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Abstract: The creation of an automatic crowd estimation system capable of providing reliable,
real-time estimates of human crowd sizes would be an invaluable tool for organizers of large-scale
events, particularly so in the context of safety management. We describe a set of experiments in which
we installed a passive Radio Frequency (RF) sensor network in different environments containing
thousands of human individuals and discuss the accuracy with which the resulting measurements
can be used to estimate the sizes of these crowds. Depending on the selected training approach,
a median crowd estimation error of 184 people could be obtained for a large scale environment which
contained 3227 people at its peak. Additionally, we look into the potential benefits of dividing one of
our experimental environments into multiple subregions and open up a potentially interesting new
topic of research regarding the estimation of crowd flows. Finally, we investigate the combination of
our measurements with another sources of crowd-related data: sales data from drink stands within
the environment. In doing so, we aim to integrate the concept of an automatic RF-based crowd
estimation system into the broader domain of crowd analysis.

Keywords: device-free; radio frequency; RF; wireless sensor networks; WSN; passive sensing;
sensorless sensing; crowd estimation; crowd counting; crowd analytics; footfall analytics

1. Introduction

Crowd management is an integral aspect of the organization of any type of large-scale event.
Special attention needs to be paid to the layout of the event environment(s) in order to ensure the safety
and comfort of the attendees and to decrease the risk of crowd disasters occurring. The number and
locations of available entrances and exits, the placement of barriers to steer the crowd along desired
routes and the use of clear signage to inform visitors where event activities are located, are but a few
examples of elements which need to be taken into account [1].

While it is still far from common practice, there has been an increased tendency to make use
of mathematical models in creating preparatory crowd management plans [2,3]. These models can
be classified as being part of crowd science, an active field of research combining insights from
mathematics, physics, psychology and sociology [3–5]. Furthermore, practical modelling tools have
been developed which can aid experienced crowd managers within control centers in performing
real-time risk assessments [6]. Crowd management is not limited to preparatory planning and event
organizers must also be capable of detecting unexpected crowd-related occurrences and react in a
timely and appropriate manner, often in cooperation with emergency services. In this context, real-time
information regarding the density of crowds (crowd density estimation) and the number of people
of which they are comprised (crowd counting) can be highly valuable. Multiple low- and high-tech
solutions do exist to obtain this information, but they each have several major shortcomings.
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One of the most common and simple methods consists of security personnel on the ground
regularly providing crowd estimates. For comparatively simple environments with a limited number
of manned entrances and exits, manual counting—potentially aided through the use of a tally
counter—can prove to be sufficient. For more complex environments with less clearly delineated
entrances and exits (e.g., a stage environment at a music festival), it can be very difficult to manually
perform accurate crowd sizes estimates in large-scale environments containing thousands of human
individuals and the numbers provided by different security agents are likely to diverge considerably.
Camera systems are commonly used to provide a centralized overview of multiple environments
in the control center. The resulting live images can then be analyzed by crowd experts, thereby
lowering the amount of security personnel that needs to be deployed. With the strident advances made
within the field of computer vision over the past few decades, these images can even be analyzed
algorithmically [7,8], which (largely) removes the subjective human element. However, these systems
tend to require vast amounts of available computing power [9]. Furthermore, the accuracy of these
approaches can be influenced heavily by environmental aspects such as smoke, rapidly changing
lighting conditions (a common occurrence at music festivals) and occlusion in general. Additionally, a
major issue which needs to be kept in mind at all times when utilizing camera-based approaches, is
privacy. In recent years, privacy in general is a topic which has received considerable interest, not just
from a legal point of view, but also within the public consciousness.

An increasingly popular non-vision based approach is to make use of the Radio Frequency (RF)
communication capabilities of smart devices carried by event attendees. Using Wi-Fi access points to
scan for and count unique MAC-addresses is a viable solution and similar techniques can be utilized
for Bluetooth communication as well. This does make the underlying assumption, however, that
each attendee is carrying exactly one single smart device which has enabled Wi-Fi and/or Bluetooth
communication. Furthermore, smartphone OS developers are increasingly implementing methods
which repeatedly rotate through randomized MAC-addresses to directly foil the working principles of
these types of scanning systems in order to enhance user privacy. While it is currently still feasible
to identify unique devices from these semi-randomized MAC-addresses, the difficulty of doing so is
likely to increase even more in the future [10]. A solution to this problem could be the use of a specific
app instead of scanning for available devices, but this means that visitors need to be convinced to
install this app on their device.

The use of passive RF sensing could provide a solution to all of these problems. The basic concept
of this approach is to make use of the impact of the physical presence of a crowd on communication
between RF-devices to infer information regarding the size and/or density of this crowd. Because the
radio modules in the measurement devices are not only used for communication but act as sensors
themselves, these type of approaches can also be called ‘sensorless sensing’. Sensorless sensing in general
has become an increasingly popular research topic and techniques have been developed for a variety of
applications such as device-free localization [11,12], activity recognition [13,14], health monitoring [15],
gesture recognition [16] and fall detection [17]. A considerable amount of research has been performed
regarding the use of sensorless sensing techniques for crowd counting as well [18–20]. Often, these
approaches tend to solely make use of the impact of the crowd on signal strength measurements, but
in the past few years several techniques have been developed which also incorporate Channel State
Information (CSI) [21–23]. The increasing amount of commercially available Wi-Fi chips which allow easy
access to CSI data is a major cause for its growing popularity within passive RF sensing.

Unfortunately, the vast majority of experiments which validated existing crowd counting
approaches were performed in environments which simultaneously contained several dozens of
people at most. To the best of our knowledge, the sole exception within the current state-of-the-art is
the experiment we performed ourselves at the Freedom Stage of the Tomorrowland Music festival in
2017 [24]. In this real-life, commercial environment in which thousands of human individuals could be
present, we installed 46 devices which each contained a 433 MHz and an 868 MHz transceiver. Over
the course of three days, we collected data and then analyzed the evolution of the average Received
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Signal Strength (RSS) attenuation experienced within the RF network depending on crowd size and
density. It should be noted that these terms were used interchangeably, as we only investigated the full
crowd in the entire environment and did not look into the manner in which this crowd was distributed.
Therefore, crowd density was regarded as a crowd count divided by the fixed environment size.

Because the experiment was performed in an uncontrolled environment, it was very difficult to
obtain any kind of ground truth data regarding actual crowd sizes. Therefore, in our approach we
made use of a set of low-quality camera images of the environment. We had these images manually
analyzed by a team of volunteers who classified each image in one of six categories ranging from ‘0’
to ‘5’, with 0 representing a nearly empty environment and 5 being an environment that was nearly
filled to the brim with people. These subjective human crowd analyses made it particularly clear
how often the exact same visual information was interpreted in a vastly different manner by different
people. The resulting smoothed out crowd categorizations were then assigned to the crowds at certain
timestamps corresponding to the moments when the images were taken. While it could hardly be
considered a reliable ground truth, this ‘visual validation’ data enabled us to investigate whether a
passive RF-based system could perform at least as well as a large set of human eyes. We used the
average attenuation of the 433 MHz and 868 MHz RF networks together with the corresponding
visual validation classifications to train and evaluate a probabilistic neural network (PNN). Results
indicated that it was indeed feasible to create an automatic crowd estimation system based on a
passive RF sensor network, with over 90% of pnn estimates being at most 1 category removed from the
visual estimates. This was still very much a preliminary feasibility study within a single environment,
however. Therefore, we stressed that much more research was needed regarding the universal
applicability of one such approach.

