial interference is
generated to jam Eve not minding the effect of Eve’s location. This process is implemented in place of
making attempts to optimize the rate of secrecy, which is impossible without the users having a knowledge
of Eve’s CSI [58,59]. Furthermore, as new telecommunication technologies emerge, the use of several
security and privacy techniques proposed earlier becomes over exploited and obsolete; therefore, it is vital
to develop advanced state-of-the-art techniques and algorithms that can mitigate against network jamming
and eavesdropping attacks and ensure constant quality of service (QoS) in the network. Considering
that this is the optimal focus of this research, therefore, the relevance of this research to cutting-edge
telecommunication technologies like the IoT and 5G cellular network cannot be underestimated.

4. System Model

In this section, the system model is described. There are similarities in the model to what was given
in [8]. For the set-up, a three-node-based wireless transmission is illustrated in Figure 2.

 

Tx

Eve

Rx

gse
gde

gdd

gsd

Figure 2. A single-antenna three-node wireless transmission with a full-duplex destination.

In the set-up, all three nodes are attached to a single transmitting antenna. The intention of the
transmitter (Source) is to broadcast some private information to the receiver (Destination) while Eve
(a passive eavesdropper) attempts to gain access to the sensitive private information. We assume that
each link channel entails several M orthogonal subcarriers and each subcarrier fading is flat. Tackling
eavesdropping attacks in this set-up entails that artificial noise is broadcasted by Rx with the same
frequency and in the same channel, which reduces Eve’s reception quality. Considering that this jamming
attack operates at the same frequency and time in which information is transmitted from Tx to Rx; thus, it is
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assumed that Rx has full-duplex aptitude. It is well known that there is no perfect full-duplex system,
therefore Rx always manifests some level of residual self-interference.

Considering ys(x) ∈ Mx1 is the signal vector independent and identically distributed (i.i.d) zero
mean cyphers and unit variance that the Tx will be transmitting while yd(x) ∈ Mx1 is assumed to be the
jamming noise vector of i.i.d. zero mean cyphers and unit variance the transmitter (Tx) will be transmitting.
Thus, the signal vectors Rx and Eve received can be individually described,

zd(x) = gsd ∗
√

ps ∗ ys(x) +
√

δgdd ∗
√

pd ∗ yd(x) + md(x), (8)

ze(x) = gse ∗
√

ps ∗ ys(x) + gde ∗
√

pd ∗ yd(x) + me(x), (9)

where Mx1 comprises the vector, gsd, gse, gde, and gdd are explicitly described in Figure 2, and ps and pd
vectors, respectively, represent the power of transmission between the Tx and Rx. md(x) ∈ Mx1 and
me(x) ∈ Mx1 are considered as the mean of independent white Gaussian noise of zero and unit variance,
respectively. The multiplication and square root are used as element-wise operators, and δ represents the
attenuation factor of self-interference.

Denoting the superscript (m) as a vector mth element, we formulate the respective
signal-to-noise-ratios (SNRs) of the mth subcarrier at Rx and Eve as

γ
(m)
d = Amym

1+Bmzm
andγ

(m)
e = Cmym

1+Dmzm
, (10)

where Am =
∣∣∣g(n)

sd

∣∣∣2, Bm = δ
∣∣∣g(n)

dd

∣∣∣2, Cm =
∣∣∣g(n)

se

∣∣∣2, Dm =
∣∣∣g(n)

de

∣∣∣2, ym = p(m)
s and zm = p(m)

d . Recall that
as stated earlier, Eve’s CSI (Cm and Dm∀m) is only supposed to be recognizable by legitimate users in
this Section.

Thus, the privacy capacity of this model is defined as

Sc(y, z) =
1
M

M

∑
m=1

max {0, ∆Sm(ym, zm)}, (11)

where
∆Sm(ym, zm) = log

(
1 + γ

(m)
d

)
− log

(
1 + γ

(m)
e

)
. (12)

