ﬂ SCNSors m\py

Article
Solid Concentration Estimation by Kalman Filter '

Yongguang Tan and Shihong Yue *

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; tyg_1991@tju.edu.cn

* Correspondence: shyuel999@tju.edu.cn

t This paper is an extended version of our paper published in Tan, Y.; Yue, S. Solid Component Fraction in
Multi-Phase Flows Using Electrical Resistance Tomography and Kalman Filter. In Proceedings of the 11th
International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF), Zhenjiang, China,
3-7 November 2019.

check for
Received: 31 March 2020; Accepted: 4 May 2020; Published: 6 May 2020 updates

Abstract: One of the major tasks in process industry is solid concentration (SC) estimation
in solid-liquid two-phase flow in any pipeline. The y-ray sensor provides the most used
and direct measurement to SC, but it may be inaccurate due to very local measurements and
inaccurate density baseline. Alternatively, under various conditions there are a tremendous
amount of indirect measurements from other sensors that can be used to adjust the accuracy
of SC estimation. Consequently, there is complementarity between them, and integrating direct
and indirect measurements is helpful to improve the accuracy of SC estimation. In this paper, after
recovering the interrelation of these measurements, we proposed a new SC estimation method
according to Kalman filter fusion. Focusing on dredging engineering fields, SCs of representative
flow pattern were tested. The results show that our proposed methods outperform the fused two
types of measurements in real solid-liquid two-phase flow conditions. Additionally, the proposed
method has potential to be applied to other fields as well as dredging engineering.

Keywords: solid concentration; solid-liquid two-phase flow; Kalman filter; data fusion

1. Introduction

Solid concentration (SC) estimation plays an important role in the detection of pipeline multiphase
flow [1,2], essentially in dredging engineering [3]. The high precision of SC is necessarily required to
effectively control industrial processes, while a small error of estimated SC can cause huge economic
cost and efficiency repercussions.

The SC estimation method has evolved for many years, and each progress provides information
of better accuracy and robustness [4]. In dredging engineering, the y-ray sensor is the most used meter
to directly measure SC values. When solid and liquid phases are uniformly distributed in the pipe, the
SC estimation is effective according to the measuring principle of the y-ray sensor. However, in most
cases, the solid-liquid mixtures are unevenly distributed in pipelines, and thus the measured SC values
may be very inaccurate [5]. Additionally, the necessary density baseline regarding zero value of SC for
any sensor is difficult to be effectively determined [6]. These problems are impossible to be solved by
the technique of the y-ray sensor, and may cause great errors to mislead further control processes.

In order to overcome the above problems, the indirect measurements from other sensors must
be used. There are many measurements that can be used to adjust the accuracy of SC estimation.
According to determinable interrelations to SC estimation, these measurements consist of a set of prior
information. In view of some commonly approximating methods, such as least squares estimation
method [7], linear minimum variance estimation (LMVE) method [8], maximum likelihood estimation
method [9], and so on, some regression equations have been set up. When the y-ray sensor is severely
inaccurate, these equations may have higher accuracy than the direct SC measurements. Moreover, the
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equation can provide a stable estimation in most cases. However, these existing regression equations
are limited by some uncertain assumptions and conditions. For example, LMVE can only access linear
rather than nonlinear relations [8].

Both direct and indirect measurements have their own applicable ranges, and there is no clear
boundary between them. Nevertheless, there is complementarity between them, and integrating the
two types of measurements is helpful to improve the accuracy of SC estimation. Along this direction,
the Kalman filter (KF) prediction [10] is the most used information fusion method, since it is a recursive,
self-regression, optimal process in the industrial field [11]. The use of KF for information fusion in
multi-phase flow is not new. Tan et al. [12] used a conductance ring coupled cone meter as a measuring
sensor in an estimation model and thus improved the estimation accuracy of gas concentration in the
gas-liquid. Wu et al. [13] developed an online adaptive estimation method for oil-water two-phase
flow water holdup measurement with a conductance/ capacitance sensor. However, these methods
hardly involve the characteristics of the used sensor, and specially are irrelative to the y-ray sensor.
Essentially, the SC estimation in dredging engineering fields is more complicated and difficult than
these SC estimations in other conditions and flow patterns.