Over the past years, we have installed passive RF sensor networks in a variety of different
large-scale event environments, some of which did enable us to have access to a much more solid type
of ground truth data. In this paper, we will discuss several of these setups and show the analyses we
performed upon the resulting RSS data. The environments in which these experiments took place are
as follows:

• Freedom Stage (Tomorrowland 2017)
• Freedom Stage (Tomorrowland 2018)
• Main Comfort VIP Area (Tomorrowland 2018)
• Nucleus Tent (Sound of Science 2019)

The Main Comfort VIP Area could only be entered and exited by visitors who had their special
VIP bracelet scanned and based on this scanning data, crowd estimates regarding the number of
people present in the environment were calculated. While some aspects of the specific system setup
caused the resulting people count to not be entirely accurate, it was still a much more reliable form of
ground truth than what had previously been the case. For the Nucleus Tent environment, the setup
we installed there was part of a controlled experiment we performed at a science festival with 247
participants. Therefore, we could manually verify the exact number of people present over the course
of the experiment. Finally, for the Freedom Stage we were granted access to cashless payment data
indicating the number of transactions at the drink stands within the area during each minute while the
festival was ongoing. We received this data for both the 2017 and 2018 editions of Tomorrowland and
therefore we will include the data from our initial experiment in [24] once again in our analyses.

It should be noted that we do no longer limit our analyses to a categorization of the entire crowd
within the entire environment, as was the case in [24]. Instead, we will make use of the available
ground truth and maximum environment capacity data in combination with a linear regression-based
approach to perform actual crowd count estimations. Furthermore, we do not solely investigate the
entire environment as a whole, but also delve briefly into the concept of subregions for the experiments
performed within the Nucleus environment.

The remainder of this paper is structured as follows. In Section 2, we discuss the architecture
of the passive RF sensor networks we installed in the aforementioned environments. It should be
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noted that sometimes considerable differences existed between these setups in regards to hardware,
firmware, back-end and real-time visualization and we will therefore focus primarily on the general
concepts behind our setup designs. The next three sections fully describe the experiments performed
in the mentioned environment and discusses the obtained results. In Section 3 we perform extensive
analyses of the Main Comfort environment for which we had access to reasonable ground truth data
and could therefore assess the accuracy of an actual crowd counting system in a quantifiable manner.
An analysis of the controlled crowd estimation experiment performed at Sound of Science 2019 is
presented in Section 4. Section 5 focuses on the Freedom Stage environment in which no ground
truth data was present and where we had to make use of cashless transaction data and expert opinion
to gauge the feasibility and usefulness of our approach in a crowd management context. Finally, in
Section 6 a conclusion is presented in addition to a discussion of our plans for future research.

2. Collecting RSS-Measurements in a Passive Radio Sensing Network

Over the past few years, the architecture of the passive radio sensing networks we install in our
experimental environments has evolved considerably. Because our measurements tend to take place
in real-life, commercial environments, many aspects need to be taken into account not just from a
research perspective, but also from a practical point of view. Once an event is ongoing, it often becomes
very difficult or even outright impossible to physically access the network nodes. Smooth, continuous
operation needs to be guaranteed for the duration of the entire event and if any issues do crop up, we
need to be able to solve them remotely.

As was the case in our earlier work [24], we solely make use of 433 MHz & 868 MHz within
our sensing network. Our primary motivators for doing so are the increased range and penetration
capabilities for (non-metallic) walls, objects and human individuals these sub-GHz frequencies offer,
especially when compared to the more commonly used 2.4 GHz frequency band. The basic principle of
the system is to make use of the impact of large-scale human presence on RF communication, but this
impact may not be so great as to cause a significant decrease in the number of available links due to
communication failures. For non-controlled, large-scale environments containing thousands of human
individuals in which nodes are often installed behind walls, this is not an unrealistic scenario.

Additionally, we continue to limit ourselves to measuring the RSS values of the communication
links. As mentioned in the previous section, CSI has become a popular signal descriptor within the
research fields of RF based passive crowd estimation and passive RF sensing in general. However,
the fact that CSI requires the use of OFDM-based Wi-Fi signals (2.4/5 GHz) precludes its use in our
current implementation of the system. Furthermore, we believe that only using RSS-measurements
will enable the use of extremely low-cost, dedicated hardware in actual commercial deployments.
Nevertheless, we consider the use of 2.4 GHz and more informative signal descriptors for large-scale
crowd estimation to be interesting topics for future study and will discuss our plans regarding these
research directions in more detail in Section 6.

In this section, we will discuss the manner in which our networks operate to collect RSS
measurements and describe several features we implemented to increase the flexibility of the system.
Additionally, we will describe the different hardware nodes we constructed and made use of for the
specific setups discussed in this paper. However, we will not go into detail regarding the specific
differences between each setup and quantify the corresponding influence of these changes on the
general stability of the network, as we consider this to be an entirely separate topic outside of the scope
of this paper.

2.1. Node Hardware

Two different physical types of nodes were used for the environments which we discuss in this
paper. Images of these nodes are shown in Figure 1. Our first node design consists of an aluminium,
cuboid-shaped casing containing a battery (6600 mAh), a LiPo Rider Power module and two EZR-USB
transceiver modules for respectively 433 MHz and 868 MHz communication. The casing is open
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on two sides, with one side covered by a plastic plate into which two holes were cut. These holes
enable antennas to be connected directly to the modules. Because this design is not waterproof and
has antennas which are clearly visible on the outside of the casing, it can only be used in indoor
environments and is installed in places where it cannot be seen by event attendees. For the setups
in this paper, this meant that nodes of this type were only installed in the Freedom environment in
locations only accessible by crew members.

(a) Type I

(b) Type II

Figure 1. The two node types used for the experimental measurements. (a) shows an image of the main
parts of which a Type I node consists and (b) shows an image of the inside of a Type II node variant
containing only an 868 MHz transceiver.

The design of the second node type is entirely closed with a casing made from plastic. It contains
two RF transceiver modules which make use of an EZR microcontroller as well. Power is also supplied
by a 6600 mAh battery, but this time the antennas are on the inside of the design. Additionally, the
outside of the design contains a power switch, a USB-port for charging the battery and a set of green,
yellow and red LED indicators. In practice these LEDs were not used. This node type was used for our
setup in the Main Comfort environment and the Sound of Science controlled experiment.

2.2. Basic Network Operation

Communication between nodes within the network occurs through the DASH7 Alliance Protocol
(D7AP) [25], an open standard sub-GHz wireless communication protocol which is generally used
for medium distance Internet-of-Things (IoT) applications. Its open nature and utilization of
license-exempt frequency bands (433 MHz & 868 MHz/915 MHz) make it ideally suited for our
setups. While our sensorless sensing network differs from the more common sensor-actuator setups
which form the primary use case for D7AP, there were nevertheless several beneficial DASH7-features
which were quite helpful for our system. Later in this section, we will discuss this in more detail.
Within our setups, there are three functionally different types of nodes: regular nodes, a controller node
(controller) and a configuration node (configurator). The basic principle of communication within the
network is that each in turn, the regular nodes broadcast a message which is then received by all other
nodes. The RSS-value with which this message was received, is stored by each node in an internal
list. This list is used as the actual data that is sent when a node’s turn to broadcast has arrived. The
controller node listens to all of these messages as well, and it will pass on the RSS values they contain
to a computing unit to which it is connected.