4.1. Formulated Optimization Problem

In this subsection, our objective is to boost the privacy capacity of the scheme using power and rate
constraints with cooperative power distribution between Tx (source) and Rx (destination). As compared
with the conventional physical layer security techniques, the proposed SCEO and swift privacy rate
optimization algorithms are suitable for the Internet of Things, because the optimization algorithms
are energy efficient; therefore, the low-energy consumption necessities of IoT is enormously satisfied.
Specifically, in a wireless channel transmission scheme, intrinsic noise is deployed which degrades the
quality of the eavesdropper’s received signal; thus, privacy in transmission is guaranteed with no cost
of supplementary power. In summary, the application of the proposed technique in IoT technologies
is low power capable as it does not necessitated the use of additional energy to guarantee privacy in
transmission. The authors in [38] attempted to solve this low power problem through the bisection
approach by swapping the source and destination powers optimizations, iteratively. However, in this



Sensors 2020, 20, 2609 9 of 24

work, we provided an improved solution by jointly assigning source and destination powers, thereby
formulating the first optimization problem as (13):

max
x,y

1
M ∑

m∈Ψz

(
log(1 + Amyn

1+Bmzm
)− log(1 + Cmym

1+Dmzm
)
)

s.t. 1
M ∑

m∈Ψz
log(1 + Amyn

1+Bmzm
) ≥ Csd

∑
m∈Ψz

zm ≤ pd, zm ≥ 0∀m ∈ Ψz

∑
m

ym ≤ ps, ym ≥ 0∀m ∈ ℵ

zm = 0, ∀m ∈ Ψ
⊥
z

(13)

where
Ψz = Θz ∩Φ

Θz =
{

m
∣∣∣ Am

1+Bmzm
> Cm

1+Dmzm
, ∀m ∈ ℵ

}
Φ =

{
m
∣∣∣ Am

Cm
> Bm

Dm
, Bm

Dm
< 1, ∀m ∈ ℵ

}
Ψ
⊥
z

= {m |m ∈ ℵ, m /∈ Ψz}

(14)

The privacy capacity of our system is considered as the objective function, and the approximation
is performed over the privacy capacity of the group of subcarriers which warrants a positive capacity of
ψz. First, the rate constraint which guarantees the quality of service (QoS) of the network is considered.
Although the techniques warrant data exchange or channel feedback between the authentic users, which
can result in a slight rate performance degradation, typically IoT devices and applications have very low
data rates. Therefore, this setback of low rate performance does not alter the adoption of the scheme in
IoT operations. Second, the jamming mitigation power constraint which has its summation over the set
of subcarriers ψz is considered. This is due to the need to properly manage power so no power waste is
experienced by subcarriers which might not guarantee a positive gain of privacy. Last, the third constraint
which is the power constraint at Source is taken into consideration. Furthermore, the minimum expected
rate is represented as Csd, whereas ps and pd are set to represent the optimal sum of powers at Source
and Destination.

With the aim of exploring the Karush–Kuhn–Tucker (KKT) conditions, we formulated the Lagrangian
function of the problem as

L(y, z, λ, µy, µz, υy, υz) =

− 1
M ∑

m∈ψz

(
log(1 + Amym

1+Bmzm
)− log(1 + Cmym

1+Dmzm
)
)

−µR
y y− µR

z z + µy(∑
m

ym − ps) + υz( ∑
m∈ψz

ym − pd)

+λ

(
C̃sd − 1

M ∑
m∈ψz

log(1 + Amym
1+Bmzm

)

) (15)
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Considering the KKT conditions as

∀m ∈ ψz


∂l

∂ym
= −ϕm(ym, zm)− 1

M
Am

1+Bmzm Amym
− µy(m) + υy = 0

∂l
∂zm

= −ϕm(ym, zm)− 1
M

(
Bm

1+Bmzm Amym
− Bm

1+Bmzm

)
− µz(m) + υz = 0

ym ≥ 0, µy(m)0, ymµy(m) = 0, ∀m ∈ ℵ
zm ≥ 0, µz(m)0, zmµz(m) = 0, ∀m ∈ ψz

υy ≥ 0, ∑ mym ≤ ps, υy (∑ mym − ps) = 0

υz ≥ 0, ∑ ∈ψy ym ≤ pd, υz

(
∑ ∈ψy ym − pd

)
= 0

λ ≥ 0, C̃sd ≤ 1
M ∑ m∈ψz log(1 + Amym

1+Bmzm
)

λ
(

C̃sd − 1
M ∑ m∈ψz log(1 + Amym

1+Bmzm
)
)
= 0

(16)

where
ϕ(ym, zm) =

1
M

Am
1+Bmzm+Amym

− 1
M

Cm
1+Dmzm+Cmym

(17)

ϑm(ym, zm) =
1
M

(
Bm

1+Bmzm+Amym
)− Bm

1+Bmzm
− Dm

1+Dmzm+Cmym
+ Dm

1+Dmzm

)
(18)

Equations (16)–(18) above are the derivations of the KKT conditions which the Lagrangian function
of the problem must satisfy for optimal solution to be achieved.