In this paper, we recover the interrelations of other measurements regarding SC estimation.
Different from the existing methods, SC is computed not only by direct measurements but also
by indirect estimations. We propose a new SC estimation method according to KF fusion without
limited assumption and unreasonable conditions, and the complementarity between the two types of
measurements are analyzed. Focusing on dredging engineering, key principles and evaluation criteria
are introduced, and whereby typical SCs of the typical flow patterns were tested. Hence, the proposed
method uses the complementarity between direct measurement and indirect measurements to improve
measurement accuracy of SC estimation. The proposed method aims to obtain better accuracy to the
SC estimation in dredging engineering.

2. Related Work

In this section, we introduce direct measuring principle of SC from the y-ray sensor, indirect
measurements from other sensors, and the KF approach below.

2.1. Direct SC Measurement from the y-ray Sensor

The principle of a y-ray source sensor is to install two ends of a ray source on a silt conveying
pipe, one section transmits a signal, and one end receives a signal. The measurements of the y-ray
source changes when the sediment passes through the transmission pipe, and the key parameters such
as the density and flow of the sediment are derived by the change of the signal.

The principle of the radiation attenuation is the first foundation of the y-ray sensor. Assuming
that the y-rays are monoenergetic from a parallel beam (see Figure 1), the residual intensity of y-rays is
attenuated by the materials that the y-rays pass through:

I=1 exp{—j;umpds}, 1

where u,, the mass attenuation coefficient (m?/kg) mainly due to the photoelectric, pair production
effects and so on; p is the density of the object (kg/m?3); ds represents the infinitesimal thin layer of the
object (m).

When Equation (1) is used for SC estimation, [ is available measurement from the y-ray sensor; Iy
is the baseline value that refers to zero SC value. Consequently, the measuring intensity of the y-ray
sensor is directly proportional to the density of all materials in the field that the y-ray sensor goes
through. Assume that all materials in the entire field are uniformly distributed, then the investigated
intensity can be regarded as the density of the global field when Ij is converted to zero density of SC.
The SC value can be solved by Equation (1).
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Figure 1. Principle of the y-ray sensor.

However, the CS estimation based on the y-ray sensor may be inaccurate due to the following
two reasons at least.

(1) Uneven distribution. Both solid and liquids are assumed to be uniformly distributed in the
global field, and thus the local measurement that y-rays go through is regarded as the global one
(see Figure 1). However, in most cases the local density that the y-ray sensor measures are very
different from the global density for asymmetric and non-uniform flows.

(2) Uncertain baseline. The estimated SC greatly depends on the comparable baseline that responds
to the zero SC value. However, the density baseline is difficult to determine in advance. For
example, the y-ray intensity in seawater is taken as the value of I, but the seawater density is
changeable in a large range from 1.02 to 1.08 g/cm? in various conditions. Since seawater occupies
more than half of space in the pipe, thus, its density may lead to large errors of the SC estimation.

2.2. Indirect SC Estimation from Other Sensors

Due to the limitations of SC measurement & by the y-ray sensor, indirect measurements from
other sensors must be used to adjust the SC value. In a dredging engineering, there empirically are
relative measurements from 13 other sensors, Q;, [ =1, 2, ..., 13, as shown in Table 1.

Table 1. Indirect measurements for solid concentration (SC) from other sensors.

Variable Name (Unit) p (&, Q)
o] Total pressure (kPa) 0.716
Q Reamer speed (ms™!) 0.621
Q3 Reamer 1 voltage (V) 0.613
Q4 Reamer 2 voltage (V) 0.603
Qs Bridge angle (°C) 0.576
Qs 1# pump speed in cabin (ms™!) 0.502
Q7 2% pump speed in cabin (ms™!) 0.482
Qs Front flushing pressure (Pa) 0.488
Qo 1# mud pump power (kN) 0.440
Qo Suction vacuum value(kPa) 0.424
Q11 Right traverse moment (s) 0.383
Q12 Tidal level (m) 0.102
Q13 Right trunnion draught (°C) 0.115

In order to effectively assess the correlations from 13 indirect measurements to SC, we calculated
their correlation coefficients that are formulated as

p(E/Qk) = COV(é, Qk)/( D(E) D(Qk))/ k= 1/ 2/ ey 13 (2)
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where cov(-) is covariance, and D() is variance on & and Qy, respectively. The third column in Table 1
shows computed correction coefficients.

Specially, Figure 2 shows the measured values of £ and Q1. It can be observed that the varying
trend of Q19 can access one of £ in a very wide range. In the next section, we will illustrate that if all
measurements of £ are smoothed, Q19 can play an important role in the SC estimation in dredging
engineering [14].
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Figure 2. Correlation coefficient between & and Q.