Regular nodes have unique node identifiers which determine the order in which they transmit.
Their exact time to broadcast is synchronized based on an initial start message sent by the controller
node. A node will broadcast its internal RSS list after wtime times the node identifier number
of ticks have passed since the reception of this start message, with wtime being a network-wide
parameter determining the time between the transmissions of two subsequent nodes. Once all nodes
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have transmitted their data, the controller node will broadcast another start message and the cycle
begins anew.

It should be noted that the RSS data is received by the controller with a variable delay. The lists
transmitted by regular nodes contain the RSS values with which it has received the most recent
communications from each node, but these moments in time can differ significantly based on the
network size and the the aforementioned wtime parameter. In practice, we consider these delays for
our large-scale setups to be negligible as we make the assumption that the crowd does not significantly
change within such short periods of time.

In addition to synchronizing node communication and passing the RSS data to a computing unit,
the controller can also transmit several other types of messages to instruct the regular nodes to reset
themselves or to request new network parameters from the configurator. The controller will send these
messages if it receives the corresponding commands through its connection to the computing unit.
These commands also include the option to respectively halt and resume the transmission of start
messages.

The purpose of the configuration node is to ensure that all network parameters are known by all
of the nodes. On boot, a node will start to regularly broadcast configuration request messages until
it receives a response from the configurator. Only after this has occurred will the node listen to any
start messages from the controller and participate in communication cycles. The network parameters
received by a node include the aforementioned wtime, the size of the network and the unique node
identifier. The file system-based nature of DASH7 makes this easily achievable by allowing us to store
these parameters in user files on the configurator. Nodes can then obtain this data by transmitting
a file read request. The only slight exception to this principle is the node identifier, which makes
use of a table stored in the configurator. This table links each unique hardware ID of the transceiver
modules to a node ID. When a read request is received, the hardware ID of the requesting node that is
automatically included in each message will be used to determine the corresponding node ID which is
then sent in response. Another highly important parameter is the access profile which defines a variety
of communication-related parameters. In practice, it is primarily used within our system to define
the frequency channel on which the regular cycle communication occurs. More in-depth information
regarding the file system, access profiles and other general DASH7 concepts can be found in [25].

The main advantage the use of the configuration node provides, is the flexibility it offers in
regards to the installation of our system. Increasing or decreasing the size of the network would require
considerably more effort if these values were hard-coded in the firmware of each node. Additionally,
we have previously encountered situations (e.g., during the Sound of Science 2019 measurements) in
which already present signals within the environment interfered with the initially selected frequency
channel for the main communication cycles. This could then be easily resolved by changing the
corresponding parameters within the configuration node.

For the vast majority of the time, the network will be in its regular operation mode in which
nodes synchronize their broadcasts based on the start messages sent by the controller. For this mode,
the mean current drawn by the 433 MHz and 868 MHz transceiver modules combined will be below
35 mA for node type I 45 mA for node type II. Given that both node types contained a 6600 mAh
battery, this meant that the corresponding battery run-times for types I and II were respectively 189
and 147 h. This was more than sufficient for the large-scale events described in this paper, which had a
maximum duration of three days.

2.3. Back-End

RF transceivers which function as the controller and configuration nodes are installed within a
gateway box and connected to a computing unit (in practice often an Intel NUC or a Raspberry Pi). This
computing unit is then connected through the available network infrastructure to the actual back-end
system, which is run on a local desktop/server or on a private cloud infrastructure. Communication
between the gateway and the back-end occurs in both directions through the use of a topic-based
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message broker. All RSS messages received by the controller node are sent to the gateway computing
unit and then in turn passed to the back-end through this system. Similarly, commands for the
controller and network parameter changes for the configurator can be sent in the opposite direction.
These are our main tools to address any issues that may arise while the system is operational during
an ongoing event.

The back-end system itself has undergone significant changes since its inception and is still
actively being developed. Initially, its main goal was simply to store the received RSS messages in a
database from which they could be retrieved for analysis at a later date. Gradually, the system evolved
towards an increased incorporation of real-time aspects. In particular, the evolution of the average
RSS attenuation within (subregions of) the RF networks we installed was an important metric which
we monitored through the use of interactive visualization platforms like Grafana [26]. Additionally,
metrics related to the performance of the RF network itself (e.g., the ratio of expected RSS-messages
received over the maximum within a cycle or specific window of time) were increasingly monitored as
well to aid us in detecting problems more quickly.

3. Tomorrowland: Main Comfort 2018

The Main Comfort location at the Tomorrowland music festival comprises the ground floor of
a temporary three-story building from which one has a clear view of the main stage. It can only be
accessed by event attendees if they have VIP access and festival bracelets are scanned both when
entering and exiting the environment. The two floors above the Main Comfort are respectively called
the B2B & Skybox environment. A separate scanning system is in place for these locations because
they require an even higher tier of VIP access to enter.

In theory, the Main Comfort scanning data provides us with an exact ground truth regarding the
total amount of people present at any given time. In practice, however, there are several issues which
negatively impact the accuracy of these numbers. First of all, crew members are not scanned and only
have to show their bracelet to security personnel to be granted entrance. Second, part of the crowd
that is present on the B2B and Skybox floors are included in the count as well. This is because it is
possible to enter these environments by first going through the Main Comfort. Our system was only
installed within the Main Comfort and not on the upper two floors and we did not have access to the
data from their separate scanning system. Finally, bracelets were not scanned when people left the
environment at the very end of the festival day, which meant that the crowd counts still remained
unrealistically high after the day had officially ended.

Nevertheless, the measurements performed at the Main Comfort location in 2018 marked the
first time that we had access to a representative crowd count for an environment which could contain
thousands of human individuals. The results of our analysis, which we will discuss in the following
paragraphs, strengthened our conviction regarding the validity of our passive RF sensing approach to
create a full-fledged crowd analysis system.

In Figure 2 a schematic overview of the environment is shown, with the locations of the regular
nodes we installed marked with dots alongside the corresponding node ids. Our setup consisted of 54
nodes of the type shown in Figure 1b. During operation when the festival was ongoing, however, we
noticed that data was not received from three nodes due to a variety of hardware issues. This meant
that the actual total number of functional nodes in this environment was 51. The three faulty nodes are
indicated in Figure 2 with black dots and red node IDs.