Apparently, attempting to find solution to the source-to-destination KKT conditions,
a two-dimensional (2-D) bisection search estimation is performed on parameters λ, ν, and µ as
analyzed in Algorithm 1.

Algorithm 1 Algorithm to solve problem (15) by solving the KKT conditions of (16), using 2-D search
approach for µ, ν, and λ.
Initialize:
Am, Bm, Cm, Dm, ym, ∀m ∈ ℵ; ps; sd; CSOD; ε, ζ.
Generate:

1: Initiate λ = 0 therefore, eliminating the rate constraint), perform search for ν and y.

2: Compute C(y) as sd capacity.

3: if C(y) > CSOD then

4: revert y (meaning the rate constraint is achieved).

5: else 2-D search: perform search for ν= 0 to satisfy power constraint till precision ε is achieved.

Perform search λ > 0 for every given ν to achieve the rate constraint until precision ζ is achieved.

Given each pair of λ and ν, ym ≥ 0 is achieved as the solution of (24) for every m ∈ ℵ.

6: revert y (meaning the rate constraint is achieved).

7: end if

Considering Algorithm 1 (bisection algorithm), the following set of equations which require solution
will be encountered. These represent two nonlinear systems of equations:

∂l
∂ym

= −ϕm(ym, zm)− λ
M

Am
1+Bmzm Amym

− µy(m) + υy = 0
∂l

∂zm
= −ϕm(ym, zm)− λ

M

(
Bm

1+Bmzm Amym
− Bm

1+Bmzm

)
− µz(m) + υz = 0

. (19)
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Finding solution for the KKT conditions which contains these two nonlinear equations appears to be
unnerving; therefore, we consider applying the approach of sequential convex approximation.

4.2. Sequential Convex Approximation

In attempt to realize a sequential convex approximation, the rate constraint and the objective function
which constitute the optimization problem formulated in (13) is rewritten as (20) below.

f (y, z) = 1
M ∑

m∈Θz

(
log(1 + Amym

1+Bmzm
)− log(1 + Cmym

1+Dmzm
)
)

= 1
M ∑

m∈Θz
(log(1 + Bmzm + Amym) + log(1 + Dmzm))

− 1
M ∑

m∈Θz
(log(1 + Dmzm + Cmym) + log(1 + Bmzm))

= f1(y, z) + f2(y, z) 1
M ∑

m
(log(1 + Bmzm + Amym))

− 1
M ∑

m
(log(1 + Bmzm)) ≥ Csd

f3(y) + f4(y, z) ≥ Csd

(20)

Evidently, f1 and f4 functions are concave while f2 and f3 functions are convex. Considering first-order
Taylor series expansion of convex functions as the function’s underestimator. By denoting the first-order
Taylor series expansion of f2 and f3 around (y(h), z(h)) points and expressing them, respectively, as f̃ (h)2 , f̃ (h)3 ,
the following was realized,

f1(y, z) + f2(y, z) ≥ f1(y, z)+ f̃ (h)2 (y, z)∀y, z ∈ M

f4(y, z) + f3(z) ≥ f4(y, z)+ f̃ (h)3 (z)∀y, z ∈ M
(21)

where

f̃ (h)2 (y, z) = f2(y(h),z(h)) +∇ f2(y(h),z(h))R(

[
y
z

]

−
[

y(h)

z(h)

]
)

f̃ (h)3 (z) = f3(z(h)) +∇ f3(z(h))
R(z− z(h))

∇ f2(y, z) = − 1
M



C1
1+D1z1+C1y1
...

CM
1+DMzM+CMyM

D1
1+D1z1+C1y1

+ B1
1+B1z1

...
DM

1+DMzM+CMyM
+ BM

1+BMzM



∇ f3(z) = − 1
M


B1

1+B1z1
...