According to these determinable correlations to SC and commonly approximating methods, some
equations have been set up, which can be formulated as

= F(Qll QZ/ sy Q13) (3)

where F denotes a map from measurements to SC value . However, the correctness of Equation (3)
may be affected by measuring conditions and construction form of F. When measuring conditions
and construction form are changed, these equations may cause a large error. An effective method is to
directly establish the correlation from these measurements to SC [15].

Direct and indirect measurements have interrelations as below:

(1) When the two measurements are nearly consistent, their results are believable.

(2) If the two measurements are inconsistent, they have individual effective ranges and
complementarity under various conditions. Generally, when any measurement has very large or
sudden change, it is unbelievable [16]. In fact, the solid-liquid mixtures have been sieved by an
iron net and broken by water cannons before they are transported into the pipe. Therefore, the
density change in the pipe is relatively stable. Hereafter, we apply the complementarity to the KF
estimation in this paper.

2.3. KF Prediction

KF prediction is a linear estimation algorithm. In most cases, KF has demonstrated to be a
recursive, self-regression, precise model in industrial fields.
Together with the controlling effect, KF results from two basic recursive equations from (k — 1) to
k steps:
Xy = AyXy-1 + BxUy + Vi (state equation) 4)

and
Zy = HyZy_1 + Wy (observation equation) (5)

where X} is the state vector that is governed by state matrix Ay of the system, Zj is the observation
(measurement) vector that satisfies observation matrix H, Vy and W are system noise and observation
noise vectors, respectively; BrUy is a control item by coefficient vector Uy; both V and Wi hypothetically
are white noise with zero mean and individual covariance in the case of no prior information.
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At the time k, assume that X} is the optimal estimation of X}, and Py is the estimation of Py, then
KF obeys the following five basic equations:

Xk = AiXi1 + Bl + Vi (state estimate) (6)
Py = Aklsk_lA{ + Qx (prediction covariance) (7)
Ky = PH, (HPH] + Ry) (filter gain) 8)

Xy = X; + Ki(Z — HiXy) (state update) )
Py = (I — KxHy)Py_q (covariance matrix) (10)

According to the above five equations, Table 2 shows the KF prediction process.

Table 2. The KF prediction process.

Input: Ak, Hk/ Vkl Wkl Bk
Output: Xj

: Initialize the values of Ay, Hi, Vi, Wi;

: Repeat

: Compute Xy and Py by Equations (6) and (7), respectively;
: Determine Ky by Equation (8);

: Update X} by Equation (9);

: Update Py by Equation (10).

NUT = WIN =

The KF prediction involves two alternative processes: state vector X update and observation
vector Z; update after recursively computing Py. KF has been demonstrated to be convergent without
any other assumptions [11].

However, the existing methods that apply KF to the fusion process in multi-phase flow do not
use the controlling effect from Uy. Essentially, the two values in Vi and W are set to unchangeable
constant. Hence, the applicable range of the used KF is very limited. In this paper, effort is made in
dredging engineering, and thus both X} and Zj that act for the estimation of SC are only scalar data,
denoting them as x; and zj. To effectively apply KF for the SC estimation, two changes were made.

(1) The use of the controlling effect is to represent indirect measurements when the value of Ay is
used to reflect inherent characteristics hidden in various measurements, and simultaneously can
show their dynamic changes.

(2)  Self-adjustable covariance in Xj and Z; in KF are used to show trusting degrees from direct and
indirect measurements in the y-ray sensor and in other sensors, respectively. Most existing KF
approaches apply the unchangeable values of covariance, and whereby the efficiency may greatly
be decreased [17].

These changes in KF are explained in detail below.

3. The Proposed Method

In this section, we firstly illustrate how indirect measurements are used to estimate the value of
SC in KF, and then explain how direct and indirect measurements can be fused toward more accurate
SC estimation.

The SC estimation in dredging engineering obeys the following two principles:

(1) The use of SC aims to guide the control action online such that the amount of solid phase can reach
to its largest value. However, since these control actions are operated by operators, they prefer to
find varying trends of direct and indirect measurements rather than these values themselves.
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(2) The control action of u is tightly close to all direct and indirect measurements. Consequently,
iterative process of xi is greatly affected by the control action whose effect is to simulate
the adjustment process of direct measurement by the 13 indirect measurements. Moreover,
these measurements must be normalized and smoothed to recover natural characteristics of
these measurements.