The locations in the environment where we installed our nodes were primarily selected based on
practical considerations. While it was not considered to be a problem for the type II nodes installed in
the Main Comfort environment to be seen by event attendees, for obvious reasons their presence had
to be as non-intrusive as possible. With the exception of node 53—which was installed right below
a wooden shelf close to the exit—none of the nodes could be physically accessed by regular crowd
members. The nodes on the balcony (0–15 & 40–44) were tied to its outermost guardrail, which was
only accessible to security personnel. The nodes near the jacuzzis and the locker room (36–39 & 51–52)
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were hidden behind wooden walls and the remaining nodes were placed underneath the wooden bars
for both the food & drink stand (29–35 & 46–50) and the cashless payment charging station (16–18
& 45). Due to these considerations and the fact that elevation differences existed between (parts of)
the balcony and the rest of the environment, nodes could not all be installed at the exact same height.
Therefore, the Lines-of-Sight of the communication links should not be considered to be parallel to a
uniform ground plane. Nevertheless, we attempted to install the nodes at heights between 1 m and
1.60 m to ensure that the direct line-of-sight of most links went through the torsos of adult individuals
standing upright. For the vast majority of cases, this was feasible.

Figure 2. An overview of the Main Comfort environment.

The installation of 51 functional nodes led to a total of 1275 two-way communication links which
provide us with two RSS measurements each for every successful cycle. Because we are interested in
using the influence of the crowd on the RSS values of the communication links within the environment
to perform crowd estimation and crowd analysis, we will not use data from links which are unlikely to
be impacted. These links are indicated in Figure 3 and their measurements are not taken into account
during the next steps. In practice, this meant that only 895 links were used.
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Figure 3. An overview of the discarded links within the Main Comfort environment.

3.1. Average RSS Attenuation & Calibration

Our earlier research performed in [24] indicated that the average RSS attenuation experienced
within an installed RF network was a solid indicator of the actual crowd size. Now that we have access
to the bracelet scan data for the Main Comfort environment and our own manual counts for the Sound
of Science environment, we will investigate the use of this metric more thoroughly.

We define average RSS attenuation as the average of the differences between our current link
measurements and an earlier set of calibration measurements which were performed when the
environment was (largely) unoccupied. In practice, rather than calculating the average RSS attenuation
for each cycle, the RSS difference values of every communication link are averaged within a certain
time window and a single attenuation value is calculated for every window. For the Main Comfort
environment analyses described in this section, this time window had a length of 60 s.

Calibration measurements are performed during a relatively short period of time (which can range
from 5 min to 1 h) when the environment is largely static and empty. The average RSS measurements
for each link obtained during this period represent an unoccupied environment. If any significant
changes take place regarding the generally static elements within the environment (e.g., the locations
of furniture or the installation of additional crowd barriers), new calibration measurements need to be
performed. In order to mitigate the problem of small environmental changes accumulating over time,
we use a different set of calibration measurements for each day of the festival. The extent to which
changes must occur in an environment for a new calibration measurement to be necessary, is currently
unknown. Because calibration measurements require an unoccupied environment, they are impossible
to perform while the event is actually ongoing. This means that large environmental changes while
an event is ongoing can have a significant negative impact on the crowd estimation accuracy of the
system. Therefore, this is an important topic for future research which we will discuss in more detail
in Section 6.

Figure 4 shows the evolution of the average RSS attenuation during all three days of the festival for
868 MHz. The vertical lines divide the duration of each day into time slots based on the performances
on stage, with each letter indicating a different artist for the day. Measurements performed during the
first five minutes after the opening of the festival grounds at 12:00—when preparations were certain to
have been completed but when the crowds had not yet arrived at the Main Comfort—were used as
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calibration data for each day. We will primarily focus on Saturday and Sunday due to the fact that the
available bracelet scanning data for Friday was largely incomplete.

(a) (b)

(c)
Figure 4. Evolution of the average RSS attenuation within the Main Comfort Environment throughout
the festival weekend. (a–c) show this for respectively Friday 27 July 2018, Saturday 28 July 2018 and
Sunday 29 July 2018.

While we performed measurements on both the 433 MHz and 868 MHz frequency bands, in this
paper we only make use of the 868 MHz data. The results of our earlier study described in [24] already
indicated that the resulting data from these two frequencies for large crowds were very strongly
correlated (433 MHz & 868 MHz essentially show the same graph with an offset) and was unlikely to
provide any additional information.

3.2. Bracelet Scanning Data

In Figure 5 the same graphs as in Figure 4 for Saturday and Sunday are overlaid with the crowd
estimates provided by the bracelet scanning system. The estimate of the scanning system was updated
approximately every 10–12 min, which contrasts with our own approach which—for the window size
of 60 s we have selected—provides a new average RSS attenuation value every minute. For this reason,
when comparing these two sets of data we will always compare each scanning system value to the
corresponding attenuation value that is closest in time. Additionally, we completely disregard any
data which was collected after the last performance of the day had concluded due to the previously
mentioned lack of people scanning at the end of the day.
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(a) (b)
Figure 5. Evolution of the average RSS attenuation within the Main Comfort Environment, overlaid
with the scanning system data. (a,b) show this for respectively Saturday 28 July 2018 and Sunday 29
July 2018.

Visually speaking, it is already quite clear from Figure 5 that strong correlations exist between
the two data sets. The scatter plots in Figure 6 show very high Pearson correlation coefficients of
respectively 0.984, 0.967 and 0.965 for Saturday, Sunday and the two days combined. These results
strengthen our hypothesis that the average RSS attenuation within an RF network is a strong indicator
of the crowd size and can therefore be used as a solid basis for a passive crowd estimation system. It
should be noted, however, that there are some time intervals in which these correlations appear to
be much less strong and even very slightly negative. This is particularly visible in the comparative
graph for Sunday, which shows a decrease in the number of people present according to the scanning
system for approximately 2 h after 16:00u. During the same period of time, the average RSS attenuation
increases steadily, albeit at a slower rate than before. Much less pronounced but similar behaviour
can be observed for Saturday within the same time frame. Because this occurred at approximately the
same time when complimentary food and drinks were starting to be served within the environments
above the Main Comfort, we suspect that this discrepancy could be related to the fact that the upper
floors are partially included in the scan counts as well. People who increasingly make use of the
direct entrance to the upper environments without first passing through the Main Comfort could be a
potential explanation. However, with the currently available data, this is impossible to verify.

(a) (b)
Figure 6. Cont.



Sensors 2020, 20, 2624 12 of 32

(c)
Figure 6. Scatter plots depicting the relationship between the average RSS attenuation and the crowd
counts according to the scanning system in the Main Comfort environment. Plots (a,b) make use of the
data from respectively Saturday 28 July 2018 and Sunday 29 July 2018, while plot (c) uses all available
data from both days combined.

3.3. Estimating Crowd Sizes

Now that the average RSS attenuation has proven to be a strong indicator for crowd size, our
next step consists of the creation of a model which translates this value into actual crowd estimates.
We make use of a linear regression-based approach to determine the equation describing the RSS
attenuation-crowd size relationship. We investigate three different methods for selecting which data
is to be used for training and which data is to be used used for evaluation. In our first approach, we
simply utilize the curves depicted in Figure 6a,b which are fitted for all data points from a single day
and evaluate the accuracy using the data from the other day. Figure 7 shows the resulting estimation
graphs and their corresponding error graphs for Saturday and Sunday.