BM
1+BMzM



(22)
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Based on work done in [34] and assuming Bm
Dm

< 1 we further simplify Θz and obtain

Θz =
{

m
∣∣∣zm ≥ 0, Am

1+Bmzm
> Cm

1+Dmzm
, ∀m ∈ ℵ

}
= {m |(BmCm − AmDm)zm > Am − Cm, ∀m ∈ ℵ}
=
{

m
∣∣∣zm ≥ Am−Cm

BmCm−AmDm
, 1 > Am

Cm
> Bm

Dm
, ∀m ∈ ℵ

}
∪
{

m
∣∣∣zm ≥ 0, 1 < Am

Cm
> Bm

Dm
, ∀m ∈ ℵ

} (23)

Thus, following iteration h, we formulate the optimization problem as follows,

max
y, z

f1(y, z) + f̃ (h)2 (y, z)

s.t. f4(y, z) + f̃ (h)3 (z) ≥ Csd

∑
m

zm ≤ pd, zm ≥ 0∀m ∈ ℵ

zm = 0∀m ∈
{

m
∣∣∣ Am

Cm
< Bm

Dm
< 1, ∀m ∈ ℵ

}
∪
{

m
∣∣∣ Bm

Dm
> 1, ∀m ∈ ℵ

}
zm ≥ Am−Cm

BmCm−AmDm
∀m ∈

{
m
∣∣∣1 > Am

Cm
> Bm

Dm
, ∀m ∈ ℵ

}
∑
m

ym ≤ ps, ym ≥ 0∀m ∈ ℵ

(24)

It is observed that a convex optimization problem occurs at each point of iteration. This attempts
to optimize a lower bound on the primal objective function and guarantees the rate constraint. As the
iterative Algorithm reaches convergence, a decent approximation on the optimal values is expected.
The optimization process is detailed in Algorithm 2.

Algorithm 2 Sequential Convex Estimation Optimization Algorithm for solving optimization problem.
Initialize:
(Am, Bm, Cm, Dm) : ∀m ∈ ℵ, pd, ps, Csd, ζ.
Generate:
y(0) = 1

M ps1M

z(0) = 1
|Θx |pda(i) = 1

1: if (i ∈ Θx)
2: else a(i) = 0, t = 1
3: While True do
4: end if

Perform the convex optimization problem in (18) to realize y(t) , z(t),
if (
∥∥∥[y(t); z(t)]− [y(t−1); z(t−1)]

∥∥∥ < ζ) then

break.

else

t = t + 1

end if

5: end
6: return y(t) , z(t);
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4.3. Optimization of Swift Privacy Rate in a MIMOME

Considering a network scenario where multiple eavesdroppers operate, the first assumption in
realizing a swift privacy rate will be that Eve has full knowledge of her covariance matrix of noise and
interference (ME) just as she has full knowledge of all her entire CSIs (as earlier stated); then, she can
make use of the optimal receiving antenna and her achievable rate would be derived as

RTE = log
∣∣∣ME + aA1ZrAG

1

∣∣∣− log |ME| (25)

where
ME = I+

aPm
ATx − r

A2AG
2 +

ePB
ARx

BBG (26)

Then, the swift realizable privacy rate would be expressed as

PR = (RTR − RTE)
+ (27)

However, for a multiple-input multiple-output multiple-antenna eavesdropping (MIMOME) system,
assuming there is a constraint on the number of Eve’s antenna (AE), one major issue of the system will be
on how can to optimize the parameters of the transmission in such a way that Eve’s interference in the
transmission is made difficult. This becomes our focus in this subsection.

In this MIMOME system, if there is great increase in of (AE), the artificial noise does not have a
significant impact on the rate of transmission between Tx and Eve (RTE). Therefore, the assumption in this
subsection is that there is a constraint on Eve’s maximum number of antennas; therefore, for the reason of
optimization, a worst case is assumed, and thus this maximum number of antennas is considered as (AE).