According to the above principle, after normalizing all measurements, the i-th SC value &; is
smoothed by its five neighbors along the time order as

&= (Eima+ &+ &+ &1 +E&isn) (11)

Figure 3 shows a group of initial SC measurements with fast change become flat after smoothing
them by Equation (11), and thereby the varying trend of SC can become clearer.
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Figure 3. Smoothed SC measurements.

Specially, the correlations of 13 indirect measurements to SC can be greatly changed after smoothing.
Figure 4 shows the change of correlations after smoothing them from one to three times.
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Figure 4. Changed correlation after smoothing measurements.

Figure 4 shows that Q1, Q», Q3, Q4, and Q19 are most relative to SC, and in fact they are independent
to each other [18]. Each of them can be used to evaluate the working state of the y-ray sensor in dredging
engineering. Their correlation after smoothing three times is clearest, and thus these corrections are
applied in our proposed approach.
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In our proposed method, the KF approach uses Equation (4) to integrate other measurements to
the SC estimation, and the KF approach thus is formulated as

&k = Me&p—1 + brug + vy (12)

where & is the estimated SC, by, is a coefficient that decides the effect of uy and can affect the converging
speed of KFE. Generally, both a; and by must satisfy the following relation to assure the convergence
of KF,

(be+e)/(m+e) <1 (13)

where ¢ is a small positive number to perfect the rate from fast change [17]. If Equation (13) is not
satisfied, then the value in Py in KF must be multiplied by a coefficient g, i.e.,

Sk = max{1, (co — ug — vy) / vk Prwy} (14)

where ¢, is a positive number that can decide the converging speed of the KF approach and convergence.
Consequently, in the proposed KF approach, there are four key parameters a, vy, wg, and ug, and they
are determined as follows.

(1) Determination of a;. The value of a; is tightly relative to the predicting mechanism of KF, and
is used not only to predict x; but also to compute the error covariance Py in KE. Therefore, gy is
the key parameter that reflects the varying trend of xx as the iteration proceeds. In the sense of
probability, the varying trend of xj is consistent with the trend of two latest values xx_; and x_».
The value of a; is computed as

g = Xg—1/Xk—2 (15)

When g; is larger than 1, the value of xj is enlarged which can just show an increasing trend;
otherwise, the value of xj,1 is reduced and corresponds to a deceasing trend. Figure 5 shows
the effect of i in a group of SC values, it can be observed that the values of g can effectively
represent the ascending and descending trends.

(2) Determination of uy. The use of 1 in KF aims to make the direct measurement of CF from the y-ray
sensor more accurate. Thus, uy is determined by prior information from other measurements. Let
Q@) =(q101), g209), ..., qlg(i))T be the ith vector on a group of measured values from Q;,i=1,2,...,
13; w; be the weighting value of g; by normalizing their correlations to SC in Table 1, respectively;
$; be the posteriori and more accurate real SC value relative to Q(i) after computing the total
production by measuring &(7) at each working phase. Denoting (Q(i), $;) as the ith pair of the
existing record, there is a tremendous amount of historical records whose set is denoted as QS.
Consequently, we realize the relation F in Equation (3) by the basic principle “similar problems
have similar solutions” in case-based reasoning model [19,20], and naturally it is a weighting
average of all inputs. For any new indirect measurement (i), we can estimate its unknown value
of SC value s; by a simple weighting mean as

Si:idjgf/ S.t, idj:l (16)

where d; is computed by the similarity from Q; to m historical records that are the closest to Q;,
and thus their similarity is measured by the following weighting distance:

1/2

13
d; =) we(ge(j) - 9(K)))} (17)
k=1
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where wy is the weighting value of Qk, k =1, 2, ..., 13. Consequently, the computed SC by
Equation (17) is taken as the value of uy in Equation (11).