Maximum errors close to 700 people can be seen for both days. Interestingly, on Sunday this
occurs during the 16:00–18:00 period which we discussed previously while for Saturday this peak is
reached near the end of the festival day when the crowd size was at its largest. If one compares the
graphs in Figure 5a,b, a significant underestimation of the maximum crowd count on Saturday based
on a curve fitted to data from the following day is entirely unsurprising and we will see this occur for
all three of our approaches. This is because the maximum values for the average RSS attenuation are
comparable for both days (19.6 dB and 19.0 dB), while according to the scanning system the largest
amount of people who were simultaneously present within the environment differs considerably. Once
again, it is very difficult to assess whether this was caused by inaccuracies related to the scanning
approach or if environmental or crowd-related factors caused a different relationship between the
crowd size and the average RSS attenuation within our RF network.

For our second approach we select the maximum count according to the scanning system for
each day. The equation of the curve which connects the origin to this value and its corresponding
RSS attenuation are then used as our model and data from the other day is used for evaluation. The
resulting graphs are shown in Figure 8. This leads to a maximum crowd estimation error below 450
people for Saturday, but for Sunday the actual crowd count according to the scanning system was
consistently overestimated.

Finally, for our third approach our training set consists of the data from the beginning of the day
up until the scanning system indicates more than 1000 people are present. All other data—including
from the same day—is used for evaluation. This is the type of method one would use in an actual
real-life crowd estimation system in which initial crowd counts can still be performed manually or
potentially in combination with a camera-based setup and the resulting data is used to train the
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RF-based passive sensing system. Results are shown in Figure 9 and they indicate decently accurate
results for Sunday while the underestimation of the peak period on Saturday is still quite severe.

(a) (b)

(c) (d)
Figure 7. Crowd estimation graphs and their corresponding error graphs for a model trained using
the data from an entire day and evaluated based on the data collected during the other day. Plots (a,c)
were created based on training data collected on Sunday 29 July 2018 and evaluated based on data
from Saturday 28 July 2018. Plots (b,d) were created based on training data collected on Saturday 28
July 2018 and evaluated based on data from Sunday 29 July 2018.

(a) (b)
Figure 8. Cont.
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(c) (d)
Figure 8. Crowd estimation graphs and their corresponding error graphs for a model trained using the
max count from a single day and evaluated based on data collected during the other day. Plots (a,c)
show the results of training based on the max count of Sunday 29 July 2018 and evaluation based on
data from Saturday 28 July 2018. Plots (b,d) show the results of training based on the max count of
Saturday 28 July 2018 and evaluation based on data from Sunday 29 July 2018.

(a) (b)

(c) (d)
Figure 9. Crowd estimation graphs and their corresponding error graphs for a model trained using the
data from a single day up until a crowd size of 1000 people was measured by the scanning system and
evaluated based on all remaining data collected during both days. Plots (a,c) were created based on
training data collected on Saturday 28 July 2018 and evaluated based on the remaining data from both
days. Plots (b,d) were created based on training data collected on Sunday 29 July 2018 and evaluated
based on the remaining data from both days.
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Figure 10a shows a graph of the cumulative distribution functions of all error values for the
three approaches. Median errors of respectively 227, 212 and 184 people (7.0%, 6.6% and 5.7% of the
maximum count of 3227) were obtained, which we consider to be quite impressive for straightforward
linear models. Standard deviations are quite large, however, and the lowest 95th percentile is equal to
624 people. We have previously identified two main periods of time during which the errors became
excessively large: 16:00–18:00 when the complimentary food and drinks began to be served in the
environments above the Main Comfort and the peak moments near the end of the day when the crowd
size was at its maximum. These large discrepancies were shown to likely be the result of the fact that
the largest mean RSS differences were quite similar for both days while the crowd scanning system
estimated a significant difference of nearly 500 people between the maximum crowd sizes. When
data from one day is used as training and the other for evaluation, the results are predictable. While
the obtained 95th percentile error values would be problematic for a fully implemented, commercial
crowd estimation system, it should nevertheless be kept in mind that the accuracy of the scanning
system is very much in doubt and that the festival organizers considered our estimates to be feasible
and useful. However, it is quite clear that further research is necessary.

(a)

Full-day Initial people Max count
training training training

(# of people) (# of people) (# of people)

Mean 255 251 264
Median 227 212 184

Standard Deviation 182 205 222
Root Mean Squared 313 324 344

75th percentile 368 370 422
95th percentile 624 659 740

(b)
Figure 10. A cumulative distribution function plot comparing the obtained crowd estimation error
values for the Main Comfort data for three different training approaches. (a) shows the actual plot
while the table shown in (b) contains several key statistical metrics.

The reason we calculated the previously mentioned percentages based on the maximum count, is
because this is usually the value that event organizers are most interested in in the context of crowd
safety. Another possible approach to represent these errors in a percentage-wise manner, is to simply
calculate each error value as a percentage of the current crowd size according to the scanning system.
To give an example, crowd size estimates of 90 and 110 would both give an error percentage of 10% if
the true crowd count according to the scanning system were 100. The cumulative distribution function
plots showing the results of this approach are shown in Figure 11a,b.
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(a) (b)

Full-day Initial people Max count
training training training
(error %) (error %) (error %)

Mean 19.5 14.6 22.1
Median 13.6 12.2 11.6

Standard Deviation 19.8 22.3 37.1
Root Mean Squared 27.7 26.7 43.1

75th percentile 22.1 18.2 27.9
95th percentile 53.9 26.6 53.0

(c)
Figure 11. A cumulative distribution function plot comparing the obtained crowd estimation error
value percentages for the Main Comfort data for three different training approaches. (b) zooms in on a
portion of (a) and the table shown in (c) contains several key statistical parameters.

Figure 11a zooms in on Figure 11b to give a clearer overview of the error percentages up to 50%. This is
necessary due to outliers which tend to occur during the early moments when the crowd count (according
to the scanning system) is still very low. This is clearly illustrated by Figure 12, in which it can be seen that
the estimation error percentage briefly lies between 250% and 300% during the beginning of the final festival
day when using the max count training. The cumulative distribution function plots seemingly show a result
that is particularly positive for the initial people training method. This result is not surprising, given the fact
that we showed earlier that the largest errors for this approach occurred near the end of the festival when
the crowd count was high. Once again, we must point out that it is still unclear as to whether this consistent
underestimation is primarily related to the previously mentioned issues with the scanning system or due to
inaccuracies regarding our own approach.

Figure 12. A graph showing the evolution of the crowd estimate of the passive RF based system versus the
estimate of the scanning system and the resulting error percentage between the two for the final festival day.
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4. Sound of Science: Nucleus

Sound of Science is a Belgian popular science event which aims to introduce scientific concepts to
a general audience. During its 2019 edition, we were granted the opportunity to perform a controlled
crowd estimation experiment in which event attendees could participate. It took place in the ’Nucleus’
tent environment of approximately 530 m2 in which we installed 44 nodes. Data was only captured on
the 868 MHz frequency band and the total amount of volunteers was equal to 247. The full experiment
consisted of 16 sub-experiments during which the participants were asked to perform a certain action
(raise their hands or sit down/stand up) or for a specific number of them to leave the environment. This
was accomplished by handing out sheets of paper containing an experiment number, with participants
being asked to leave when their experiment number was called out. On exiting the environment,
they were required to hand over their sheet which allowed us to detect cases in which people with an
incorrect experiment number still left the environment and update our ground truth counts accordingly.
Additionally, a consumer-grade camera device was installed as well and therefore we had access to
low-quality images of the environment while the experiments were ongoing, although these do not
provide a full overview of the entire environment.