To achieve this optimization, Tx and Rx cannot utilize the swift CSI at Eve, so as earlier mentioned,
PR is inappropriate for this optimization. From some previous research [6,13,18], it is observed that Eve’s
symptotic rate is a decent approximation to the tangible rate; thus, we adopted this fact in order to achieve
optimization. Suppose that the we make no assumption on the realizable random parameter (r) and
assuming that zr is a vector encompassing the transverse elements of Zr, and (AE) is discreetly huge.
Then, by rewriting (26), we obtained

RTE = log
∣∣∣I+ aPm

ATx−r A2AG
2 + ePB

ARx
BBG + aA1zrAG

1

∣∣∣
− log

∣∣∣I+ aPm
ATx−r A2AG

2 + ePB
ARx

BBG
∣∣∣

= log
∣∣I+K3Θ̄3KG

3

∣∣− log
∣∣I+K4Θ̄4KG

4

∣∣ ,

(28)

as K3 and K4 are expanded as K3 = 1√
AE

[A1, A2A3] , and K4 = 1√
AE

[A2, B] . where

Θ̄3 = AEtrans
([

azP
r , aPm

ATx−r 1ATx − r, bPB
ARx

1ARx

])
, (29)

Θ̄4 = AEtrans
([

aPm
ATx−r 1ATx − r, bPB

ARx
1ARx

])
, (30)

Deriving from the approximation of RTE, an objective function which entails the approximation of
PR is proposed. Note that the proposed objective function does not depend on the CSI of Eve; however,
it considers the approximate swift rate of Eve. Likewise, as it is assumed that the transmitter and receiver
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has full knowledge of the null space (G), the receivers exact rate is applied but not in its asymptotic form.
The objective function is expressed as follows,

h(zr, Pm, PB) = − log
∣∣MB + GV1ZrVG

1 GG
∣∣+ log |MB|

+ AEΩ
(

β̄3, Θ̄3, σ̄3
)
− AEΩ

(
β̄4, Θ̄4, σ̄4

)
,

(31)

where MB implies that the receiver has full knowledge of her covariance matrix of noise and interference,
β̄3 = ATx+ARx

AE
, β̄4 = ATx−r+ARx

AE
, while σ̄3 and σ̄4 are solutions to the formulated problem. In order to

optimize the swift privacy rate, we proposed an optimization problem as stated below.

min
r

min
zr, Pm, PB h (zr, Pm, PB)

s.t.
r
∑

i=1
zr(i) + Pm ≤ Pmax

A

zr(i) ≥ 0, ∀i = 1, ..., r
Pm ≥ 0
0 ≤ PB ≤ Pmax

B

(32)

In the optimization problem above, the constraints are in their convex form; nevertheless, h(.) is yet
to assume a convex form. We can achieve this by rewriting the function

h(zr, Pm, P) = − log
∣∣MB + GV1ZrVG

1 GG
∣∣+ log |MB|

+ AE β̄3υΘ3(σ̄3)− AE β̄4υΘ4(σ̄4)

+ AE log
(

σ̄4
σ̄3

)
+ AE (σ̄3 − σ̄4) log(c)

= − log
∣∣MB + GV1ZrVG

1 GG
∣∣+ log |MB|

+
NΘ̄3
∑

k=1
log (1 + σ̄3(Θ̄3)k, k)−

NΘ̄4
∑

k=1
log (1 + σ̄4(Θ̄4)k, k)

+ AE log
(

σ̄4
σ̄3

)
+ AE (σ̄3 − σ̄4) log(c)

(33)

From Equation (33), we can linearize +∑
NΘ̄3
k=1 log (1 + σ̄3(Θ̄3)k, k), which is the convex form of h(.) at

every iteration point of the optimization algorithm using the expansion method of first-order Taylor series.
Similarly, we can resolve the reliance state of h(.) on the σ̄3, σ̄4 parameters by making them constant with
respect to their values and the upgrading them at the end to achieve the following,

1− σ̄
j+1
i =

β̄iσ̄
j+1
i

NΘ̄i

NΘ̄i

∑
k=1

(Θ̄j+1
i )k, k

1 + σ̄
j+1
i (Θ̄j+1

i )k, k
, i = 3, 4. (34)

note that j + 1 represents the parameter value at j + 1 iteration. Thus, we optimized the preceding convex
function at j iteration,

gj(yr) = − log
∣∣MB + GV1ZrVG

1 GG
∣∣

−
NΘ̄4
∑

k=1
log
(

1 + σ̄
j
3(Θ̄4)k, k

)
+
(
yr − yj

r

)J∇yr f j
∣∣∣yr=yj

r
,

(35)
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denoting yr =
[
zJ

r , Pm, PB

]J
and f j(yr) = log |MB|+

NΘ̄3
∑

k=1
log
(

1 + σ̄
j
3(Θ̄3)k, k

)
. Recall that terms that are

constant were not used in (25) because they do not have any effect in the optimization. However, at this
point, h(.) has assumed a convex function and we can then optimize it using the preceding optimization

yj+1
r =

arg min
yr gj(yr)

s.t.
r
∑

i=1
zr(i) + Pm ≤ Pmax

A

zr(i) ≥ 0, ∀i = 1, ..., r
Pm ≥ 0
0 ≤ PB ≤ Pmax

B .