(3) Determination of vy and wy. Both vy and wy in KF are usually difficult to directly predict since
we typically do not have the ability to directly observe the process that we are estimating. Then,
without other prior information their values both are unchangeable in KFE. In such case, both
the estimation error covariance Py and the KF gain Kj will stabilize quickly [17]. However,
an unchangeable constant is unhelpful to quickly improve the accuracy of SC. Generally, effective
KF performance can be obtained by tuning the value of vy and wy at time k. Notice that both
direct and indirect measurements of SC are inaccurate when their values contain sudden change.
Essentially, the measurement from the y-ray sensor is inaccurate if the distributions of liquid and
solids are uneven and thus is quickly changeable. According to the principle, we can determine
the values of vy and wy for each time by their coefficients of autocorrelation from two latest and
adjacent measurements, i.e.,

[ E(Xk'Xk_1) and Wy E(Zk'Zk—l) (18)

The smaller the vy or wy values, the higher the trust in the prediction and observation models.
If their values are 0, it means that only the prediction or the observation model is trusted.
Additionally, as their values decrease, KF will converge more easily, but when vy is reduced to a
certain extent, continuing to decrease may cause the system to start diverging. Figure 6 shows
the flowchart of the KF approach to the SC estimation.

Figure 5. Varying trend represented by the value of .

Direct
measurement x;

Indirect
measurement uy

Out SC value

Initialize
KF paramter
N A 4
State update Time update
»| Fused SC |

value

Figure 6. Flowchart of the KF approach.
4. Experiment

Experiments were performed in dredging process in a cutter suction dredger named as TIAN]JL
Figure 7 shows the y-ray sensor which was used to provide direct measurement & of SC. It is installed
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on a horizontal transport pipeline with diameter 750 mm and sampling rate 150/s. The solids and
liquids are mixed in the mixing pipe with adjustable seawater flow concentration; the inlet liquid
velocity is 3-12 ms™!, and will be increased to 8-25 ms™! as the flow develops. Additionally, the
13 indirect measurements (see Table 1) can provide an indirect estimation s; of SC by Equation (16) in
real time, I =1, 2, ... ,13, which can monitor the running state and provide the SC estimation as well.

Figure 7. The y-ray sensor in the pipeline.

In the experiment, a total of 55,450 historical records that consist of indirect measurements, and
their corresponding values of SC were corrected by posteriori information. All measurements are
normalized, but there are invalid data in the original records which must be removed. These records to
be eliminated include the following three classes:

(1) Zero SC value. A zero SC value results from the regular phase at each hour in which the pipeline
is pushed by pure seawater to prevent the transport pipe becoming clogged.

(2) Inconsistent measurement. There are such cases that two very different indirect measurements
respond to approximately the same SC value. Usually, these measurements may result from
abnormal running state of some sensors, or are collected under a low signal-to-noise situation.
Consequently, they cannot reflect natural characteristics in practice.

(3) Abnormal SC value. When some high-density solids go through the cross-section of the y-ray
sensor, the SC value may expose sudden changes and lead to invalid measurements. The
estimated density is inaccurate.

Finally, 43,350 valid records were kept in experiments, and these records were used to compute
SC by Equation (16) when new indirect measurements were available.

4.1. KF Fusion

The y-ray sensor collects direct measurements for SC online, while other 13 relative sensors can
provide indirect measurements to estimate SC by Equation (16).

In the KF approach, the initial values of x( are computed by their mean of all SCs in 43,350 valid
records, respectively. Additionally, thereby xg is taken as 1.66 ton-m~2, vy and hy are individually set to
10 and 1. The initial value of py changes from 0.01 to 0.2.

To speed up KEF, the initial value of m in Equation (16) must be set well. Note that the consistency
between direct and indirect measurements on the SC estimation reflects the accuracy, and their rate
ranges from 0.8 to 1.6. We let m = 3 and 7 which is directly proportional to the value of the rate.

According the dredging operating rules and the KF principle, the correctness of the estimated SC
can be assessed by the following two conditions:

(1) Consistency test. When both direct and indirect measurements are consistent, the iterative
variance in KF should be small enough compared with those values under the inconsistent case.
The smaller the variance value, the higher the trust in the KF approach. Essentially, if variance of
vk is 0, it means that only the direct measurement is trusted.
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(2) Amount constraint. The SC estimation finally aims to measure the total amount of solid mixtures
after transporting the solid-liquid mixtures to specified positions. Therefore, the total amount in
a determinable time can act for an objective index to evaluate the SC estimation.

Figure 8 shows the performance of the KF approach in 450 sets of real-time measurements. It is
observed that the fused SC value x; by the KF approach is flatter than the two individual fused
measurements. Specially, these original measurements contain more unreasonable values of sudden
change no matter which the direct and indirect measurements are taken.
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Figure 8. Comparison between KF for the y-ray sensor.