Given the focus of this paper on crowd estimation, in our analysis we will primarily look at the
sub-experiments in which people left the environment. This was the case for experiments 6 to 16,
with the sole exception of sub-experiments 9 and 10 during which the participants were asked to
respectively sit down and stand up again. In our analysis graphs within this section, the experiments
are labeled A (sub-experiment 6) to K (sub-experiment 16).

A schematic overview and a photograph of the environment are respectively provided in
Figures 13 and 14. Nodes were attached to metallic support poles both at the edges of and within
the tent environment. Due to the controlled nature of the experiment and the scientific theme of the
event, it was not considered to a problem for participants to have physical access to them. They were
installed at approximately 1.50 m from the ground, which was near the upper end of the range of
installation heights for the nodes in the Main Comfort environment. The main reason for this increased
height was the fact that—in addition to regular crowd size estimation—we also wished to investigate
the feasibility of differentiating between a crowd whose members are standing up versus a crowd
whose members are sitting down. This is also the reason why sub-experiments 9 and 10 were included
in the controlled experiment. As a research topic we consider this to be out of scope for this paper, but
we are planning on investigating this in future. We will discuss this in more detail in Section 6.

Figure 13. An overview of the Nucleus tent environment.
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The use of 44 nodes resulted in a total of 946 communication links. As was the case for the Main
Comfort environment, we disregard the data from communication links whose lines-of-sight do not
intersect the environment in which the crowd is present. In practice, this means the links between the
nodes surrounding the environment whose locations form a set of collinear points, with the exception
of the link between nodes 6 and 7 and the link between nodes 7 and 8 due to their presence near the
entrance and exit. Therefore, only 755 links were used.

Figure 14. A photograph of the Nucleus tent environment.

4.1. Average RSS Attenuation & Ground Truth

As we have done for the Main Comfort environment, we analyze use of the average RSS difference
metric for crowd estimation. Calibration measurements were performed during a short 5 minute
period approximately 20 min before the experiments were announced to begin. Because the full
experiment was performed over a very short period of time (approximately 12 min), the window size
is drastically reduced compared to the Main Comfort analysis in order to have sufficient data points.
As a result, a new average RSS attenuation value is calculated based on all data collected during every
5 s.

Figure 15 shows the resulting evolution of the average RSS attenuation compared to our manually
obtained ground truth. The exact number of participants still present in the crowd could only be
known during the short periods of time at the end of an experiment when no participants were still in
the process of exiting the environment. Special attention was paid to delineate these periods while the
experiments were ongoing. As a result, the graph in Figure 16 only shows a ground truth value for
these moments. This also means that when comparing our measurements to the ground truth, we only
make use of the average RSS attenuation values which were determined during these time intervals.
Furthermore, the data from experiments D and E are discarded as well, as the changes in average
RSS attenuation are caused by the participants sitting down and standing back up again, rather than
by changes in crowd size. In practice, this leads to there being only 25 data points available for the
analyses we perform.

Figure 15. Evolution of the average RSS attenuation during the experiments in the Nucleus
tent environment.
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Figure 16. Evolution of the average RSS attenuation during the experiments in the Nucleus tent
environment, overlaid with the ground truth data.

A scatter plot and the associated Pearson correlation coefficient is shown in Figure 17, indicating
an extremely high correlation between our measurement value and the ground truth. Once again the
feasibility of our passive RF sensing approach is shown, this time in an environment with significantly
lower crowd sizes compared to our earlier experiments.

Figure 17. Scatter plots depicting the relationship between the average RSS attenuation and the ground
truth in the Nucleus tent environment.

4.2. Estimating Crowd Sizes

As was the case for the Main Comfort environment, we investigate the use of a linear
regression-based approach to perform actual crowd estimations in this environment as well. Both the
training approach which simply makes use of the maximum crowd count as well as the approach in
which the model curve is fitted to the data collected while the total crowd size was less than 100 are
used. The resulting estimation and error graphs are shown in Figures 18 and 19, while Figure 20a
contains the corresponding cumulative distribution function plots. When interpreting these results, it
should once again be kept in mind that the number of available data points is very limited. For the
second method this means that 9 data points are used for training while the remaining 16 are used for
evaluation.
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(a) (b)
Figure 18. A crowd estimation graph and its corresponding error graph for a model trained using the
data from the Sound of Science experiments for which the actual number of people present was below
100 and evaluated based on all remaining data. (a) shows the crowd estimation graph and (b) shows
the error graph.

(a) (b)
Figure 19. A Crowd estimation graph and its corresponding error graph for a model trained using
the max count from the Sound of Science experiments and evaluated based on all remaining data.
(a) shows the crowd estimation graph and (b) shows the error graph.

(a)
Figure 20. Cont.
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Initial people Max count
training training

(# of people) (# of people)

Mean 31 14
Median 32 13

Standard Deviation 15 5
Root Mean Squared 34 15

75th percentile 37 18
95th percentile 61 21

(b)
Figure 20. A cumulative distribution function plot comparing the obtained crowd estimation error
values for the Nucleus tent data for two different training approaches. (a) shows the actual plot while
the table shown in (b) contains several key statistical metrics.

As can be seen in the graphs the resulting median errors are quite low—13 & 32 people for
the max count and initial training approaches, respectively. This corresponds to 5.3% and 13% of
the maximum number of people present in the environment. The initial training based method
significantly underestimated the actual crowd count at its peak, however.

4.3. Crowd Size Estimation within Subregions

When one wishes to construct an actual crowd analysis system to aid in crowd management
for event organizers, it is often insufficient to only have access to estimates of the total amount of
people present in the environment. Information regarding the manner in which the crowd is dispersed
throughout the environment can be crucial as well. After all, dangerous situations can still occur
in environments with a low average number of people per square meter if the vast majority of this
crowd is located within a small part of the total environment. For this reason we investigate the
concept of subregions or zones, in which we divide the environment into multiple slices based on
the locations of our nodes. A set of links is assigned to each subregion and average RSS attenuation
values are calculated based solely on the data from these links. These values are then considered
to be representative for the corresponding zone. Figure 21 shows the manner in which we divided
the Nucleus tent environment into 8 different subregions. It should be noted that this division was
performed in a somewhat arbitrary manner and it is chiefly meant to illustrate the feasibility of the
concept. Our main concerns when choosing the subregions in which to divide the environment were
simply to ensure that each subsection had sufficient nodes and that the regions could potentially be
useful to analyze the movement of the crowd when leaving the environment.

Figure 22 shows the separate evolution of the average RSS attenuation for each zone over
the course of the experiments. Based on these graphs, several patterns can be quickly identified.
Unsurprisingly, given the fact that subregion 1 is located near the environment exit, rapid increases
followed by decreases can be observed during the course of almost every experiment. Furthermore, it
is clear that the attenuation values for the zones on the right side of the environment (3, 6 and 8) are
much smaller compared to the other subregions.