(36)

Similarly, at this point, if any possible values of r is deployed, an optimal output will be recorded.
The summary of our proposed optimization procedure can be seen in Algorithm 3. Although different
optimization methods to tackle this kind of problem were proposed in [13,18] comparatively, these methods
give almost similar outcome, nonetheless, our proposed Algorithm 3 significantly executes with minimal
complexity. Our figures illustrate the efficiency and out-performance of our swift optimization algorithm
as compared with nonoptimal parameters.

Algorithm 3 Swift privacy rate optimization algorithm.
Input actual:
ε, σ̄0

3 , σ̄0
4 , and initiate hmin= 0

1: for r = 1 : ATx do

2: Set yr to satisfy the constraints

3: while

∥∥∥yj
r−yj−1

r

∥∥∥∥∥∥yj−1
r

∥∥∥ >ε do

4: execute (28) till yj+1
r is realized

5: execute (25) using yj−1
r till σ̄0

3 , σ̄0
4 is updated

6: j = j + 1.

7: end while

8: if h
(

yj
r

)
< hmin then

9: hmin = h
(

yj
r

)
10: ymin = yj

r

11: end if

12: end for

13: Revert ymin.

5. Numerical Analysis and Results

In this section, MATLAB simulation results based on our proposed SCEO algorithm and the Swift
privacy rate optimization algorithm is presented. Our investigations show that the magnitudes of all
transmission channels are distributed in a Rayleigh form with an even unit of mean square, while the
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attenuation factor of the transmission self-interference ρ is set to be 0.8, except where slight changes are
required. The transmission power constraints were set at 20db except where otherwise stated.

5.1. Realized Privacy Capacity

We performed a transmission performance evaluation for a three-node transmission under power
and rate constraints as shown in Figures 3 and 4. A comparison of three separate transmission scenarios
with respect to the privacy capacity of their transmissions is shown in the experiment.
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Figure 3. Realized privacy capacity against eavesdroppers under power and rate constraints.
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Figure 4. Realized privacy capacity for Source-to-Destination (C∗SOD = 0.8CSOD,1) transmission under
power and rate constraints.

Figure 3 indicates privacy capacity against Eve, whereas Figure 4 represents the data rate of the
transmission between the source and destination (Source-to-Destination) specifically realizing for the entire
Am < Cm, ∀m ∈ ℵ. This clearly implies that, for the entire set of subcarriers, the Eve’s channel is stronger
from the Source (Tx) than the Destination (Rx) has from the Source.

For Transmission 1 (the first transmission scenario), at the Source and Destination terminals, data
rate is optimized subject to power constraints. However, this occurs without the constraint for privacy
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capacity. The subsequent obtainable data rate is signified by CSOD,1. On the other hand, as expected for
this channel, the subsequent privacy capacity Sc,1 is realized as zero.

For Transmission 2, the transmissions privacy capacity is optimized subject to power constraints at
Source and Destination likewise a rate constraint of Source-to-Destination. Setting the lesser bound on the rate
(i.e., the constrained rate) at C∗SOD = 0.8CSOD,1, the equivalent rate realized at the channel transmission is
signified by CSOD,2, as anticipated, the curve is vague from that of C∗SOD. Sc,2 represents the subsequent
attained transmission privacy capacity and it is huge and quite close to Transmission 3.

In Transmission 3 (the third transmission scenario), the privacy capacity is optimized with only power
constraint at Source and Destination without considering any rate constraint. Subsequently, we represented
the privacy capacity as Sc,3 while the data transmission rate is signified as CSOD,3.

Considering the three transmission scenarios, it is observed that the result obtained at the second
scenario (Transmission 2) outperform the other two transmission scenarios in terms of source-to-destination
data rate trade-off and the transmission’s privacy capacity.