On the other hand, the volume amount of accumulating solid (soil) mixtures on each day is
measurable and recorded in any dredging engineering. Generally, the interrelation between the value
& of SC and the volume amount T obeys the following form,

T
T = kZ AV, (19)
t=1

where k is a conversion coefficient from density to volume, commonly taking it as 0.64, &; is the density
value at tth sampling, and T is the total number of samples on one day, AV} is the volume at each
sampling interval. Table 3 shows the collected historical volume amounts of four continuous days that
correspond to the used data in experiments, respectively. Here, the value of SC is taken as the fused
value x; in KF, the direct measurement is &, and the indirect measurement is sy, respectively.

Table 3. Evaluation of SC by total amount.

Number of Data 1st Day (km®) 2nd Day (km?) 3rd Day (km?) 4th Day (km®)
Amount (xi/E/sk) 17.79/20.61/19.84 17.06/18.23/17.21 11.64/13.08/12.95 15.11/17.27/16.38
Real amount 18.63 17.56 12.23 15.79

In total, the computed amounts from xy are less than the real value, while the products from &
are larger. In contrast to their computed products by Equation (20), the fused value in KF is most close
to the real amounts except the second day in which they are nearly consistent. The results show the KF
estimation is more correct and valid.
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4.2. Evaluation by the Relative Value of Q19

The value of Qg refers to the suction vacuum value of the underwater pump and plays an
important role in the controlling process in dredging engineering. Although the value of Qj itself is
not most directly relevant to the value of SC, its varying trend always is regarded as the most relevant
variable with the change of the SC value in actual conditions [14].

Let AQ1g, Axg, and A¢ be the difference of adjacent measurements on Q1, xx in KF and & from the
y-ray sensor, respectively. In this paper, we evaluate the consistency to AQg individually from Ax;
and A& by their absolute value, i.e.,

D(Q10, xx) = |AQ10 — Axi| and D(Q1o, &) = [AQ10 — Aé] (20)

According to dredging principle, an accurate estimation of SC must have as consistent value of
AQj as possible. Figure 9 shows the computed values of D(Q19, xx) and D(Q1o, &), respectively. It
can be observed that the values of D(Q1, xx) are much less than those of D(Q1g, &). Nevertheless, in
about 14% sampling points, the KF values may be worse than the y-ray sensor. We conclude that
the following two reasons can lead to this case. Firstly, the relative 13 variables may be incomplete
for general dredging conditions. In such case, the accuracy of the KF approach is surely decreased.
In addition, secondly, the available measurements may be low sign-to-noise. Consequently, the
convergence conditions of the KF approach is likely broken down.

7 T T T T T T T T
—— D(Qw, Xk)

__*_D(Qﬂ)’ () i

(2]
T
#

(3]
T

~
T
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Figure 9. Comparison of D(Q1g, xx) and D(Q1q, &).

With a close look, Table 4 shows the mean errors of D(Qqg, xx) and D(Q1o, &) at four phases of
various flow patterns, and each phase contains 50 samples on average.

Table 4. Mean errors of D(Q1, xx) and D(Q1o, &) at four phases.

Amount of Data 50 100 150 200
D(Q19, xx) 0.781 0.908 0.664 0.503
D(Q10, &) 0.831 0.974 0.722 0.546

Compared with the y-ray sensor, Table 4 shows that the overall errors of KF at the four phases
has reduced with increments 0.05, 0.086, 0.078, 0.043, respectively, where the values of D(Q1y, xx) and
D(Q1o, &) have normalized to [0, 1]. Therefore, the computed results by KF can be more acceptable in
dredging engineering. The above computed results validate the KF approach.
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5. Conclusions

In this paper, a new solid concentration (SC) estimation method for pipe flow was presented
based on the KF prediction by integrating direct and indirect measurements from the y-ray sensor and
other relative sensors. Key factors to design a more accurate and robust CF estimation were analyzed.
Results from the KF approach are closer to the real rules on a valid estimation of SC. Experiments in
actual dredging engineering validate the novel method.

However, some problems remain unsolved due to incomplete flow conditions. Firstly, the general
correlations from indirect measurements to SC estimation are difficult to construct and need to be
analyzed further. Secondly, a real-time measurement of SC with higher accuracy is not added to the
proposed method for testing, and only the rules in the sense of engineering are limited to some extent.
Finally, measurements to build the proposed method only are collected from a dredging ship, and no
further evaluations are performed in more working conditions. In the future, efforts will be made to
solve these problems, and finding the working mechanism to calculate SC is a possible method.
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