An interesting way to visualize all of these graphs, is by creating environment maps in which the
colour of each subregion is determined based on its current average attenuation value. Representing
the data in this manner makes it quite clear that the concept of subregions can be used to determine
crowd flows within an environment. In Figure 23, this is illustrated by a set of four environment
maps corresponding to the end of the experiments when the last groups of people were leaving the
environment through the exit near subregion 1. An animation showing the evolution of these maps for
the entire experiment, next to a corresponding series of low-quality camera images of the environment
at the time can be found within the Supplementary Materials of this paper.
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Figure 21. An overview of the manner in which the Nucleus tent environment was divided into
8 subregions. The color of each subregion represents the average RSS attenuation experienced by
communication links within this region at the indicated date and time.

The approach we have taken when analyzing subregions is the same as for the entire environment:
simply calculate the mean RSS difference of all the measurements from the selected links. While the
results thus far have shown this to be a valid methodology for our large-scale environments, it is
unclear how strongly this holds true for subregions. No distinction is made between different links
regarding the information they provide, even though they can be impacted in drastically different
ways by human presence and movement due to differing node locations, node distances and a variety
of multipath effects. While this is a remark which can be made regarding our approach in general,
the smaller amount of links in a much smaller subregion environment makes a coarse approach
in which a non-weighted mean RSS difference value is assumed to be linearly correlated with the
crowd count much less likely to be effective. If one looks at existing small-scale crowd estimation (or
general device-free localization) techniques, many approaches already take this into account. Examples
of this include the concept of link fade level in Radio Tomographic Imaging (RTI) [27–29] and the
explicit non-linearity of Sequential Counting, Parallel Localizing (SCPL) [30]. Combining fine-tuned
approaches for specific small-scale subregions—a domain for which substantial research already exists
as previously mentioned in the introduction—with a more coarse for the greater environment could be
a very important future research direction.

(a) (b)
Figure 22. Cont.
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(c) (d)

(e) (f)

(g) (h)
Figure 22. A set of graphs showing the evolution of the average RSS attenuation experienced within
each subregion over the course of the experiments performed within the Nucleus tent environment.
Plots (a–h) correspond to subregions 1 to 8.
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(a) (b)

(c) (d)
Figure 23. A set of attenuation maps providing an overview of the average RSS attenuation within
each subregion near the end of the experiments, from (a–d) 16:25:00–16:25:30.

5. Tomorrowland: Freedom Stage 2017–2018

It was in the Tomorrowland 2017 Freedom Stage environment where we performed our first
large-scale passive RF sensing measurements which were actively used for a crowd estimation study as
described in [24]. In 2018, we repeated our experimental measurements within the same environment.
For these measurements, the lack of ground truth data was even more egregious than the year before as
we no longer had access to low-quality camera footage of the environment. After this event, however,
the festival organizers permitted us access to the cashless transaction data for the Freedom Stage.
Within the entire grounds of Tomorrowland, all payments occur in a cashless manner by scanning the
buyer’s festival bracelet. The data provided to us gives an overview of the total amount of cashless
transactions that have taken place within the Freedom Stage during each minute for both the 2017
and 2018 editions of the festival. Based on expert opinion and our personal notions of the manner
in which the crowd size evolved throughout each festival day, we assume that this data is positively
correlated with the actual number of people present in the environment. Therefore, in this section
we will investigate the correlations between our average RSS attenuation metric and the cashless
transaction data. While it would not be conclusive in and by itself, the presence of a clear correlation
could be considered to be yet another piece of evidence strengthening the validity of our passive RF
sensing based approach to crowd estimation.

Schematic overviews of the setups we installed in the approximately 1755 m2 Freedom Stage
environment in 2017 and 2018 are provided in Figure 24. Type I nodes were installed under the bars
of the food and drink stands to the side of the environment and behind the wooden wall in the back.
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The height at which these nodes were installed was approximately 1.20 m for those placed under the
bars and between 0.60 m and 1.00 m for those behind the back wall. This low and variable height was
caused by practical considerations related to the manner in which they had to be attached to this wall.

As was the case in previous sections, we entirely disregard the data from links whose lines-of-sight
do not intersect the environment. As a result, instead of the 1035 and 903 links implied by the use of 46
and 43 nodes for respectively the 2017 and 2018 experiments, only 705 and 615 links are used.

(a) (b)
Figure 24. Overviews of the Freedom stage environment for the 2017 and 2018 editions of
Tomorrowland, shown respectively in (a,b).

Combining Crowd Estimation & Cashless Transaction Data

The resulting evolution of the average RSS attenuation over the course of the three weekend
days is shown in Figure 25 for both years. These graphs are overlaid with the corresponding cashless
transaction numbers for the days for which this data was available. As was the case for the Main
Comfort analysis graphs, each day is divided into segments based on the performances of the artists
which are anonymously labeled by letters A through L.

Figure 26 shows the same graphs with transaction data which was smoothed through the use of a
moving average filter in order to make the evolution of the data throughout the festival days more
clear. Corresponding scatter plots and their associated Pearson correlation coefficients are shown in
Figure 27. These were created based on the raw data, as we did not wish to introduce any spurious
correlations as a result of a smoothing procedure.
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(a) (b)

(c) (d)

(e) (f)
Figure 25. Graphs representing the evolution of the average RSS attenuation and number of cashless
transactions per minute for the 2017 and 2018 editions of the Tomorrowland festival within the Freedom
Stage environment. Plots (a–c) are based on data collected on Friday 28 July 2017, Saturday 29 July
2017 and Sunday 30 July 2017. Plots (d–f) are based on data collected on Friday 27 July 2018, Saturday
28 July 2018 and Sunday 29 July 2018.
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(a) (b)

(c) (d)
Figure 26. Graphs representing the evolution of the average RSS attenuation and the (smoothed)
number of cashless transactions per minute for the 2017 and 2018 editions of the Tomorrowland festival
within the Freedom Stage environment. Plots (a,b) are based on data collected on Saturday 29 July 2017
and Sunday 30 July 2017. Plots (c,d) are based on data collected on Saturday 28 July 2018 and Sunday
29 July 2018.

As is clear from these results, decently strong positive correlations exist between these two types
of data. One can quite easily observe time intervals in the graphs where—in the short term—the
average RSS attenuation and the number of cashless transactions per minute appear to be negatively
correlated. For example, this occurs near the end of the performance of artist H on Saturday for
Tomorrowland 2018. While the number of transactions strongly decreases, the average RSS attenuation
increases. Interestingly, after the end of the performance, the average attenuation sharply lowers as
well. If one were to assume that the attenuation metric is strongly correlated with the total amount
of people present in the environment—an assumption which we consider to be reasonable given the
results described in this paper thus far—a possible explanation could be that event attendees are
unlikely to buy food and/or drinks if they are planning to leave after the current artist has finished
their performance. Other examples of sudden localized changes in correlation include artist E during
Sunday for Tomorrowland 2018 and artist F during Sunday for Tomorrowland 2017. While these are
nothing more than a few interesting observations, we believe that this can be an interesting starting
point for research regarding the potential for combining an automatic crowd estimation system with
other sources of event data to enable real-time crowd prediction. We will discuss this more in detail in
the next section.
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(a) (b)

(c) (d)
Figure 27. Graphs showing the scatter plots and associated correlation coeffecients for the average rss
attenuation and the number of cashless transactions per minute. Plots (a,b) are based on data collected
on Saturday 29 July 2017 and Sunday 30 July 2017. Plots (c,d) are based on data collected on Saturday
28 July 2018 and Sunday 29 July 2018.