5.2. Joint Power Assignment for Multiple Destinations

For a multiple transmission destinations scenario, we considered Cn = χC∗n, representing C∗n as
the optimal data rate attainable from Source to Destination when power ps

N is assigned to Source for
data broadcast to the nth destination. Considering χ = 0.8 and N = 4, Figures 5 and 6, respectively,
represent the maximum attained privacy capacities and data rates from the source-to-destination. Likewise,
the equivalent outputs with no rate constraint are represented in the two figures. It is observed that if rate
constraints are applied, a small measure of privacy capacities is lost, however, significant data rates are
gained and maintained. For both Figures 5 and 6, under rate constraint, both the achieved and constrained
rates are separable.
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Figure 5. Maximum realized privacy capacity for multiple destinations transmission.
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Figure 6. Source-to-Destination data rate for multiple destinations transmission.

5.3. Joint Power Assignment for Multiple Sources

For a multiple transmission source scenario, considering the nth transmission source, we set the rate
constraint as Cn = χC∗n, representing C∗n as the optimal data rate attainable from Source to Destination
when power ps,n = ps

M is assigned to Destination for data broadcast from the nth Source. Figures 7 and 8
present the data rates and privacy capacities for all three different sources. The subsequent result shows
that although a small measure of privacy capacity is lost in the absence of rate constraint, significant data
rates are gained and maintained.
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Figure 7. Maximum realized privacy capacity for multiple sources transmission.
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Figure 8. Source-to-Destination data rate for multiple sources transmission.

5.4. Performance Comparison of Difference Algorithms

In Figures 9 and 10, we compared our proposed sequential convex estimation optimization (SCEO),
which is intended to mitigate the optimization problem in (15) against the Bisection method in [38] and the
two-stage cooperative jamming scheme (TSCS) in [44]. A total of 60 transmitting antennas were selected
for both experiments. For the rate constraints, about 0.8 of optimal attainable capacity (OAA) was selected
for Figure 9, whereas for Figure 10, the power constraint (ps = pd = p) is set at 20 dB.

Figure 9 indicates that mostly if the power constraints are low, our proposed SCEO technique
is latent enough to obtain optimal values. Comparing the three different techniques in Figure 10 at
different variations of rate constraint. Our technique is observed to outperform the other two compared
techniques notwithstanding severe rate constraints. Moreover, as the rate constraints becomes more
severe, convergence might be difficult for the TSCS and Bisection techniques but our algorithm converges
almost seamlessly.
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Figure 9. Performance of the algorithms under different power constraints.
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Figure 10. Performance of the algorithms with different rate constraints for p = 20 dB.

Finally, the complexity analysis of our swift privacy rate optimization algorithm in a multiple
transmission and multiple eavesdropper scenario is shown in Figure 11. We set the optimization parameters
as AE = ATx, β1 = 6, Pmax

n = Pmax
B = 20 dB. From the result of our investigation, there were no evident

patterns in the optimal values, in addition, the optimal parameters are dependent on the outputs of
G. Nevertheless, Pn can be assumed to be frequently and approximately distributed evenly among the
channels. Finally, it is observed that as AE becomes larger, the minimal PB and r are respectively favored
by the optimization.
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Figure 11. Comparison of ĀE versus ĀTx with different parameters.

6. Conclusions

In this study, we explore the privacy capacity of wireless transmitting networks in several schemes
relating to full-duplex jamming. Subject to both the transmission rate and power constraints, we considered
and implemented an efficient power allocation optimization algorithm for enhancing privacy capacity
in a three-node transmitting network and also in a real life MIMOME scenario. The applications of the
resulting research and results can be applied to current wireless communication networks seen in rampant
use in both IoT and 5G networks. Our experimental results showed that by using the sequential convex
estimation optimization (SCEO) algorithm, a more optimal result and enhanced convergence is achieved.
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However, due to possible challenges envisaged when a multiple eavesdropper is active in a network, we
expanded our research to develop a swift privacy rate optimization algorithm, which executes significantly
with minimal complexity when compared with nonoptimal parameters. The use of the rate constraint
together with self-interference of the full-duplex at the receiving node makes the performance of our
technique outstanding from the recent studies reviewed. Furthermore, we extended our study to consider
a scenario where multiple sources and multiple destinations are in use. Finally, our technique indicates
that as the iterative algorithm reaches convergence, a decent approximation on the optimal values is
achieved. In a future work, we intend to consider a stochastic optimization approach for privacy capacity
with Eve’s CSI Unknown to Users.
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