6. Conclusions & Future Work

Our initial study based on measurements performed within the Freedom Stage at the 2017
edition of the music festival Tomorrowland showed that the use of a passive RF sensing approach
for large-scale crowd estimation was feasible. In this paper, we validated this result for multiple
environments and showed that strong linear correlations existed between the average RSS attenuation
experienced by communication links in our RF sensing network and the total amount of people
present according to available ground truth data. Furthermore, we made use of straightforward
linear regression approaches in which part of the captured RSS data was used for training a crowd
estimation model which was then evaluated by applying it to the remaining data. This led to median
estimation errors as low as 184 for the Main Comfort environment and 13 for the Nucleus environment.
These corresponded to respectively 5.7% and 5.3% of the maximum sizes of the crowds within these
environments during the measurement period.

The ground truth data for these environments did suffer from some shortcomings. The bracelet
scanning procedure within the Main Comfort for people entering and exiting the environment raised
some questions regarding the accuracy of the resulting crowd counts. However, it should be noted
that our results were shared with the festival organisers. Well-aware of the potential inaccuracies of
the bracelet scanning system, they were impressed by our approach and considered our estimates
to be viable. In regards to the Freedom Stage—for which no ground truth data was available—they
found the relative evolution of the crowd sizes as indicated by the average RSS attenuation within
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our RF network to be realistic for the series of artists performing in this environment. While these are
naturally non-quantifiable opinions, we nevertheless consider them to be valuable insight from crowd
management experts.

As we have indicated multiple times over the course of this paper, we believe that the results
obtained from this study have opened up many interesting avenues for further research. First of all,
while we hypothesize that the use of the 2.4 GHz frequency band rather than sub-GHz frequencies
could pose problems in large-scale environments due to its limited range, experiments need to be
performed to determine where its exact limits lie. The use of OFDM-based Wi-Fi signals could enable
the use of CSI-measurements, which has already been proven in existing research to be highly useful
within small-scale environments [21–23]. Additionally, the use of SDR equipment to fully analyze
transmitted signals instead of only utilizing RSS as a signal descriptor could be highly interesting
as well, although it would evidently not be feasible to replace the large number of nodes we have
deployed in the previously described environments with SDR platforms.

This leads directly to a second important future research topic, which is an analysis of the impact
of the number of RF nodes. When deploying our nodes in the environments described in this paper, we
tended to simply install as many as possible in locations where it was allowed. By virtually removing
nodes in an analogous manner to how we removed links whose lines-of-sight did not intersect the
environment, we intend to investigate the impact of network size on crowd estimation accuracy in
relation to environment size and complexity.

Next, we also wish to delve deeper into the topic of calibration. In our current analysis, we
performed new calibration measurements during a short period of time at the beginning of each day.
We did so to avoid the impact of small environmental changes (e.g., furniture being moved) that have
occurred since the calibration measurements took place. We do not know how large these changes
need to be to have any significant impact on crowd estimation accuracy. Additionally, it could cause
major issues for a real-time crowd estimation system if severe environmental changes were to occur
while an event is ongoing (e.g., extra crowd barriers being installed), due to the fact that recalibration
would only be possible after the crowd had left. Furthermore, another interesting research topic
related to calibration, is the impact of the battery life cycle on the measured RSS values. Due to the
battery run-time for both nodes types being respectively 189 and 147 h and with the described events
lasting for at most 3 days, this was not an aspect which came up over the course of the experiments.
Nevertheless, this needs to be looked into for future, more long-term setups.

Additionally, more accurate models translating RF network measurements to crowd counts
should be developed. Care must be taken to avoid overfitting to one specific environment, however.
Exploring the use of other features besides the mean RSS difference (e.g., variance, skew and kurtosis)
might prove helpful in this context. Within the current state-of-the-art for small-scale RF based crowd
estimation, the use of multiple features is common for both RSS- and CSI-based systems [22,23].

Another topic which opens up a multitude of research directions is the concept of subregions.
Dividing the environment into multiple zones can provide information regarding the manner in which
the crowd is dispersed throughout the entire environment. The animation detailing the evolution of
the average RSS attenuation within each subregion of the Nucleus Tent environment indicates that
this concept can be a solid starting point for research regarding crowd flows. Many as of yet open
questions will need to be answered over the course of this research. What are the optimal ways to
divide the environments into multiple subregions, depending on environment and the number of
nodes deployed? Is it feasible to combine more fine-tuned (existing) small-scale crowd estimation
techniques for the subregions with more coarse large-scale approaches? How detailed is the crowd
flow information which can be derived by using this approach? These are but a few examples.

Crowd activity recognition is also a research field which we would like to explore for large-scale
environments. Initially, we are planning on investigating the feasibility of differentiation between a
crowd whose members are standing upright versus a crowd whose members are sitting down. It should
be noted that for this analysis we will not solely make use of some of the sub-experiments performed
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during the controlled experiment at Sound of Science 2019. Aside from the controlled experiment we
performed at this event, our system was also active during the other talks and presentations given in
this environment. While we do not have any verifiable crowd size ground truth corresponding to these
measurements, we do know the end times of each talk when people stood up and began to leave the
tent. Additionally, we have already performed and are planning to perform even more experimental
measurements related to this aspect in a variety of new environments.

Finally, based on certain observations regarding the cashless transaction data and our own
measurements in the Freedom Stage environment, we believe that the combination of a passive RF
sensing approach with other available data sources at an event could potentially lead to the creation of
real-time crowd prediction systems. While the impact of certain factors on the evolution of the crowd
size at an event are already well known by event organizers (e.g., artist popularity), quantifying these
aspects and incorporating them into prediction models which are continuously updated based on the
data from an automatic crowd monitoring system could prove to be an enormously useful tool. In
doing so, a crowd estimation approach would form the core of a full-fledged crowd analytics system.

One aspect which would be highly useful to all of the aforementioned research paths, is the
creation of publicly available data sets. This is an important issue within the research domain of
device-free passive localization in general and we have extensively discussed this topic in [31]. For
RF-based passive crowd estimation, the need for data sets is even greater. To the best of our knowledge,
no passive RF sensing experiments performed in environments containing thousands or even hundreds
of human individuals do exist—with the sole exception of our own. While we acknowledge that it
is very difficult to obtain accurate ground truth data for these type of experiments when performed
in real-life, uncontrolled environments, the sharing of any and all data—even with imperfect ground
truths—would greatly aid the further development of the field. Additionally, one very interesting
addition to these data sets would be the inclusion of data from other crowd estimation approaches
such as camera images. While the use of cameras does have several important downsides which we
touched upon in the introduction, they could still be useful for research into more mid-sized crowds
(containing hundreds instead of thousands of human individuals).

To lead by example, we are currently working on an MDPI Data publication in which 3 out of
the four data sets discussed in this paper (Main Comfort, Freedom 2017 & Freedom 2018) and the
corresponding ground truths and cashless payment amounts will be made public.

Supplementary Materials: An animation showing the evolution of these maps for the entire experiment is
available online at http://www.mdpi.com/1424-8220/20/9/2624/s1.
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